首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An ocean-climate model that shows high fluxes of anthropogenic carbon dioxide into the Southern Ocean, but very low storage of anthropogenic carbon there, agrees with observation-based estimates of ocean storage of anthropogenic carbon dioxide. This low simulated storage indicates a subordinate role for deep convection in the present-day Southern Ocean. The primary mechanism transporting anthropogenic carbon out of the Southern Ocean is isopycnal transport. These results imply that if global climate change reduces the density of surface waters in the Southern Ocean, isopycnal surfaces that now outcrop may become isolated from the atmosphere, tending to diminish Southern Ocean carbon uptake.  相似文献   

2.
Saturation of the southern ocean CO2 sink due to recent climate change   总被引:2,自引:0,他引:2  
Based on observed atmospheric carbon dioxide (CO2) concentration and an inverse method, we estimate that the Southern Ocean sink of CO2 has weakened between 1981 and 2004 by 0.08 petagrams of carbon per year per decade relative to the trend expected from the large increase in atmospheric CO2. We attribute this weakening to the observed increase in Southern Ocean winds resulting from human activities, which is projected to continue in the future. Consequences include a reduction of the efficiency of the Southern Ocean sink of CO2 in the short term (about 25 years) and possibly a higher level of stabilization of atmospheric CO2 on a multicentury time scale.  相似文献   

3.
Primary productivity in the Southern Ocean is approximately 3.5 gigatons of carbon per year, which accounts for nearly 15 percent of the global total. The presence of high concentrations of nitrate in Antarctic waters suggests that it might be possible to increase primary production significantly and thereby alleviate the net accumulation of atmospheric carbon dioxide. An analysis of the food web for these waters implies that the Southern Ocean may be remarkably inefficient as a carbon sink. This inefficiency is caused by the large flux of carbon respired to the atmosphere by air-breathing birds and mammals, dominant predators in the unusually simple food web of Antarctic waters. These top predators may transfer into the atmosphere as much as 20 to 25 percent of photosynthetically fixed carbon.  相似文献   

4.
The availability of iron is known to exert a controlling influence on biological productivity in surface waters over large areas of the ocean and may have been an important factor in the variation of the concentration of atmospheric carbon dioxide over glacial cycles. The effect of iron in the Southern Ocean is particularly important because of its large area and abundant nitrate, yet iron-enhanced growth of phytoplankton may be differentially expressed between waters with high silicic acid in the south and low silicic acid in the north, where diatom growth may be limited by both silicic acid and iron. Two mesoscale experiments, designed to investigate the effects of iron enrichment in regions with high and low concentrations of silicic acid, were performed in the Southern Ocean. These experiments demonstrate iron's pivotal role in controlling carbon uptake and regulating atmospheric partial pressure of carbon dioxide.  相似文献   

5.
Reconstruction of nutrient concentrations in the deep Southern Ocean has produced conflicting results. The cadmium/calcium (Cd/Ca) data set suggests little change in nutrient concentrations during the last glacial period, whereas the carbon isotope data set suggests that nutrient concentrations were higher. We determined the silicon isotope composition of sponge spicules from the Atlantic and Pacific sectors of the Southern Ocean and found higher silicic acid concentrations in the Pacific sector during the last glacial period. We propose that this increase results from changes in the stoichiometric uptake of silicic acid relative to nitrate and phosphate by diatoms, thus facilitating a redistribution of nutrients across the Pacific and Southern Oceans. Our results are consistent with the global Cd/Ca data set and support the silicic acid leakage hypothesis.  相似文献   

6.
Changes in the upwelling and degassing of carbon from the Southern Ocean form one of the leading hypotheses for the cause of glacial-interglacial changes in atmospheric carbon dioxide. We present a 25,000-year-long Southern Ocean radiocarbon record reconstructed from deep-sea corals, which shows radiocarbon-depleted waters during the glacial period and through the early deglaciation. This depletion and associated deep stratification disappeared by ~14.6 ka (thousand years ago), consistent with the transfer of carbon from the deep ocean to the surface ocean and atmosphere via a Southern Ocean ventilation event. Given this evidence for carbon exchange in the Southern Ocean, we show that existing deep-ocean radiocarbon records from the glacial period are sufficiently depleted to explain the ~190 per mil drop in atmospheric radiocarbon between ~17 and 14.5 ka.  相似文献   

7.
The delta(13)C value of the dissolved inorganic carbon in the surface waters of the Pacific Ocean has decreased by about 0.4 per mil between 1970 and 1990. This decrease has resulted from the uptake of atmospheric CO(2) derived from fossil fuel combustion and deforestation. The net amounts of CO(2) taken up by the oceans and released from the biosphere between 1970 and 1990 have been determined from the changes in three measured values: the concentration of atmospheric CO(2), the delta(13)C of atmospheric CO(2) and the delta(13)C value of dissolved inorganic carbon in the ocean. The calculated average net oceanic CO(2) uptake is 2.1 gigatons of carbon per year. This amount implies that the ocean is the dominant net sink for anthropogenically produced CO(2) and that there has been no significant net CO(2) released from the biosphere during the last 20 years.  相似文献   

