首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The rates of drying of herbage, cut from perennial ryegrass (Lolium perenne L.) – dominant swards and subjected to different treatments, were investigated under field conditions by changes in weight of herbage in wire mesh trays in 1995 and 1996. A series of replicated factorial experiments studied the effects, in different combinations, of intensity of conditioning achieved by passing the cut herbage through a laboratory‐scale macerator zero (0C), once (1C), three (3C) or six (6C) times; weight of herbage per unit area equivalent to 450, 675 and 900 g dry matter (DM) m?2. In one experiment, pressing the herbage to form a mat was incorporated into the experimental design. A further experiment investigated the effect of varying the proportion of conditioned herbage in the herbage mass from 0·00, 0·25, 0·50, 0·75 and 1·00 on drying rate. On each occasion the trays plus herbage were weighed at hourly intervals over an ≈6‐h period and the DM content of the herbage estimated from the change in weight. On all occasions, conditioning and weight of herbage per unit area significantly (P < 0·001) influenced herbage drying rate. Lowering the weight per unit area of both unconditioned and conditioned herbage increased the rate of moisture loss. Unconditioned herbage at the equivalent of a herbage mass of 450 g DM m?2 had a total moisture loss that was on average 1·5–1·8 times greater than unconditioned herbage at the equivalent of a herbage mass of 900 g DM m?2. Similarly, conditioned herbage at the equivalent of a herbage mass of 450 g DM m?2 had a total moisture loss that was 1·8–2·3 times greater than unconditioned herbage at the equivalent of a herbage mass of 900 g DM m?2. Increasing the level of conditioning produced a non‐linear response in rate of moisture loss, consequently 3 passes through the macerator produced >0·95 of the total moisture loss that was produced by 6 passes through the macerator. Increasing the proportion of conditioned herbage in the herbage mass increased rate of moisture loss and consequently final DM content (P < 0·001) although there was little effect from increasing the proportion of conditioned herbage above 0·75. The effects of conditioning and weight of herbage per unit area treatments on total nitrogen , water‐soluble carbohydrate and acid‐detergent fibre concentration of the herbage were small.  相似文献   

2.
Agrostis capillaris, Arrhenatherum elatius, Bromus willdenowii, Cynosurus cristatus, Dactylis glomerata, Elytrigia repens, Lolium multiflorum, L. perenne, Phalaris aquatica, Phleum pratense, Schedonorus phoenix, and a ryegrass selected for high surface root mass, were grown in 1 m deep × 90 mm diameter tubes of sand. Tubes were irrigated with a low ionic‐strength nutrient solution and 15N‐labelled nitrate was leached down the tubes prior to harvest. Shoot weights, root weights in 10‐cm depth increments, and shoot and root nitrogen concentrations were determined. Plants of L. multiflorum were the heaviest and plants of A. capillaris were the lightest. Root system shape was analysed by comparing the decay constant from an exponential model fitted to the proportion of root mass in 10‐cm depth increments, and, also, by analysis of the proportion of root mass in the top 10 cm. Cynosurus cristatus was strongly surface‐rooted and the perennial ryegrass, selected for high surface root mass, had more root mass between 0 and 10 cm than did the unselected perennial ryegrass cultivar. There were only small differences in root shape between the other grasses. There was a strong and positive correlation between plant dry weight and the proportion of the pulse of labelled nitrate that was intercepted. The variation in root system shape shown in this experiment had no effect on nitrate interception. Nitrate interception per unit root weight was significantly higher in A. capillaris than in the other grasses. Developing winter‐active grasses that have finely divided root systems should contribute to pastures with better nitrate retention characteristics.  相似文献   

