共查询到20条相似文献,搜索用时 15 毫秒
1.
Cong He Jia-Rui Niu Cheng-Tang Xu Shou-Wei Han Wei Bai Qiu-Lai Song Yash Pal Dang Hai-Lin Zhang 《Soil Use and Management》2022,38(2):1146-1161
Northeast China, the important grain-producing region in China, is under threat from soil degradation because of long-term conventional tillage (CT). The adoption of conservation tillage is anticipated to restore soil fertility, maintain crop yields and enhance sustainability. However, the integrated effects of conservation tillage practice on crop yields and soil organic carbon (SOC) remain unclear. In this meta-analysis of peer-reviewed studies conducted in the Northeast China region, we assess crop yields and SOC values under no-till, ridge tillage and subsoiling tillage practices. The results indicate that in areas with mean annual temperatures (MAT) below 3°C, crop yields were significantly (p < .05) higher under ridge tillage (0.8%) and subsoiling tillage (13.1%) compared with CT, whereas yields reduced under no-till (−3.7%). Ridge tillage generally had a similar effect on crop yield as no-till, without the negative impact in colder regions. We also report that no-till practice increased SOC concentrations by 24.1%, 43.9% and 17.4% in areas of higher temperature (MAT > 6°C), low mean annual precipitation (MAP) (<500 mm) and continuous cropping conditions, respectively. Ridge tillage and subsoiling tillage also had positive effects on SOC concentrations (to a lesser degree than no-till), indicating that conservation tillage can enhance SOC in Northeast China. Overall, the implementation of different conservation tillage measures in Northeast China was found to enhance crop yields and sequester carbon. We recommend that ridge tillage is used in colder areas and that subsoiling tillage is used in rotation with other tillage measures to maintain crop yields. 相似文献
2.
A review of plant disease, pathogen interactions and microbial antagonism under conservation tillage in temperate humid agriculture 总被引:1,自引:0,他引:1
The advent of conservation tillage presents a need for a greater understanding of plant disease and disease interactions in temperate humid agriculture, where excessive crop residues, continuous moist soil conditions and soil compaction are potential constraints. In this review, biotic and abiotic factors, and aspects of microbial antagonism, which can influence plant disease development in the root zone, are characterized in the context of conservation tillage in humid climates.Soil densification and reduction in macroporosity can aggravate abiotic root disease. Changes in soil aeration and permeability status can alter the quantitative and qualitative differences between soil rhizofloral populations, and survival and distribution of pathogen inoculum. Further-more, anaerobic soil conditions can result in root-pathogen interactions leading to plant disease development. A good quality soil physical environment is an important indicator for root health under conservation tillage in humid climates.Conservation tillage tends to concentrate plant debris and consequently microbial biomass in the top 5 to 15 cm of soil, and thus promotes survival of pathogens. However, disease-causing microbes make up only a proportion of the rhizofloral population. Relatively high soil microbial activity can lead to competition effects that may ameliorate pathogen activity and survival, and counteract a high pathogen inoculum pressure. Microbial antagonism in the root zone can lead to the formation of disease-suppressive soils. This phenomenon, which is important for the adoption of conservation tillage in humid climates, can be influenced by soil and crop management practices, especially crop rotation. 相似文献
3.
