首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The experimental system described allows concomitant hourly measurements of CO2, H2O, and NO3 uptake rates by plants grown hydroponically in a greenhouse. Plants are enclosed in an airtight chamber through which air flows at a controlled speed. Carbon dioxide exchange and transpiration rates are determined from respective differences of concentrations of CO2 and water vapor of the air at the system inlet and outlet. This set‐up is based on the “open‐system”; principle with improvements made on existing systems. For instance, propeller anemometers are used to monitor air flow rates in the chamber. From their signal it is possible to continuously adjust air speed to changing environmental conditions and plant activity. The air temperature inside the system therefore never rises above that outside. Water and NO3 uptake rates are calculated at time intervals from changes in the volume and the NO3 concentration of the nutrient solution in contact with the roots. The precise measurement of the volume of solution is achieved using a balance which has a higher precision than any liquid level sensors. Nitrate concentration is determined in the laboratory from aliquots of solution sampled at time intervals. A number of test runs are reported which validate the measurements and confirm undisturbed conditions within the system. Results of typical diurnal changes in CO2, H2O, and NO3 uptake rates by fruiting tomato plants are also presented.  相似文献   

3.
The scaling up of processes in the plant–soil–microbe system represents one of the greatest challenges facing environmental scientists and yet is essential for sustainable land management worldwide. The latter encompasses, for example, the mitigation of and adaptation to anthropogenic climate change, the bioremediation of industrially contaminated sites, catchment management of human pathogens such as Escherichia coli O157 and integrated crop management on the farm. Scaling up is also essential for the regional and global biogeochemical modelling that will inform policy-makers of the critical environmental factors driving climate change. Despite increasing understanding of the links between gene expression and process on a microscale, there is still much progress to be made when relating this to processes at the macroscale. In this paper, we explore the challenges this poses and examine key case studies of successful up-scaling.
Dominic StandingEmail:
  相似文献   

4.
5.
No studies have compared so far the effects of alien invasive and expansive native (widespread, mono-dominant) plants on arbuscular mycorrhizal fungi (AMF). Four global or European most successful invaders (Impatiens glandulifera, Reynoutria japonica, Rudbeckia laciniata, Solidago gigantea) and two expansive plants native to Europe (Artemisia vulgaris, Phalaris arundinacea) were grown in pots to elucidate the magnitude and direction of changes in AMF abundance, species richness, and species composition in soils from under multispecies native vegetation. In a second stage, the effects of these changes on a native plant, Plantago lanceolata, were assessed. Plant species identity had larger impact on AMF abundance, species richness, and species composition as well as on P. lanceolata than origin of the species (alien vs. native). This could be due to the character of AMF relationships with the plants, i.e., their mycorrhizal status and dependency on AMF. However, the alterations induced by the plant species in soil chemical properties rather than in AMF community were the major drivers of differences in shoot mass and photosynthetic performance of P. lanceolata. We determined that the plants produced species-specific effects on soil properties that, in turn, resulted in species-specific soil feedbacks on the native plant. These effects were not consistent within groups of invaders or natives.  相似文献   

6.
ABSTRACT

Veterinary antibiotics can enter the environment especially agricultural soils via animal manure application in which Sulfadiazine (SDZ) is considered as one of the most used antibiotic. After soil application, it may be transported into subsurface water. The sorption behavior of SDZ is not only influenced by the soil type but also by soil organic matters as well. Hence, an experiment was executed aimed to study sorption/desorption processes of SDZ under experimental conditions in three various soils treated by different bio fertilizers including rice husk compost (RHC), rice husk biochar (RHB) and Micrococcus yunnanensis (My) bacterium. Sorption/desorption data of soils with and without bio-fertilizers were well fitted with Freundlich model (R2 = 0.97). Results showed that bio-amended soils had higher values of kd sorption ranged from 1.16 to 52.4 without and with bio-fertilizers application respectively, proposing low sorption of SDZ with substantial risk of leaching without bio-fertilizers application. Also for the desorption cycle values of Kd increased from 1.03 to 39.1 without and with bio-fertilizers application, respectively. Furthermore, there was a hysteresis effect using organic matter. As a result of bio-fertilizers application, a significant value of SDZ was strongly adsorbed on the soil particles which was not desorb through desorption process.  相似文献   