3.
The selection by sheep (six Coopworth ewe hoggets, 44·3 ± 4·6 kg live weight) and goats (six Saanen/Anglo‐Nubian yearling males, 38·1 ± 3·8 kg live weight) for perennial ryegrass (Lolium perenne) and white clover (Trifolium repens) and for sward height was measured in two experiments involving paired turves. Pairs of turves with herbage of differing height and of either the same or different plant species were offered. One sward (fixed height species, FHS) was always offered at 130 mm and the other (variable height species, VHS) at 130, 90 or 50 mm. Turves (450 mm × 220 mm) were cut to a soil depth of 100–150 mm from areas of perennial ryegrass and white clover regrown to the desired height after previously being cut to 30 mm. Each turf in a pair was weighed (±1 g) before and after grazing by penned animals maintained on a barley‐based pelleted diet. The number of prehending bites taken from each turf was recorded over a grazing period (128 ± 12 s). Bite mass, bite rate and intake rate were calculated. As the sward height of the VHS turf declined, an increasing proportion of the diet was selected from the 130 mm turf. When averaged over all height contrasts, both animal species selected a higher proportion (0·776 ± 0·026) of their diet from 130‐mm white clover than from 130‐mm perennial ryegrass (0·591 ± 0·018) turves. On average, goats selected a higher proportion (0·721 ± 0·022) of their dry‐matter (DM) intake from the 130‐mm turf than sheep (0·646 ± 0·019), but the effect was not consistent. In contrasts with perennial ryegrass as the VHS (and both perennial ryegrass and white clover as FHS), the proportion of the diet selected from the 130‐mm turf was very similar for both animal species. However, with white clover as the VHS (and both perennial ryegrass and white clover as FHS), goats selected a higher proportion of their intake from the 130‐mm turf to the extent that in the 130‐mm perennial ryegrass/50‐mm white clover contrast sheep showed as strong selection for 50‐mm white clover as goats did for 130‐mm perennial ryegrass. This lesser selection of goats for white clover as its height in a sward declines is likely to contribute to the higher white clover content observed in swards grazed by goats. Bite mass was greater on white clover (246 ± 5 mg DM bite–1) than on perennial ryegrass (173 ± 5 mg DM bite–1) and was greater for goats (255 ± 6 mg DM bite–1) than for sheep (195 ± 5 mg DM bite–1). Bite rate was greater on perennial ryegrass (45·9 ± 1·0 bites min–1) than on white clover (39·9 ± 1·0 bites min–1) and was greater for sheep (45·5 ± 1·1 bites min–1) than for goats (42·5 ± 1·1 bites min–1). Apparent intake rate by both sheep and goats was lower (mean, 5·0 ± 0·29 g DM min–1) on 130 mm perennial ryegrass/white clover than on 130 mm perennial ryegrass/perennial ryegrass (7·0 ± 0·27 g DM min–1), but was higher (9·62 ± 0·29 g DM min–1) on 130‐mm white clover/perennial ryegrass than on 130‐mm white clover/white clover (8·2 ± 0·29 g DM min–1) combinations.  相似文献   

4.
Abstract A glasshouse study was undertaken to determine the physiological and morphological changes in cocksfoot (Dactylis glomerata L.) during regrowth after defoliation. Individual plants were arranged in a mini‐sward in a randomized complete block design. Treatments involved harvesting each time one new leaf had expanded (one‐leaf stage), up to the six‐leaf stage, with the plants separated into leaf, stubble (tiller bases) and roots. Stubble and root water‐soluble carbohydrate (WSC), stubble and leaf dry matter (DM), tiller number per plant and leaf quality (crude protein (CP), estimated metabolizable energy (ME) and mineral content) were measured to develop optimal defoliation management of cocksfoot‐based pastures. WSC concentration in stubble and roots was highest at the five‐ and six‐leaf stages. Mean WSC concentration (g kg?1 DM) was greater in stubble than roots (32·7 ± 5·9 vs. 9·4 ± 1·5 respectively). There was a strong positive linear relationship between plant WSC concentration and leaf DM, root DM and tillers per plant after defoliation (Adj R2 = 0·72, 0·88 and 0·95 respectively). Root DM plant?1 and tiller DM tiller?1 decreased immediately following defoliation and remained low until the three‐leaf stage, then increased from the four‐leaf stage. Tillers per plant remained stable until the four‐leaf stage, after which they increased (from 9·9 ± 0·5 to 15·7 ± 1·0 tillers plant?1). Estimated metabolizable energy concentration (MJ kg?1 DM) was significantly lower at the six‐leaf stage (11·01 ± 0·06) than at any previous leaf regrowth stage, whereas CP concentration (g kg?1 DM) decreased with regrowth to the six‐leaf stage. Both the levels of ME and CP concentrations were indicative of a high quality forage throughout regrowth (11·37 ± 0·04 and 279 ± 8·0 for ME and CP respectively). Results from this study give a basis for determining appropriate criteria for grazing cocksfoot‐based pastures. The optimal defoliation interval for cocksfoot appears to be between the four‐ and five‐leaf stages of regrowth. Delaying defoliation to the four‐leaf stage allows time for replenishment of WSC reserves, resumption of root growth and an increase in tillering, and is before herbage is lost and quality falls due to onset of leaf senescence.  相似文献   