Xiaohua Ren Wenjing Zou Juying Jiao Ryan Stewart Jinshi Jian 《European Journal of Soil Science》2023,74(5):e13413
Conservation agriculture (CA) has the potential to sustain soil productivity and benefit agroecosystems, yet it is not fully understood how yield responses of different cropping systems are affected by inherent soil characteristics, for example, texture and dynamic soil properties, such as aggregation, nutrients and erosion. In this study, we conducted a systematic review to compare crop yield from cropland with conventional management versus different CA practices, specifically reduced- or no-tillage, agroforestry, organic farming and cover crops. The data were first analysed for different climatic regions, soil textures and cash crop types. We then quantified how yield responses correlated with soil properties change under different CA practices. The results showed that CA practices were associated with an overall mean crop yield increase of 12%. This response was primarily driven by corn, which had a mean yield increase of almost 41% after CA implementation, whereas other cash crops did not have significant yield responses or showed slight decreases, as rotation with mixtures of multiple cash crops had a mean decrease of 6% when using CA. The increase in corn yield after CA may be related to the enhanced ability of that crop to absorb nutrient elements (e.g. nitrogen) and reduce nutrient leaching. Agroforestry increased crop yield by 66% and cover cropping increased yield by 11%, likely due to increases in soil water content and nutrient availability and decreases in erosion and surface runoff. However, other agricultural systems showed no significant increase after CA compared with conventional row cropping practices. Using CA practices had the greatest yield benefit in tropical climates and when farming in coarse-textured soils. In addition, legumes and grass-legume mixtures resulted in significant cash crop yield increases, possibly because legumes promoted the increase of soil nitrogen and depleted soil moisture less compared with other cover crops. The results provide new insight into how interactions between soil properties and CA practices affect crop yield and at the same time can help guide the development of practical, evidence-based guidelines for using conservation practices to improve yield in corn and other cash crops. 相似文献
4.
Soil sustainability indicators following conservation tillage practices under subtropical maize and bean crops 总被引:1,自引:1,他引:1
Conservation management systems such as no tillage may enhance sequestration of soil C. The soil properties that contribute to soil C storage under such systems are still largely unknown, especially in subtropical agroecosystems. We investigated the influence of tillage [mouldboard plough (MP) and no tillage (NT)] on soil organic C, microbial biomass and activity, structural stability and mycorrhizal status of a field cultivated with maize (Zea mays L.) or bean (Phaseolus vulgaris L.) on a Vertisol in Northern Tamaulipas, Mexico. Crop type, tillage system and soil depth had a significant effect on soil organic C, aggregate stability and bulk density. Soil organic C, microbial biomass C and N and dehydrogenase and phosphatase activities were greater with NT than with MP, particularly under bean cultivation. In the 0–5 cm layer, microbial biomass C and N were, on average, about 87 and 51% greater in the soils cultivated with bean and maize, respectively, under NT than under MP. Higher levels of mycorrhizal propagules, glomalin related soil protein (GRSP) and stable aggregates were produced under NT than under MP in both crops. The no-tillage system can be considered an effective management practice for carrying out sustainable agriculture under subtropical conditions, due to its improvement of soil physical and biochemical quality and soil C sequestration. 相似文献
5.
Annette Prechtel Margit von Lützow Bernd Uwe Schneider Oliver Bens Claus G. Bannick Ingrid Kögel‐Knabner Reinhard F. Hüttl 《植物养料与土壤学杂志》2009,172(5):601-614
Uncertainties in estimates of soil carbon (C) stocks and sequestration result from major gaps in knowledge of C storage in soils, land‐use history, the variability of field measurements, and different analytical approaches applied. In addition, there is a lack of long‐term datasets from relevant land‐use systems. As in many European countries, a national database on soil organic carbon (SOC) including all relevant information for the determination of soil C stocks is likewise missing in Germany. In this paper, we summarize and evaluate the present state of knowledge on organic‐C contents/pools in soils of Germany and discuss the need for the acquisition and access to new data on soil organic carbon. Despite the number of agricultural sites under permanent soil monitoring, regional surveys on SOC, comprehensive ecosystem studies, and long‐term field experiments, there is a striking lack of data in Germany particularly with regard to agricultural soils. Apart from a missing standardization of methods and homogeneous baseline values, the implementation of a periodic, nation‐wide soil inventory on agricultural soils is required in order to simultaneously record information on land use, land‐use change, and agricultural practice. In contrast, the existing national inventory of forest soils provides information on C‐stock changes in forest soils, although there is some concern with regard to the representativeness of the sampling design to adequately address the problem of spatial heterogeneity and temporal variability. It is concluded that the lack of comprehensiveness, completeness, actuality, data harmonization, and standardized sampling procedures will further prevent the establishment of a SOC database in Germany with regard to the monitoring of trends in soil C pools and fluxes and the assessment of long‐term C‐sequestration potentials of soils under different land use. A future soil inventory should represent the heterogeneity of organic matter through functionally different SOC pools, topsoil characteristics as well as content, pool, and flux data for the deeper mineral‐soil compartments. 相似文献
6.