7.
8.
Ammonium‐N concentrations were frequently observed to exceed nitrate‐N concentrations in an intermittently flowing stream draining acid grassland in North Yorkshire. This prompted the design of a soil microcosm experiment to investigate the role of litter in the leaching of ammonium and nitrate from soil profiles during winter. Drainage water was analysed weekly for N species, pH, mineral acid anions and dissolved organic carbon (DOC) for a period of 11 weeks, while extractable mineral‐N was determined after 5 and 11 weeks. The results demonstrate that litter plays an important role in reducing mineral‐N leaching in winter months. They also suggest that DOC from the litter participates in mineral‐N retention in the soil profiles in winter. Ammonium‐N and nitrate‐N concentrations measured in the microcosm drainage water are similar to those of the stream.  相似文献   

9.

Purpose

Ferrolysis is a soil-forming process, which involves destruction of clay minerals due to cyclic reduction and oxidation in acidic and periodically wet soils. The main objectives of this study were as follows: (1) to determine the influence of redox processes on clay mineral transformation in Retisols (Albeluvisols) in the Carpathian Foothills in Poland and (2) to verify the occurrence of ferrolysis in Retisols showing various degrees of bleaching.

Materials and methods

Twelve representative soil profiles were selected for analysis. All were formed entirely from loess except for two profiles, in which the lowermost horizons (2C) had developed from weathered flysch rocks residuum. Soil mineral analysis was done using x-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, and Mössbauer spectroscopy (MS).

Results and discussion

The obtained results indicate that the qualitative and quantitative mineral compositions of the clay fraction in the E and Eg horizons obtained from Retisols in the Carpathian Foothills exhibiting marked differences in bleaching (strong, moderate, weak, and lack of bleaching) caused by periodic stagnation of water above a slowly permeable fragipan and cyclic redox processes are the same. The E and Eg horizons are characterized by the presence of 2:1 clay minerals with likely organic interlayer fillings, dioctahedral mica, kaolinite, and chlorite.

Conclusions

The results indicate that (1) redox processes occurring in the soils do not affect clay mineral transformation in Retisols of the Carpathian Foothills in Poland and (2) ferrolysis is not the main soil-forming process operating in these soils. This is most likely because iron-bearing minerals are not abundant in the Retisols and/or undergo eluviation to the lower part of the soil profiles. The lower content of the clay fraction in the E and Eg horizons versus that in the lower soil horizons of the Retisols is related to clay illuviation (lessivage), and not to clay decomposition due to ferrolysis.
  相似文献   

10.

Purpose

The aim of this work was to select and assess the efficiency of different amendments applied to ordinary chernozems artificially contaminated with heavy metals (Zn and Pb).

Materials and methods

The effect of different amendments on ordinary chernozem contaminated with Zn and Pb acetate salts was studied in a long-term 3-year field experiment. Glauconite, chalk, manure, and their combinations were chosen as ameliorating agents. Spring barley (Hordeum sativum) was used as test culture for three successive years. The heavy metal concentration in all the soil samples decomposed by HF?+?HClO4 was determined by atomic absorption spectrophotometry (AAS). One normal concentration of CH3COONH4 at pH 4.8 was used to estimate the actual mobility of metals. The compounds of heavy metals extracted by 1 N HCl are regarded as mobile compounds. The concentration of metals in the plants was determined using the dry combustion in a mixture of HNO3 and HCl at 450 °C. The content of heavy metals in extracts from soil and plant samples was determined by AAS.