5.
Regrowth of 3- and 4-month old (‘young’ and ‘old’ respectively) sheep's burnet [Sanguisorba minor ssp. muricata (Spach) Briq.] was studied under limiting and non-limiting moisture conditions in a glasshouse. Moisture deficits were imposed by using a single cycle of withholding moisture until first wilting. Plants of each age were defoliated severely at three levels which represented approximately 80–100% canopy removal. These levels were based on the proportion retained of the eight most mature leaves on each plant and were referred to as complete [0% residual leaf area (rLA)] and partial [50% rLA (four leaves) and 100% rLA (eight leaves)] defoliation. Vegetative growth and total non-structural carbohydrate (TNC) levels were studied. Leaf number (0-8 leaves), area (0-115 cm2) and dry weight (0-1·0 g) differed (P < 0·05) between defoliation intensities at the start of regrowth, while stubble (1·2 g) and root (12.·6 g) dry weights were similar. Soluble sugars [< 6% dry matter (DM)] and starch (< 1% DM) occurred in leaf, stubble and root. Old plants were morphologically and physiologically more developed than young plants. For example, stubble (2·0 g) and root (21·5 g) dry weights of old plants were greater (P < 0·05) than those of young plants (04 and 3·7 g respectively). Defoliation intensity had a major effect on regrowth, with completely defoliated plants at the final harvest having leaf numbers (forty-nine leaves) and areas (235 cm2) almost twice those of partially defoliated plants. Stubble soluble sugar levels (38% DM) were lower than those of partially defoliated plants (5·5% DM), and it was suggested that these contributed to regrowth. Moisture regime had a negligible influence on plant growth. However, plants in the dry regime had soluble sugar levels 1·4 (stubble) -1·7 (roots) times higher than those watered adequately, which suggested that plants adjusted to the water depletion. The effects of plant age on regrowth were similar for most characters, but the larger and physiologically more mature old plants would probably be more tolerant of successive defoliations.  相似文献   

6.
The effects of one severe winter‐grazing of lucerne were studied over 3 years in an experiment in the Ebro Valley, Spain. In this region the crop is harvested six to seven times per season and winter grazing is a traditional practice. On average, winter‐grazing reduced the yield at the first harvest in spring by 200 kg dry matter (DM) ha?1. This limited yield reduction of 0·06 was accompanied by an increase in the proportion of lucerne in the herbage DM from 0·54 to 0·62, a reduction in the proportion of weeds from 0·39 to 0·36, and a reduction in the proportion of dead material from 0·06 to 0·02. The crude protein concentration and the in vitro DM digestibility increased by 20 g kg?1 DM and 0·03, respectively. The traditional practice, i.e. of grazing lucerne with sheep once in the winter season, results in only a limited reduction in yield in the spring. In addition, the spring crop has a higher nutritive value.  相似文献   

7.
Mixed swards of white clover–grass mixtures in highly productive environments often fail to reach the minimum recommended annual clover proportion of about 0·30. This study assessed the effect on clover content and total dry matter (DM) yield of two spring N applications (0 and 45 kg N ha?1) and two distances between drilled grass‐rows (0·18 and 0·36 m) over 3 years for mown swards of white clover–Italian ryegrass (Trifolium repens–Lolium multiflorum) in binary mixtures in northern Italy. An additional aim was to determine the advantage of association of grass–clover compared with grass and clover monocultures. On average, N fertilization of mixtures resulted in almost 9% higher total yield (P < 0·01; mean response = 18·1 kg of total DM per kg of N) but decreased the clover proportion (0·250 vs. 0·312). Wider grass‐row spacing increased clover proportion (0·327 vs. 0·234; P < 0·01) with no reduction of total DM yield. N fertilization × grass‐row spacing interaction occurred only for clover content (P < 0·01). Without N fertilization, mixtures out‐yielded clover and grass pure stands. With N fertilization, at double rate to pure grass, yields from mixtures were greater than from clover and comparable to Italian ryegrass.  相似文献   