The effects of tillage on soil organic carbon (SOC) and nutrient content of soil aggregates can vary spatially and temporally, and for different soil types and cropping systems. We assessed SOC and nutrient levels within water‐stable aggregates in ridges with no tillage (RNT) and also under conventional tillage (CT) for a subtropical rice soil in order to determine relationships between tillage, cation concentrations and soil organic matter. Surface soil (0–15 cm) was fractionated into aggregate sizes (>4.76 mm, 4.76–2.00 mm, 2.00–1.00 mm, 1.00–0.25 mm, 0.25–0.053 mm, <0.053 mm) under two tillage regimes. Tillage significantly reduced the proportion of macroaggregate fractions (>2.00 mm) and thus aggregate stability was reduced by 35% compared with RNT, indicating that tillage practices led to soil structural change for this subtropical soil. The patterns in SOC, total N, exchangeable Ca2+, Mg2+ and total exchangeable bases (TEB) were similar between tillage regimes, but concentrations were significantly higher under RNT than CT. This suggests that RNT in subtropical rice soils may be a better way to enhance soil productivity and improve soil C sequestration potential than CT. The highest SOC was in the 1.00–0.25 mm fraction (35.7 and 30.4 mg/kg for RNT and CT, respectively), while the lowest SOC was in microaggregate (<0.025 mm) and silt + clay (<0.053 mm) fractions (19.5 and 15.7 mg/kg for RNT and CT, respectively). Tillage did not influence the patterns in SOC across aggregates but did change the aggregate‐size distribution, indicating that tillage affected soil fertility primarily by changing soil structure. 相似文献
7.
有机农业发展的低碳机理分析 总被引:1,自引:0,他引:1
温室气体排放引起的全球气候变暖是人类关注的环境热点问题之一。本文从农业生态系统影响全球变暖的主要温室气体(CO2、N2O 和CH4)的产生和排放出发, 探讨有机农业在生产减排和土壤固碳方面的机理。研究发现相对于常规农作而言, 有机农业在减排和固碳方面具有很大优势和潜力; 然而, 从长期来看, 通过土壤固碳减少大气温室气体的排放不是无限制的, 到一定程度后会达到一个平衡。因此, 更多的有效固碳途径和管理措施有待于进一步研究。同时, 从低碳理念出发, 强调中国加强有机农业环境效益研究的必要性。 相似文献
8.
Mariela Fuentes Claudia Hidalgo Inmaculada González-Martín Ken D. Sayre 《Soil biology & biochemistry》2010,42(4):551-557
Conservation agriculture might have the potential to increase soil organic C content compared to conventional tillage based systems. The present study quantified soil organic carbon (SOC) and soil C derived from C3 (wheat) and C4 (maize) plant species using δ13C stable isotope. Soil with 16 y of continuous application of zero tillage (ZT) or conventional tillage (CT), monoculture (M) or rotation (R) of wheat and maize, and with (+r) and without retention (−r) in the field of crop residues were studied in the central highlands of Mexico. The highest SOC content was found in the 0-5 cm layer under ZTM and ZTR with residues retention. The soil cultivated with maize showed a higher SOC content in the 0-10 cm layer with residue retention than without residue. In the 10-20 cm layer, the highest SOC content was found in the CT treatment with residue retention. The SOC stock expressed as equivalent soil mass was greatest in the 0-20 cm layer of the ZTM (wheat and maize) and ZTR cultivated treatments with residue retention. After 16 y, the highest content of soil δ13C was found in ZTM + r and CTM + r treated soil cultivated with maize; −16.56‰ and −18.08‰ in the 0-5 cm layer, −18.41‰ and −18.02‰ in the 5-10 cm layer and −18.59‰ and −18.72‰ in the 10-20 cm layer respectively. All treatments had a higher percentages of C-C3 (derived from wheat residues or the earlier forest) than C-C4 (derived from maize residues). The highest percentages of C-C4, was found in ZTM + r and CTM + r treated soil cultivated with maize, i.e. 33.0% and 13.0% in 0-5 cm layer, 9.1% and 14.3% in the 5-10 cm layer and 5.0% and 6.8% in 10-20 cm layer, respectively. The gross SOC turnover was lower in soil with residue retention than without residues. It was found that the ZT system with residue retention and rotation with wheat is a practice with a potential to retain organic carbon in soil. 相似文献
9.