8.
An unresolved issue in ocean and climate sciences is whether changes to the surface ocean input of the micronutrient iron can alter the flux of carbon to the deep ocean. During the Southern Ocean Iron Experiment, we measured an increase in the flux of particulate carbon from the surface mixed layer, as well as changes in particle cycling below the iron-fertilized patch. The flux of carbon was similar in magnitude to that of natural blooms in the Southern Ocean and thus small relative to global carbon budgets and proposed geoengineering plans to sequester atmospheric carbon dioxide in the deep sea.  相似文献   

9.
Middle Miocene Southern Ocean cooling and Antarctic cryosphere expansion   总被引:1,自引:0,他引:1  
Magnesium/calcium data from Southern Ocean planktonic foraminifera demonstrate that high-latitude (approximately 55 degrees S) southwest Pacific sea surface temperatures (SSTs) cooled 6 degrees to 7 degrees C during the middle Miocene climate transition (14.2 to 13.8 million years ago). Stepwise surface cooling is paced by eccentricity forcing and precedes Antarctic cryosphere expansion by approximately 60 thousand years, suggesting the involvement of additional feedbacks during this interval of inferred low-atmospheric partial pressure of CO2 (pCO2). Comparing SSTs and global carbon cycling proxies challenges the notion that episodic pCO2 drawdown drove this major Cenozoic climate transition. SST, salinity, and ice-volume trends suggest instead that orbitally paced ocean circulation changes altered meridional heat/vapor transport, triggering ice growth and global cooling.  相似文献   

10.
Autonomous floats profiling in high-nitrate low-silicate waters of the Southern Ocean observed carbon biomass variability and carbon exported to depths of 100 m during the 2002 Southern Ocean Iron Experiment (SOFeX) to detect the effects of iron fertilization of surface water there. Control and "in-patch" measurements documented a greater than fourfold enhancement of carbon biomass in the iron-amended waters. Carbon export through 100 m increased two- to sixfold as the patch subducted below a front. The molar ratio of iron added to carbon exported ranged between 10(4) and 10(5). The biomass buildup and export were much higher than expected for iron-amended low-silicate waters.  相似文献   

11.
Seasonal field observations show that the North Sea, a Northern European shelf sea, is highly efficient in pumping carbon dioxide from the atmosphere to the North Atlantic Ocean. The bottom topography-controlled stratification separates production and respiration processes in the North Sea, causing a carbon dioxide increase in the subsurface layer that is ultimately exported to the North Atlantic Ocean. Globally extrapolated, the net uptake of carbon dioxide by coastal and marginal seas is about 20% of the world ocean's uptake of anthropogenic carbon dioxide, thus enhancing substantially the open ocean carbon dioxide storage.  相似文献   

12.
The North Atlantic is believed to represent the largest ocean sink for atmospheric carbon dioxide in the Northern Hemisphere, yet little is known about its temporal variability. We report an 18-year time series of upper-ocean inorganic carbon observations from the northwestern subtropical North Atlantic near Bermuda that indicates substantial variability in this sink. We deduce that the carbon variability at this site is largely driven by variations in winter mixed-layer depths and by sea surface temperature anomalies. Because these variations tend to occur in a basinwide coordinated pattern associated with the North Atlantic Oscillation, it is plausible that the entire North Atlantic Ocean may vary in concert, resulting in a variability of the strength of the North Atlantic carbon sink of about +/-0.3 petagrams of carbon per year (1 petagram = 10(15) grams) or nearly +/-50%. This extrapolation is supported by basin-wide estimates from atmospheric carbon dioxide inversions.  相似文献   

13.
Rivkin RB  Putt M 《Science (New York, N.Y.)》1987,238(4831):1285-1288
In the Southern Ocean, primary production estimated from seasonal chemical and geochemical changes is two to four times greater than the value calculated from carbon-14 uptake. Since carbon uptake had typically been measured only during midday incubations, the influence of diel periodicity of photosynthesis on daily productions was not considered. Phytoplankton from McMurdo Sound, Antarctica, exhibited distinct, but seasonally variable diel patterns of light-saturated and light-limited photosynthesis. Maximum photosynthetic capacity occurred about noon in early September, and its occurrence progressively shifted to about midnight by late October. This shift was accompanied by a concomitant phase shift in the occurrence of minimum photosynthetic capacity from midnight to midday. Daily production estimated from time-of-day corrected photosynthetic characteristics and from 24-hour incubations was 2.5 to 4 times greater than that predicted from 6-hour midday incubations. If similar diel periodicity in photosynthesis occurs in other polar oceans, primary production would be significantly higher than previously estimated from carbon-14 uptake measurements.  相似文献   