8.
Abstract An experiment was carried out over 2 years to evaluate the effects of increasing the proportion of cereal‐based concentrates in diets containing high‐digestibility and conventional medium‐digestibility grass silages on the dry‐matter (DM) intake, liveweight gain and carcass composition of beef cattle, and to examine the effects of grazed grass and the ratio of grass silage:concentrates in the diet on the fatty acid composition of selected muscle tissues. Late‐maturing steers (n = 231) were offered diets based on high‐digestibility (HD) (0·743 digestible organic matter (DOM) in DM) or medium‐digestibility (MD) (0·643 DOM in DM) grass silages supplemented with barley/soyabean meal‐based concentrates. The concentrates constituted 0·20, 0·40, 0·60 and 0·80 of total DM of the diets, which were offered ad libitum (AL). The two diets, which contained 0·80 concentrates, were also offered at 0·80 of AL intake. A further group of fourteen animals were given the medium‐digestibility silage only for 5 months and then grazed perennial ryegrass pastures for a further 5 months (silage/pasture treatment). For the diets containing HD silage and 0·20, 0·40, 0·60 and 0·80 concentrate, and 0·80 concentrate at 0·8 of AL intake, the DM intakes were 9·4, 10·2, 10·4, 10·2 and 8·1 (s.e. 0·16) kg d?1, respectively, and daily carcass gains were 0·67, 0·78, 0·77, 0·79 and 0·62 (s.e. 0·029) kg d?1, respectively; for those containing MD silage and 0·20, 0·40, 0·60 and 0·80 concentrate, and 0·80 concentrate at 0·8 of AL, the DM intakes were 8·2, 9·3, 10·1, 10·1 and 8·0 (s.e. 0·16) kg d?1, respectively, and daily carcass gains were 0·38, 0·48, 0·64, 0·77 and 0·56 (s.e. 0·029) kg d?1 respectively. Increasing the proportion of concentrates in silage‐based diets decreased the concentration of omega‐3 (ω‐3) polyunsaturated fatty acids (PUFA) (P < 0·001) and increased the concentration of ω‐6 PUFA (P < 0·001) in muscle. Cattle on the silage/pasture treatment had the highest concentration of ω‐3 PUFA in muscle (51 g kg?1 lipid), this value being over three times that for animals given diets containing MD silage and 0·80 concentrate in the diet. These results demonstrate the potential of HD silage made from perennial ryegrass relative to high concentrate diets. The consumption of pasture‐finished beef could make a significant contribution towards increasing the intake of ω‐3 PUFA in the human diet.  相似文献   

9.
The effects of sowing date and nitrogen (N) fertilizer on the inter‐specific competition between dallisgrass (Paspalum dilatatum Poir.) and tall fescue (Festuca arundinacea Schreb.) in the humid Pampas of Argentina were investigated in two pot experiments where a constant soil moisture content was maintained. Tall fescue and dallisgrass seeds were sown either in the spring (October 2000) or in the autumn (March 2001) in mixed and mono‐specific stands with 0 or 100 kg N ha?1. In the spring, competition from tall fescue depressed dry‐matter (DM) yield of dallisgrass from 1·53 to 0·36 g DM per plant and tiller number from 9·4 to 3·7 tillers per plant in mixed and in mono‐specific stands, respectively, while tall fescue had 3–4 times higher DM yields in mixed stands. Leaf extension rate (LER) of tall fescue was higher (1·3 mm d?1) than that of dallisgrass (0·53 mm d?1). In the autumn, inter‐specific competition did not affect DM yield of dallisgrass and N fertilizer increased DM yield from 0·53 to 2·07 g DM per plant, tiller number from 6·8 to 14·2 tillers per plant and LER at the beginning of autumn from 1·2 to 2·12 mm d?1 in both species. As temperature decreased, LER was reduced in both species to 0·31 mm d?1 by late autumn. The number of leaves per tiller was not affected by treatment. Nitrogen fertilizer increased N concentration of above‐ground tissues of both species (18 g kg?1 DM in autumn and 20 g kg?1 DM in spring). It was concluded that a productive mixed pasture of dallisgrass and tall fescue can be obtained by sowing early in the autumn. The application of N fertilizer in this season is essential to ensure a high herbage yield and quality.  相似文献   