Information on the effects of halophyte communities on soil organic carbon(SOC)is useful for sequestrating C in arid regions.In this study,we identified four typical natural halophyte communities in the Manasi River Basin in Xinjiang Province,Northeast China,namely,Karelinia caspia(Pall.)Less.,Bassia dasyphylla(Fisch.et C.A.Mey.)Kuntze,Haloxylon ammodendron(C.A.Mey.)Bunge,and Tamarix ramosissima Lour.We compared soil aggregation and aggregated-associated SOC under these communities.The aggregate fraction of 0.053–0.25 mm accounted for 47%–75%of the total soil mass,significantly more than the>0.25 and<0.053 mm fractions,under all the halophyte communities.Significant differences in soil aggregate size distribution were observed among the plant communities,with the H.ammodendron and B.dasyphylla communities showing the highest proportions of>0.25 mm aggregates(13.3%–43.8%)and T.ramosissima community having more<0.053 mm aggregates(14.1%–27.2%).Aggregate-associated SOC concentrations were generally the highest in the>0.25 mm fraction,followed by the<0.053 mm fraction,and were the lowest in the 0.053–0.25 mm fraction;however,because of their large mass,0.25–0.053 mm aggregates contributed significantly more to the total SOC.Total SOC concentrations(0–60 cm depth)decreased in the order of H.ammodendron(5.7 g kg^-1)>T.ramosissima(4.9 g kg^-1)>K.caspia(4.2 g kg^-1)>B.dasyphylla(3.4 g kg^-1).The H.ammodendron community had the highest total SOC and aggregate-associated SOC,which was primarily because aggregate-associated SOC content at the 0–10 and 10–20 cm depths under this community were higher than those under other plant communities.The H.ammodendron community could be beneficial for increasing SOC in saline soils in the arid region. 相似文献
10.
J.A. Zanatta C. Bayer J. Dieckow F.C.B. Vieira J. Mielniczuk 《Soil & Tillage Research》2007,94(2):510-519
Conservation management systems can improve soil organic matter stocks and contribute to atmospheric C mitigation. This study was carried out in a 18-year long-term experiment conducted on a subtropical Acrisol in Southern Brazil to assess the potential of tillage systems [conventional tillage (CT) and no-till (NT)], cropping systems [oat/maize (O/M), vetch/maize (V/M) and oat + vetch/maize + cowpea (OV/MC)] and N fertilization [0 kg N ha−1 year−1 (0 N) and 180 kg N ha−1 year−1 (180 N)] for mitigating atmospheric C. For that, the soil organic carbon (SOC) accumulation and the C equivalent (CE) costs of the investigated management systems were taken into account in comparison to the CT O/M 0 N used as reference system. No-till is known to produce a less oxidative environment than CT and resulted in SOC accumulation, mainly in the 0–5 cm soil layer, at rates related to the addition of crop residues, which were increased by legume cover crops and N fertilization. Considering the reference treatment, the SOC accumulation rates in the 0–20 cm layer varied from 0.09 to 0.34 Mg ha−1 year−1 in CT and from 0.19 to 0.65 Mg ha−1 year−1 in NT. However, the SOC accumulation rates peaked during the first years (5th to 9th) after the adoption of the management practices and decreased exponentially over time, indicating that conservation soil management was a short-term strategy for atmospheric C mitigation. On the other hand, when the CE costs of tillage operations were taken into account, the benefits of NT to C mitigation compared to CT were enhanced. When CE costs related to N-based fertilizers were taken into account, the increases in SOC accumulation due to N did not necessarily improve atmospheric C mitigation, although this does not diminish the agricultural and economic importance of inorganic N fertilization. 相似文献
11.