Results and discussion

The content of weakly bound metal compounds increased upon the contamination of the soil with Pb and Zn salts, which led to a low quality of barley grown in these soils. Metal concentrations in the barley grain exceeded the maximum permissible concentrations (MPCs). The content of Zn and Pb in grains was higher than the MPC for at least 3 years after the soil pollution. The application of amendments significantly decreased the mobility of metals, and the simultaneous application of chalk and manure was most significant. The share of weakly bound metal compounds in the contaminated soils decreased to the level typical for the clean soils or even below.

Conclusions

The combined application of chalk and manure to Zn- and Pb-contaminated ordinary chernozems decreased the content of weakly bound metal compounds in the soil and lowered their concentrations in barley plants. The polyfunctional properties of the soil components with respect to their capacity for metal fixation were established. The decrease in the intensity of Zn accumulation in grains of barley shows the presence of a barrier at the root–stalk and stalk–grain interfaces.
  相似文献   

11.
12.
Assessing effects of organic fertilizer applications on N2O emissions is of great interest because they can cause higher N2O emissions compared to inorganic fertilizers for a given amount of added nitrogen (N). But there are also reports about enhanced N2O reduction to climate-neutral elemental N2 after application of organic manures to soils. Factors controlling the N2O/(N2O + N2) product ratio of denitrification are interrelated, and also the ratio is difficult to study because of limitations in N2 flux measurements. In this study, we investigated N2O and N2 emissions from soil treated with organic fertilizers with different C/N ratios. An N2O isotopomer approach combined with conventional N2O and N2 flux measurements was employed to study underlying microbial pathways.A grassland soil was amended with anaerobic digestate (AD) from food waste digestion (low C/N ratio) or cattle slurry (CS; high C/N ratio), respectively, adjusted to 90% WFPS, and incubated for 52 days under helium–oxygen atmosphere (10% O2) using a soil incubation system capable of automated N2O, N2, and CO2 measurements. N2O isotopomer signatures, i.e. the δ18O and SP values (site preference between 15N at the central and the peripheral position in the N2O molecule), were determined by Isotope Ratio Mass Spectrometry and used to model and subsequently estimate the contribution of bacterial denitrification and autotrophic nitrification to N2O production. For this approach the direct determination of emitted N2 is essential to take isotope effects during N2O reduction to N2 into account by correcting the measured isotope signatures for isotope effects during N2O reduction using previously determined fractionation factor ranges.The addition of both organic fertilizers to soil drastically increased the rate of gaseous N emissions (N2O + N2), probably due to the effects of concurrent presence of nitrate and labile C on the denitrification rate. In the initial phase of the experiment (day 1 to ∼15), gaseous N emissions were dominated by N2 fluxes in soils amended with organic manures; meanwhile, N2O emissions were lower compared to untreated Control soils, but increased after 15–20 days relative to the initial fluxes, especially with CS. Extremely low N2O, but high N2 emissions in the initial phase suggest that reduction of N2O to N2 via denitrification was triggered when the soil was amended with organic fertilizers. In contrast in the untreated Control, N2O release was highest during the initial phase. Total N2O release from AD treated soil was similar to Control, while N2O from CS treated soil was considerably higher, indicating that denitrification was triggered more by the high labile carbon content in CS, while the cumulative N2O/(N2O + N2) product ratio and thus N2O reduction were similar with both organic fertilizers.The results of the N2O source partitioning based on the isotopomer data suggest that about 8–25% (AD) and 33–43% (CS) of the cumulated N2O emission was due to nitrification in organically amended soil, while in the untreated Control nitrification accounted for about 5–16%. The remaining N2O production was attributed mainly to denitrification, while the poor model fit for other source pathways like fungal denitrification suggested their contribution to be of minor importance. The observed rather distinct phases with predominance first of denitrification and later of nitrification may help developing mitigation measures by addressing N2O source processes individually with appropriate management options. The observation of relatively large shares of nitrification-derived N2O is surprising, but may possibly be related to the low soil pH and will require further investigation.The determination of N2 production is essential for this isotopomer-based source partitioning approach, but so far only applicable under laboratory conditions. The results of this study indicate that the combination of N2O δ18O and SP values is very useful in obtaining more robust source estimates as compared to using SP values alone.  相似文献   