10.
First and second harvests of lucerne (Medicago sativa L.), perennial ryegrass (Lolium perenne L.) and a lucerne–perennial ryegrass mixture [80 or 144 g kg?1 dry matter (DM) of ryegrass] at the first and second harvests were cut and conditioned, wilted to 500 or 700 g DM kg?1 then baled and stretch‐wrapped for silage on the same dates. Lucerne bales were denser (411 kg m?3) than bales of perennial ryegrass (331 kg m?3) (P < 0·05). After an 8‐month storage period, silage made from high DM‐content forage had a higher concentration of neutral‐detergent fibre (NDF) and was less digestible than that made from low DM‐content forage. Daily DM intakes by beef steers, when the silages of the second harvest were fed ad libitum, were 31·2, 31·2 and 22·3 g kg?1 live weight for lucerne, lucerne–perennial ryegrass mixture and perennial ryegrass silages, respectively (P < 0·01), when the herbage had been wilted to 500 g kg?1. In vivo digestibility of NDF in the lucerne–perennial ryegrass mixture silage (0·587) was significantly lower than that of perennial ryegrass silage (0·763) but higher than lucerne silage (0·518). Higher intakes of baled lucerne silage tended to offset its lower digestibility values. Lucerne–perennial ryegrass mixture silage had a higher DM and NDF digestibility than lucerne silage, indicating perhaps the presence of associative effects.  相似文献   

11.
Maize and amaranth forages, produced during the wet season, have the potential to bridge the gap in forage supply to ruminants during the dry season in Nigeria. In two growing seasons (2006 and 2007), effects of intercropping and fertilizer application on dry matter (DM) yield and chemical composition of forages, and land use efficiency, were studied in two experiments. The digestibility of sun‐dried or ensiled maize, amaranth or maize–amaranth mixtures was measured using West African dwarf sheep in a third experiment. Maize showed a higher response to fertilizer application than amaranth or maize–amaranth mixtures. With fertilizer application, DM yield varied significantly (P < 0·05) between species and intercropped mixtures. Dry matter yield ranged from 7·1 (amaranth) to 12·6 t ha?1 (maize) in 2006 and 6·9 (amaranth) to 11·3 t ha?1 (70:30 maize–amaranth population mixture) in 2007. Crude protein (CP) concentration of whole plants ranged from 99·0 (maize) to 227·0 g kg?1 DM (amaranth). Dry matter digestibility values of sun‐dried maize, sun‐dried maize:amaranth 50:50 mixture, sun‐dried amaranth, ensiled maize, ensiled maize:amaranth 50:50 mixture and ensiled amaranth were 0·718, 0·607, 0·573, 0·737, 0·553 and 0·526 respectively. Intercropping increased forage yield and land use efficiency compared to amaranth but had no yield advantage over maize. Although DM digestibility of maize was higher than that of amaranth or the maize:amaranth mixture, digestible CP yield ha?1 was higher with amaranth in the cropping mixture, showing that amaranth could complement maize in systems where CP is the limiting factor to livestock production.  相似文献   