中国保护性耕作农田土壤有机碳变化速率研究——基于长期试验点的Meta分析 总被引:10,自引:0,他引:10
保护性耕作对于培肥地力、保障粮食安全、缓解气候变化等具有重要意义.本研究搜集了1980 ~2012年8月有关中国农田保护性耕作的157个试验点的303对田间定位试验数据,采用Meta分析方法定量分析了保护性耕作下我国农田耕层土壤(旱地0~ 20cm,水田0~15cm)有机碳(SOC)变化特征.结果表明,与传统耕作(CT)相比,传统耕作+秸秆还田(CTS)、免耕(NT)和免耕+秸秆还田(NTS)三种保护性耕作均能显著提高SOC含量,变化速率分别为NTS(0.52 g kg-1 a-1) >NT(0.35 g kg-1 a-1) >CTS(0.22 g kg-1 a-1);三种保护性耕作下SOC变化速率为水田>旱地,一年两熟制>一年一熟制;保护性耕作下,SOC积累与否及其幅度并不完全取决于其初始有机碳含量,短期试验(≤5a) SOC增加速率是长期试验(>5a)的1.75倍,如果仅采用短期试验结果可能高估保护性耕作的固碳潜力. 相似文献
12.
Approximately 30% of global soil organic carbon (SOC) is stored in subtropical and tropical ecosystems but it is being rapidly lost due to continuous deforestation. Tree plantations are advocated as a C sink, however, little is known about rates of C turnover and sequestration into soil organic matter under subtropical and tropical tree plantations. We studied changes in SOC in a chronosequence of hoop pine (Araucaria cunninghamii) plantations established on former rainforest sites in seasonally dry subtropical Australia. SOC, δ13C, and light fraction organic C (LF C<1.6 g cm−3) were determined in plantations, secondary rainforest and pasture. We calculated loss of rainforest SOC after clearing for pasture using an isotope mixing model, and used the decay rate of rainforest-derived C to predict input of hoop pine-derived C into the soil. Total SOC stocks to 100 cm depth were significantly (P<0.01) higher under rainforest (241 t ha−1) and pasture (254 t ha−1) compared to hoop pine (176-211 t ha−1). We calculated that SOC derived from hoop pine inputs ranged from 32% (25 year plantation) to 61% (63 year plantation) of total SOC in the 0-30 cm soil layer, but below 30 cm all C originated from rainforest. These results were compared to simulations made by the Century soil organic matter model. The Century model simulations showed that lower C stocks under hoop pine plantations were due to reduced C inputs to the slow turnover C pool, such that this pool only recovers to within 45% of the original rainforest C pool after 63 years. This may indicate differences in soil C stabilization mechanisms under hoop pine plantations compared with rainforest and pasture. These results demonstrate that subtropical hoop pine plantations do not rapidly sequester SOC into long-term storage pools, and that alternative plantation systems may need to be investigated to achieve greater soil C sequestration. 相似文献
13.
Biochemical modification of plant materials may contribute considerably to the formation and stabilization of soil organic matter, but its significance remains elusive in turfgrass systems. This study aimed to close this knowledge gap by examining the dynamics of soil organic matter in turfgrass systems as well as its stability using δ13C and δ15N records. Two geographic locations, each containing 3 or 4 turfgrass systems of different ages were used as the study sites because site-associated differences, in particular soil pH (alkaline versus acidic) might cause divergence in microbial processing during organic matter decomposition and resynthesis. We observed that soil C storage was ∼12% greater in the alkaline site than the acidic one. In addition, accumulation rates of soil organic C and N were about 3-fold higher in the alkaline site. Soil organic matter was physically fractionated into light and heavy fractions. Heavy fraction from the alkaline site mineralized more slowly than the acidic one, indicating that soil organic matter was more stable in the alkaline site. Furthermore, the stability of soil organic matter based upon δ15N records and C-to-N ratio of organic matter was again found to be more stable in the alkaline site than the acidic one. While both soil δ13C and δ15N increased as turfgrass systems aged, rates were greater in the alkaline site than the acidic one. Temporal shifts in soil δ13C and δ15N were attributed mainly to isotope fractionation associated with microbial processes rather than selective preservation of 13C- or 15N-enriched chemical compounds of plant materials. Our results suggested that microbial decomposition and resynthesis played an important role in organic matter stabilization in turfgrass systems and this microbial processing could be managed via microbial activity-regulating factors, such as soil pH. 相似文献
14.