13.
Journal of Soils and Sediments - River channel sediments have been widely used to trace current and historical pollution in fluvial systems, although they are not the only media employed for that...  相似文献   

14.
For the purpose of studying the contamination, bioaccumulation and transfer of heavy metals and understanding the effects of soil properties on these, the work was carried out on a regional scale. A total of 30 sets of soil and pairing rice tissues samples (root, straw and grain) were collected in Xiangzhou of Guangxi, China; soil properties and Cd, Cu, Pb and Zn of different rice tissues were analyzed. The mobility and bioaccumulation of Cd, Cu, Pb and Zn were assessed by transfer coefficients and bioaccumulation factors of them. The results indicated that the excess proportions of Cd and Pb were 50%, 3.33% and 30%, 6.67% in soil and rice grain, respectively, according to Chinese maximum permitted concentrations of heavy metals. Cd and Zn showed stronger bioaccumulation and mobility capability; the bioaccumulation and transfer of Cu were slightly lower than Cd and Zn; Pb had the weakest mobility. The bioaccumulation and mobility of heavy metals from soil to rice were restrained by soil pH, CaO, SOC, Fe oxides and Mn.  相似文献   

15.
The occurrence of aspen (Populus tremuloides Michx.) patches within stands dominated by black spruce (Picea mariana Mill. BSP) has been shown to increase litter decomposition and nutrient cycling rates by improving soil physical and chemical properties. It is well known, however, that these processes are also influenced by the structure of the soil biota, but this factor has received less attention. In this study, relationships between forest floor properties and soil invertebrates were studied along black spruce–trembling aspen gradients in three stands of the eastern boreal forest of Canada. The forest floor layer of 36 plots differing in aspen basal area was sampled and analyzed to determine physical and chemical properties, the rates of decomposition of standard substrates, net N mineralization, as well as microbial basal respiration and metabolic quotient. Soil invertebrates were also collected using funnel-extraction and pitfall trapping methods. Based on redundancy analyses, we found that forest floor properties, the abundance and composition of soil invertebrates, and the rates of belowground processes changed along the spruce–aspen gradient. The increase in aspen basal area was associated with a reduction in forest floor thickness, moisture content and microbial biomass, and with an increase in the concentration of nutrients. It was also accompanied by changes in soil faunal communities, as soil invertebrates were associated with specific soil properties. In general, macroinvertebrates (i.e., Lumbricidae, Formicidae, Carabidae, Staphylinidae and Gastropoda) were related to the nutrient-rich forest floor associated with aspen, whereas microarthropods and Enchytraeidae tended to be negatively related to aspen basal area. According to mixed linear models, decomposition rates of standard substrates and net ammonification significantly increased along the spruce–aspen gradient. Given the functional significance of macroinvertebrates in soils, these results suggest that aspen favours the elaboration of a macrofaunal community, which in turn accelerates the rate of soil processes by having either direct or indirect influence on microbial activity. Moreover, this study shows that the changes in soil processes and in the biodiversity of soil organisms related to the presence of mixed stands can operate only in the immediate surroundings of a given tree species. Therefore, coarse-scale tree species mixing in a forest stand may have a different effect on soil biodiversity and soil processes than fine-scale mixing.  相似文献   