12.
Dorycnium hirsutum and D. rectum are perennial legumes which may have potential for use as pastures for the control of groundwater recharge in southern Australia. Little is known about the quality of the forage of Dorycnium species for grazing livestock or how these species respond to cutting. The effect of cutting height on plant survival, production of dry matter (DM), the proportion of leaf, edible stem (approximately <5 mm diameter) and woody stem in the DM and the nutritive value of the edible components was investigated. Biomass above five cutting‐height treatments (uncut, ground level, 5–8 cm, 10–15 cm and 15–30 cm above ground level) was removed at 8‐week intervals from plots of D. hirsutum and D. rectum from September 2002 to July 2003. In both species, plants subjected to lower cutting height treatments produced less DM above the height of the cut than those cut at higher heights. DM production declined over time in all treatments. Plants cut to ground level failed to regrow after the second harvest in D. hirsutum and the fourth harvest in D. rectum. Thus, these Dorycnium species were susceptible to high severity defoliations at 8‐week intervals. Negligible inedible woody stem was present in regrowth of both species after 8 weeks but D. hirsutum regrowth had a higher proportion of leaf (0·72) than D. rectum (0·56). Plants left uncut accumulated a large proportion of inedible woody stem in the DM (0·69 in both species) by July 2003, particularly at the base of the plant. Edible DM from regrowth of D. hirsutum and D. rectum had crude protein (CP) concentrations of 120 and 150 g kg?1 DM; dry matter digestibility (DMD) values of 0·45 and 0·58; organic matter digestibility (OMD) values of 0·50 and 0·64; neutral‐detergent fibre (NDF) concentrations of 370 and 290 g kg?1 DM; and acid‐detergent fibre (ADF) concentrations of 260 and 210 g kg?1 DM, respectively. Medicago sativa, grown under similar conditions, had higher digestibility values (0·63 DMD and 0·66 OMD) and similar CP concentrations to D. rectum (140 g kg?1 DM), but higher concentrations of NDF and ADF (410 and 290 g kg?1 DM). Leaf material from both Dorycnium species had a higher nutritive value than edible stems, with DMD and OMD values of leaf of D. rectum being 0·68 and 0·74 respectively. Uncut plants had a much lower nutritive value of edible DM than the regrowth from cut treatments; older material was also of a lower nutritive value. The relatively low nutritive value of even the young regrowth of Dorycnium species suggests that forage quality is a major limitation to its use. Forage of Dorycnium species could be used during periods when other sources of forage are in short supply but infrequent grazing it is likely to produce forage of a low nutritive value.  相似文献   

13.
White clover‐grass mixtures should provide swards with a high dry matter (DM) yield with a clover proportion of at least 0·30. This study assessed the compatibility of one white clover variety selected for competitive ability (Giga) and four other large‐leaved clover varieties (Aran, Espanso, Fantastico and Regal) in mown binary mixtures with each of four grass companions (cocksfoot cv. Padania, hybrid ryegrass cv. AberExcel, Italian ryegrass cv. Crema, and tall fescue cv. Magno) over 3 years in northern Italy. On average, the mixtures including Giga had at least a two‐fold greater clover proportion in the total harvested DM (P < 0·01) and contained fewer weeds (P < 0·10) than those with other clover varieties, and also tended to have the highest total DM yields. On average, mixtures containing AberExcel had clover proportions of >0·25 but gave the lowest total DM yields, whereas those of Magno maximized total DM and had a higher proportion of clover than Padania or Crema. No clover × grass interaction was detected (P > 0·05). The association with Giga allowed the tall fescue‐based mixture to attain a clover proportion 0·331 along with a top‐yielding total DM. This mixture, compared with the only one without Giga that displayed a near‐sufficient clover proportion (Espanso with AberExcel), exhibited a 21·7% higher total DM (P < 0·05) and had far fewer weeds.  相似文献   

14.
The effects on the performance of dairy cows offered kale, swedes, and perennial ryegrass in situ and perennial ryegrass silage fed indoors to dairy cows pre‐partum during winter in Ireland was examined. Eighty‐eight spring‐calving dairy cows were randomly assigned to one of four offered treatments; (i) 8 kg of dry matter (DM) of kale leaf and stem + 4 kg DM of perennial ryegrass silage (treatment K), (ii) 8 kg DM of the root and leaf of swedes + 4 kg DM of perennial ryegrass silage (treatment S), (iii) 12 kg DM of perennial ryegrass herbage (treatment G) offered in situ and (iv) perennial ryegrass silage offered ad libitum indoors (treatment ID). Cows on treatments K, S and ID had a greater (P < 0·001) increase in body condition score (0·20, 0·14 and 0·50 units respectively) pre‐partum than cows on treatment G which lost 0·22 units. Pre‐partum treatment had no effect on variables of milk production in the following lactation. In the first 100 d of lactation, cows on treatment G pre‐partum had a lower milk fat concentration (35·6 g kg?1) compared with cows on treatments S and ID (38·3 and 39·3 g kg?1 respectively). There was no effect of treatment on the intervals between parturition and first insemination (mean 74·6 d) and conception (mean 96·1 d). The results suggest that offering kale and swedes to dairy cows pre‐partum resulted in a similar lactation performance to dairy cows grazing a perennial ryegrass sward or offered perennial ryegrass silage indoors.  相似文献   