T. Nakajima R. K. Shrestha P.‐A. Jacinthe R. Lal S. Bilen W. Dick 《Soil Use and Management》2016,32(4):515-524
No‐till (NT) farming can restore the soil organic carbon (SOC) pool of agricultural soils, but the SOC pool size and retention rate can vary with soil type and duration of NT. Therefore, the objectives of this study were to determine the effects of NT and soil drainage characteristics on SOC accumulation across a series of NT fields on Alfisols in Ohio, USA. Sites under NT for 9 (NT9), 13 (NT13), 36 (NT36), 48 (NT48) and 49 (NT49) years were selected for the study. Soil was somewhat poorly drained at the NT48 site but moderately well drained at the other sites. The NT48 and NT49 on‐station sites were under continuous corn (Zea mays), while the other sites were farmers' fields in a corn–soybean (Glycine max) rotation. At each location, the SOC pool (0–30 cm) in the NT field was compared to that of an adjacent plough‐till (PT) and woodlot (WL). At the NT36, NT48 and NT49 sites, the retention rate of corn‐derived C was determined using stable C isotope (13C) techniques. In the 0‐ to 10‐cm soil layer, SOC concentration was significantly larger under NT than PT, but a tillage effect was rarely detected below that depth. Across sites, the SOC pool in that layer averaged 36.4, 20 and 40.8 Mg C/ha at the NT, PT and WL sites, respectively. For the 0‐ to 30‐cm layer, the SOC pool for NT (83.4 Mg C/ha) was still 57% greater than under PT. However, there was no consistent trend in the SOC pool with NT duration probably due to the legacy of past management practices and SOC content differences that may have existed among the study sites prior to their conversion to NT. The retention rate of corn‐derived C was 524, 263 and 203 kg C/ha/yr at the NT36, NT48 and NT49 sites. In contrast, the retention rate of corn‐C under PT averaged 25 and 153 kg C/ha/yr at the NT49 (moderately well‐drained) and NT48 (somewhat poorly drained) sites, respectively. The conversion from PT to NT resulted in greater retention of corn‐derived C. Thus, adoption of NT would be beneficial to SOC sequestration in agricultural soils of the region. 相似文献
15.
H. S. Jat P. C. Sharma Virender Kumar A. K. Yadav Madhu Choudhary 《Archives of Agronomy and Soil Science》2018,64(4):531-545
Soil quality degradation associated with resources scarcity is the major concern for the sustainability of conventional rice-wheat system in South Asia. Replacement of conventional management practices with conservation agriculture (CA) is required to improve soil quality. A field experiment was conducted to assess the effect of CA on soil physical (bulk density, penetration resistance, infiltration) and chemical (N, P, K, S, micronutrients) properties after 4 years in North-West India. There were four scenarios (Sc) namely conventional rice-wheat cropping system (Sc1); partial CA-based rice-wheat-mungbean system (RWMS) (Sc2); CA-based RWMS (Sc3); and CA-based maize-wheat-mungbean (Sc4) system. Sc2 (1.52 Mg m?3) showed significantly lower soil bulk density (BD). In Sc3 and Sc4, soil penetration resistance (SPR) was reduced and infiltration was improved compared to Sc1. Soil organic C was significantly higher in Sc4 than Sc1. Available N was 33% and 68% higher at 0–15 cm depth in Sc3 and Sc4, respectively, than Sc1. DTPA extractable Zn and Mn were significantly higher under Sc3 and Sc4 compared to Sc1. Omission study showed 30% saving in N and 50% in K in wheat after four years. Therefore, CA improved soil properties and nutrient availability and have potential to reduce external fertilizer inputs in long run. 相似文献
16.