14.
The equatorial Pacific Ocean is one of the most important yet highly variable oceanic source areas for atmospheric carbon dioxide (CO2). Here, we used the partial pressure of CO2 (PCO2), measured in surface waters from 1979 through early 2001, to examine the effect on the equatorial Pacific CO2 chemistry of the Pacific Decadal Oscillation phase shift, which occurred around 1988 to 1992. During the decade before the shift, the surface water PCO2 (corrected for temperature changes and atmospheric CO2 uptake) in the central and western equatorial Pacific decreased at a mean rate of about -20 microatm per decade, whereas after the shift, it increased at about +15 microatm per decade. These changes altered the CO2 sink and source flux of the equatorial Pacific significantly.  相似文献   

15.
Reconstructions of ancient atmospheric carbon dioxide (CO2) variations help us better understand how the global carbon cycle and climate are linked. We compared CO2 variations on millennial time scales between 20,000 and 90,000 years ago with an Antarctic temperature proxy and records of abrupt climate change in the Northern Hemisphere. CO2 concentration and Antarctic temperature were positively correlated over millennial-scale climate cycles, implying a strong connection to Southern Ocean processes. Evidence from marine sediment proxies indicates that CO2 concentration rose most rapidly when North Atlantic Deep Water shoaled and stratification in the Southern Ocean was reduced. These increases in CO2 concentration occurred during stadial (cold) periods in the Northern Hemisphere, several thousand years before abrupt warming events in Greenland.  相似文献   

16.
The cause of carbon isotope minimum events on glacial terminations   总被引:1,自引:0,他引:1  
The occurrence of carbon isotope minima at the beginning of glacial terminations is a common feature of planktic foraminifera carbon isotopic records from the Indo-Pacific, sub-Antarctic, and South Atlantic. We use the delta13C record of a thermocline-dwelling foraminifera, Neogloboquadrina dutertrei, and surface temperature estimates from the eastern equatorial Pacific to demonstrate that the onset of delta13C minimum events and the initiation of Southern Ocean warming occurred simultaneously. Timing agreement between the marine record and the delta13C minimum in an Antarctic atmospheric record suggests that the deglacial events were a response to the breakdown of surface water stratification, renewed Circumpolar Deep Water upwelling, and advection of low delta13C waters to the convergence zone at the sub-Antarctic front. On the basis of age agreement between the absolute delta13C minimum in surface records and the shift from low to high delta13C in the deep South Atlantic, we suggest that the delta13C rise that marks the end of the carbon isotope minima was due to the resumption of North Atlantic Deep Water influence in the Southern Ocean.  相似文献   

17.
Boyd PW  Mackie D 《Science (New York, N.Y.)》2008,319(5860):159; author reply 159
Cassar et al. (Reports, 24 August 2007, p. 1067) proposed that aerosol-iron input enhances Southern Ocean export production. Their conclusion critically depends upon aerosol-iron modeling simulations not validated with iron-deposition data and dust dissolution rates based on Northern Hemisphere atmospheric chemical conditions (low pH). This diminishes the relevance of their findings and demonstrates that applying such models to this region is premature.  相似文献   

18.
Records of carbon and nitrogen isotopes in biogenic silica and carbon isotopes in planktonic foraminifera from deep-sea sediment cores from the Southern Ocean reveal that the primary production during the last glacial maximum was lower than Holocene productivity. These observations conflict with the hypothesis that the low atmospheric carbon dioxide concentrations were introduced by an increase in the efficiency of the high-latitude biological pump. Instead, different oceanic sectors may have had high glacial productivity, or alternative mechanisms that do not involve the biological pump must be considered as the primary cause of the low glacial atmospheric carbon dioxide concentrations.  相似文献   

19.
Oppo DW  Lehman SJ 《Science (New York, N.Y.)》1993,259(5098):1148-1152
Holocene and glacial carbon isotope data of benthic foraminifera from shallow to mid-depth cores from the northeastern subpolar Atlantic show that this region was strongly stratified, with carbon-13-enriched glacial North Atlantic intermediate water (GNAIW) overlying carbon-13-depleted Southern Ocean water (SOW). The data suggest that GNAIW originated north of the polar front and define GNAIW end-member carbon isotope values for studies of water-mass mixing in the open Atlantic. Identical carbon isotope values in the core of GNAIW and below the subtropical thermocline are consistent with rapid cycling of GNAIW through the northern Atlantic. The high carbon isotope values below the thermocline indicate that enhanced nutrient leakage in response to increased ventilation may have extended into intermediate waters. Geochemical box models show that the atmospheric carbon dioxide response to nutrient leakage that results from an increase in ventilation rate may be greater than the response to nutrient redistribution by conversion of North Atlantic deep water into GNAIW. These results underscore the potential rule of Atlantic Ocean circulation changes in influencing past atmospheric carbon dioxide values.  相似文献   

20.
Assimilation of carbon-14 labeled bicarbonate into photosynthetic products was measured at four stations in the Southern Ocean. Phytoplankton populations incorporated as much as 80 percent of the fixed carbon into lipid under conditions of low temperatures (-0.2 degrees to -1.8 degrees C) and low light intensities. At higher temperatures (+0.3 degrees to +0.8 degrees C) and higher light intensities, incorporation into lipid accounted for less than 20 percent of the fixed carbon, synthesis of polysaccharide and protein being more prominent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号