15.
A field experiment was conducted in 2006 and 2007 to determine the agronomic performance and nutritive value of Sorghum almum for introduction in the derived savannah area of Nigeria. The experiment was arranged in a 2 × 4 factorial design with 2 plant spacings (0·5 × 0·5 m and 1·0 × 1·0 m) and 4 nitrogen (N) fertilizer levels (0, 60, 120 and 180 kg N ha?1). Plant height, tiller number, leaf proportion, biomass yield and nutritive value of the herbage were evaluated as part of the search for alternatives (especially drought tolerant) to local forages for dry season feeding of ruminants. Herbage yield data were tested for linear, quadratic and cubic trends to identify the optimal fertilizer levels for both spacings. Spacing × N interactions (P < 0·05) were observed for plant height and tiller number in both years. Agronomic performance was marginally better in 2007 compared with 2006. The maximum dry‐matter (DM) yield of 3500 and 3740 kg ha?1 for the more dense row spacing (0·5 × 0·5 m) was achieved at N fertilizer levels of 144 and 149 kg N ha?1 for 2006 and 2007 respectively. For the less dense (1·0 × 1·0 m) row spacing, the maximum DM yield of 3020 and 3240 kg ha?1 was achieved at 51 and 97 kg N ha?1 for 2006 and 2007 respectively. The crude protein content of the grass ranged from 61 to 89 g kg?1 DM, while the neutral detergent fibre (NDF) content ranged from 700 to 734 g kg?1 DM. The ability of S. almum to persist into the second year in this region is seen as a promising index as persistence is one of the characteristics of a good forage plant. Considering the exorbitant price of N fertilizer, less dense row spacing with N fertilizer rate in the range of 50–100 kg N ha?1 is hereby recommended for this region.  相似文献   

16.
The effects of defoliation upon root and shoot systems of prairie grass (Bromus catharticus Vahl) were examined in both field and pot studies. The varieties used were 78–32 (HY), a high-yielding variety; 79–42 (LY), a low-yielding variety; and the commercial variety Grasslands Matua. In the field, the presence of roots in early and late spring was estimated by measuring uptake of [32P]phosphate by roots; herbage yields and tiller numbers were recorded. In a pot study, root and shoot dry-matter (DM) yields were analysed. In the field, roots were detected to a depth of 1·2 m. After defoliation to a height of 0·1 m, root presence decreased more than 50% at depths of 0·6 m for LY and 1·0 m for Matua in early spring and at several depths for each variety in late spring. After a second defoliation, the apparent growth rate of shoots decreased by 35% in relation to the first regrowth period. In pots, shoot DM and root DM of control plants (undefoliated) had the following allometric relationship of the form: In (shoot DM) = 0·61 + 1·14 ln (root DM) (r2= 0·81). After defoliation, compared with undefoliated controls, the relative growth rate of shoots and total herbage yields were higher, but root and stubble DM were lower in all three varieties. Pooled root DM means were 10·3 and 6·8 g plant?1 and pooled stubble DM means were 12·7 and 7·6 g plant?1 for control and defoliated plants respectively. HY produced heavier tillers than LY, pooled means being 0·94 and 0·53 g DM tiller?1 (field study) and 3·44 and 2·05 g DM tiller?1 (pot study) for HY and LY respectively. HY had 5–6 green leaves per tiller, whereas LY had 3–4. Developed green leaves were heavier in HY (58 g m?2) than in LY (48 g m?2). It is suggested that differences in both leaf parameters may be related to higher herbage yields for HY than LY.  相似文献   

17.
Whole‐crop field bean (FB), field pea (FP) and common vetch (CV) [155, 213 and 238 g dry matter (DM) kg?1] were ensiled in 1·5 L laboratory silos with whole‐crop wheat as mixtures of 0, 0·25, 0·50, 0·75 and 1·00 of fresh weight (FW). Silages were ensiled (i) without additive, and (ii) with formic acid (FA) (4 L t?1) or (iii) an inoculant (Lactobacillus plantarum, 106 colony‐forming units g?1 FW) as additives. The concentrations of water‐soluble carbohydrates in herbage of whole‐crop FB, FP, CV and wheat were 93, 157, 67 and 114 g kg?1 DM and the buffering capacities were 588, 710, 755 and 429 mEq kg?1 DM respectively. Field bean and FP silages were mainly well preserved with low pH values and moderate fermentation losses, except for FB‐only silage without additive which had a high butyric acid concentration. Common vetch silages had higher pH values and were less well fermented compared to the silages of the other legumes. For all legumes, FA reduced ammonia‐N concentrations more effectively compared to other additive treatments. In conclusion, in FB and FP silages the use of FA or an inoculant, as additives, ensured good preservation up to a proportion of legume in the herbage of 0·75. With all legume silages, and with those containing CV, only FA, as an additive, adequately restricted protein breakdown.  相似文献   