J. Wang C. Lu M. Xu P. Zhu S. Huang W. Zhang C. Peng X. Chen L. Wu 《Soil Use and Management》2013,29(2):182-190
Soil organic carbon (SOC) modelling is a useful approach to assess the impact of nutrient management on carbon sequestration. RothC was parameterized and evaluated with two long‐term experiments comparing different fertilizer treatments in north (Zhengzhou) and northeast (Gongzhuling) China. Four nutrient application treatments were used: no fertilizer (Control), mineral nitrogen–phosphorus–potassium fertilizers (NPK), NPK mineral fertilizer plus manure (NPKM), and NPK mineral fertilizer plus straw return (NPKS). The comparison between simulated and observed data showed that the model can adequately simulate SOC contents in the Control, NPK and NPKM treatments but overestimated in the NPKS treatment at both sites. By changing the value of decomposable plant material:resistant plant material (DPM:RPM) ratio from the default value to 3.35 for the NPKS treatment at the Zhengzhou site, dynamics of simulated SOC agreed with measured values. A pseudo‐parameter, straw retention factor was introduced to adjust the amount of straw incorporated into soils. Using the inverse simulation method and the modified value of the ratio, the best‐fitted value was 0.24 for the NPKS treatment at the Gongzhuling site. This result indicated that retaining straw on the soil surface makes less contribution to carbon sequestration than if it is incorporated. With this modification for straw, the model produced reasonable predictions for the two sites. The model was run for another 30 years with the modified parameter values and current average climatic conditions for different fertilizer treatments at both sites. The results suggested that the NPK application plus the addition of manure or straw would be better management practices for carbon sequestration. 相似文献
17.
不同利用年限红壤水稻土有机碳和养分含量的粒级分布变化 总被引:5,自引:0,他引:5
通过田间采样结合沉降法分级提取,研究了不同利用年限红壤水稻土有机碳和养分含量的粒级分布变化特征。结果表明,红壤水稻土有机碳和养分含量随土壤颗粒粒径的增大而下降,但在各粒级中的分布比例存在显著差异。<0.002mm、0.002~0.02mm、0.02~0.05mm、>0.05mm粒级的有机碳占全土有机碳的比例分别是29.2%、30.7%、11.9%、15.4%,氮的相应数值为36.7%、31.9%、10.2%、14.0%,磷为49.2%、26.5%、11.1%、12.4%,钾为36.9%、33.4%、12.9%、20.0%。总体来说,黏粒和粉粒中有机碳和养分的分布比例较高。红壤水稻土有机碳和养分含量及分布比例还随利用年限而有明显变化。开垦利用不到10a的水田土壤,有机碳和养分含量较低且主要集中在<0.002mm粒级中;而利用超过10a的水稻土,有机碳和养分在粉粒中(0.002~0.05mm)的比例大于50%。各利用年限的红壤水稻土多以0.02~0.05mm粒级的C/N为最高,并随利用年限延长而下降。红壤水稻土各粒级有机碳和养分含量及分布状况随利用年限的变化反映了土壤肥力熟化和养分有效性的提高过程。 相似文献
18.
Tesfay Araya W. M. Cornelis J. Nyssen B. Govaerts H. Bauer Tewodros Gebreegziabher Tigist Oicha D. Raes K. D. Sayre Mitiku Haile J. Deckers 《Soil Use and Management》2011,27(3):404-414
The aim of conservation agriculture (CA) is to improve soil quality and crop yield whilst reducing runoff and topsoil erosion. An experiment was carried out in a rainfed field using a permanent raised bed planting system for 3 yr (2005–2007) in Adigudem, northern Ethiopia in order to evaluate the effect of CA on runoff, soil loss and crop yield. CA practices were introduced in fields with Vertisols in a randomized complete block design on permanent 5 × 19 m plots. Three treatments were evaluated: (1) conventional tillage (CT) with a minimum of three tillage operations and removal of crop residues, (2) terwah (TER) that was similar to CT except that contour furrows were included at 1.5 m intervals, and (3) derdero+ (DER+), which consists of permanent raised beds with a furrow and bed system, retention of 30% of standing crop residues and zero tillage on the top of the bed. All ploughing as well as the maintenance of the furrows of the permanent raised beds was done using a local ard plough called maresha. Results from monitoring over 3 yr showed that soil loss and runoff were significantly higher (P < 0.05) in CT followed by TER and DER+. Average soil losses of 5.2, 20.1 and 24.2 t/ha were recorded from DER+, TER and CT, respectively. Runoff was 46.3, 76.3 and 98.1 mm from DER+, TER and CT, respectively. Grain yield was significantly lower (P < 0.05) in DER+ under teff in 2006, probably due to the high sensitivity of teff to weeds. The yield of wheat in 2007 was significantly higher in DER+ followed by TER. The terwah system is recommended as a first measure for wider adoption to reduce runoff and soil loss and to increase crop yield. The long‐term goal is to achieve a derdero+ system, i.e. a permanent raised bed planting system along with the application of crop residues. 相似文献
19.