16.
A field experiment was conducted in an irrigated olive orchard to determine the effects of an orchard management system consisting of increased carbon input management on spatial distribution (tree inter-row/in-row, soil depth 0–10/10–20 cm) of nitrogen and carbon in the soil as well as on some microbial properties in relation to water availability. The experiment consisted of 12 blocks (each with 4 trees covering 200 m2 of land), uniform olive tree canopy size and natural vegetation, used as replications (three per treatment) in a split plot design for the following four treatments: a) spreading of olive mill compost on the soil without soil tillage, b) spreading of chopped pruning residue on the soil without soil tillage, c) combination of b + c, and d) control which received no organic materials and soil was kept free of weeds with frequent tillage and herbicide sprays. Increased soil organic matter content (SOM) (up to +80%), NO3 N (up to +194%), and NH4 N (up to +37%) by carbon inputs were observed in soil layer 0–10 cm. Irrigation enhanced SOM, NH4 N, and electrical conductivity (EC) while it favored NO3 N increase by carbon inputs. All microbial properties (Soil Basal Microbial Respiration, Soil Microbial Biomass Carbon, and Metabolic quotient) were significantly higher at 0–10 cm in comparison to 10–20 cm depth. This study suggests good agricultural management practices for optimized soil organic carbon (SOC) storage adapted to the typical Mediterranean agroecosystems.  相似文献   

17.
A protection system developed under the Endangered Species Act gives endangered species economic and political importance. Extinction-prone species must be identified early so that recovery programmes will succeed and be less costly. A comparison of systems for identifying extinction-prone species using a recently listed species, the Wyoming toad Bufo hemiophrys baxteri indicates that they are primarily useful in cases where decisions must be made immediately and information is limited. The sequence of events leading to the identification of the Wyoming toad as endangered shows that it would be beneficial to establish systematic monitoring programmes to ensure early detection of a species' decline. However, an effective protection programme will ultimately require detailed knowledge of the natural history of species and a comprehensive natural area programme.  相似文献   

18.
We validated the Rothamsted Carbon (RothC) model against 14 experimental plots subjected to different paddy–upland rotation patterns, including continuous paddy rice cropping and different periods (short, medium, and long term) of upland conversion, in Akita prefecture, northern Japan. We ran the model using the original version of the RothC model, the paddy-soil version of the RothC model (which uses a reduced carbon decomposition rate), and alternating the use of the original and the paddy-soil versions for years with summer upland cropping and paddy rice cropping, respectively. The best simulation pattern was provided by the alternate use of the two versions. In comparison with the original RothC model, alternate use of the two versions showed a smaller root mean square error in all experimental plots and a smaller absolute value of the mean difference in 10 plots with continuous paddy rice cropping and short- and medium-term upland conversion. Alternate use of the two versions had a lower root mean square error and lower absolute value of the mean difference in long-term upland conversion plots compared to the values for the paddy-soil version and showed better performance than the paddy-soil version when straw was applied. The model performance from alternating use of the two versions compared well with the performance reported in previous studies. Alternating the use of the two model versions provides a good technique for simulating changes in soil organic carbon with time, even with a paddy–upland rotation pattern. In addition, this technique will enable a more accurate inventory of Japanese greenhouse gases and help land managers better manage soil fertility in a paddy–upland rotation system.  相似文献   

19.
20.
Conservation biology is mainly interested in prioritizing sites on the basis of their high biodiversity. Although species richness is a commonly used criterion, it does not take other crucial aspects of identifying conservation priority sites into account, such as rarity or taxonomic distinctness. Additionally, management efforts are usually focused on the conservation of a small number of species, mainly vertebrates. However, the biodiversity patterns of these faunal groups and the main factors which determine them cannot be generalized to other faunal groups (e.g. aquatic invertebrates). Therefore, the objectives of the present study are: (1) to compare the response of 11 biodiversity metrics in order to know which ones are redundant, (2) to identify key environmental factors for biodiversity, and (3) to find out whether sites with high biodiversity values also have a good habitat condition and high protection status. The study was done at assemblage level (crustaceans and insects) in 91 wetlands in the NE Iberian Peninsula. Regression tree models were used to identify the key factors influencing biodiversity, including water, wetland and landscape characteristics as explanatory variables. Generalized Linear models were used to establish the relationship between biodiversity metrics and protection status and habitat condition. The results obtained by the two sampled seasons were compared. Conductivity was the main factor influencing biodiversity metrics. Positive significant relationships were found between some biodiversity metrics and wetland habitat condition, whereas there were none for protection status, indicating the inadequacy of conservation policies to protect wetland aquatic invertebrate biodiversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号