Pere Casals Cristina Gimeno Arnaud Carrara Luis Lopez-Sangil MaJos Sanz 《Soil biology & biochemistry》2009,41(9):1915-1922
The magnitude of CO2 efflux pulses after rewetting a dry soil is highly variable and the factors regulating these pulses are poorly understood. In this field experiment, we aimed to study the C dynamics after simulated summer rainstorms in a Mediterranean open holm oak woodland (dehesa). We hypothesized that because the herbaceous cover is mostly dead during the summer in this ecosystem, the short-term CO2 efflux (SR) after rewetting could mainly be explained by different measurable soil C fractions: i) K2SO4-extracted soil C (EOC); ii) microbial biomass C (MBC); or iii) chloroform-fumigated extracted C (CFE). On both grazed and abandoned dehesa sites, we simulated three summer rain events at two-week intervals and we measured SR discontinuously in three plots under tree canopy and in another three plots in open grassland. In each plot, C fractions and water content were estimated before (2 h) and after (36 h) each irrigation event. Following rewettings, SR increased up to ten times compared with non-irrigated plots. The CFE actually increased after rewetting in the first two irrigations but not in the third event, suggesting that the capacity of the soil to release labile organic C from soil aggregates or litter was reduced after each irrigation event. Overall, the C released as CO2 in the first 24 h was related to the CFE existing before rewetting, which may help to explain the spatial variability in SR. However, the explained variability decreased after each irrigation, suggesting a change to a less labile composition of the CFE fraction as a consequence of multiple drying-rewetting cycles. 相似文献
20.
Effect of optimal irrigation,different fertilization,and reduced tillage on soil organic carbon storage and crop yields in the North China Plain 总被引:2,自引:0,他引:2
The objective was to evaluate the effect of different agricultural managements on soil organic C (SOC) storage and crop yields in the North China Plain (NCP). The study was conducted at five experimental stations. Different agricultural managements were designed, including optimal (OPT) and conventional (CON) irrigation and fertilization treatments, different amounts of fertilization application and residue‐return treatments, and different tillage practices. Compared to the CON treatment, SOC storage in the 1 m soil profile under the OPT treatment increased by 2 t ha–1, 8 t ha–1, and 4 t ha–1 at Quzhou, Wuqiao, and Dongbeiwang sites, respectively. The annual increasing rate of SOC storages in the topsoil (0–30 cm) under the OPT treatments at Wuqiao (0.88 t ha–1 y–1), Quzhou (0.93 t ha–1 y–1), and Dongbeiwang (1.86 t ha–1 y–1) were higher than those in the CON treatments at Wuqiao (0.15 t ha–1 y–1), Quzhou (0.54 t ha–1 y–1), and Dongbeiwang (0.28 t ha–1 y–1), but the difference of grain yields between the two treatments was not significant. The SOC storage in 1 m soil profile in the no‐tillage treatment with standing residue return (NT1) at Luancheng increased by 5 t ha–1 and 7 t ha–1 compared with rotary‐tillage (RT) and conventional‐tillage (CT) treatments, respectively, but the crop yield under no‐tillage treatment was the lowest. While at Quzhou site, it increased by 3 t ha–1 in the top 40 cm soil under the NT treatment compared to the CT treatment. The annual increasing rate of SOC storage in the top 30 cm under NT treatment was also the highest (1.08 t ha–1 y–1 at Luancheng, 1.86 t ha–1 y–1 at Quzhou), compared to the other tillage treatments. At Henghsui site, the combination of the highest fertilization application and highest residue‐return treatments got the highest SOC storage and the highest crop yields. We concluded that the agricultural management practices, such as optimal irrigation and fertilization treatment, the higher fertilization, residue return and RT, has significant impact on the SOC storage and agricultural sustainability in the NCP. 相似文献