18.
The benefits of white clover (Trifolium repens L.) in pastures are widely recognized. However, white clover is perceived as being unreliable due to its typically low content and spatial and temporal variability in mixed (grass‐legume) pastures. One solution to increase the clover proportion and quality of herbage available to grazing animals may be to spatially separate clover from grass within the same field. In a field experiment, perennial ryegrass (Lolium perenne L.) and white clover were sown as a mixture and compared with alternating strips of ryegrass and clover (at 1·5 and 3 m widths), or in adjacent monocultures (strips of 18 m width within a 36‐m‐wide field). Pastures were stocked by ewes and lambs for three 10‐month grazing periods. Over the 3 years of the experiment, spatial separation of grass and clover, compared with a grass–clover mixture, increased clover herbage production, although its proportion in the sward declined through time (0·49–0·54 vs 0·34 in the mixture in the first year, 0·28–0·33 vs 0·15 in the second year and 0·03–0·18 vs 0·01 in the third year). Total herbage production in the growing season in the spatially separated treatments decreased from 11384 kg DM ha?1 in the first year to 8150 kg DM ha?1 in the third year. Crude protein concentration of clover and grass components in the 18‐m adjacent monoculture treatment was greater than the mixture treatment for both clover (310 vs 280 g kg?1 DM) and grass (200 vs 180 g kg?1 DM). There was no clear benefit in liveweight gain beyond the first year in response to spatially separating grass and clover into monocultures within the same field.  相似文献   

19.
Abstract The effects of level of concentrate supplementation on the response of dairy cows to grass silage‐based diets containing a constant proportion of fodder beet were examined. Forty Holstein‐Friesian dairy cows of mixed parity were used in a 2 × 5 factorial design experiment. Two basal diet types [grass silage alone or grass silage mixed with fodder beet in a 70:30 dry matter (DM) ratio] were offered ad libitum, and the effects of five levels of concentrate supplementation (mean = 3·0, 5·3, 7·5, 9·8 and 12·0 kg DM per cow d?1) were examined. Concentrate supplements were offered via an out‐of‐parlour feeding system. These treatments were examined in a three‐period (period length = 4 weeks) partially balanced changeover design experiment. Fodder beet inclusion had no significant effect on the estimated metabolizable energy (ME) concentration of the ration (P > 0·001). Total DM intake, estimated ME intake, milk yield, milk protein content and milk energy output all showed significant linear increases with increasing level of concentrate inclusion (P < 0·001) while, in addition, milk yield and milk energy output exhibited a significant quadratic increase (P < 0·01). The inclusion of fodder beet in the diet reduced silage DM intake (P < 0·01) but resulted in an increase in total DM intake and estimated ME intake (P < 0·001). However, inclusion of fodder beet had no significant effect on milk yield (P > 0·05), while increasing milk protein content and milk energy output (P ≤ 0·05). Milk energy output, as a proportion of estimated ME intake, was significantly (P < 0·001) reduced by fodder beet inclusion (0·44 vs. 0·38). Despite large increases in estimated ME intake with the inclusion of fodder beet at all levels of concentrate supplementation, milk energy output responses were small, resulting in an overall reduction in the efficiency of conversion of ME intake into milk energy output. An increased partitioning of dietary ME intake to tissue gain is suggested as the most likely explanation for the observations made.  相似文献   

20.
This study examined the quantity of mineral N in soil and nitrate‐N losses to groundwater from grassland‐based dairy production in 2001 and 2002. There were four treatments with different inputs of N, through fertilizers, concentrates and biological fixation, and four associated stocking densities. Nitrogen inputs were 205, 230, 300 and 400 kg ha?1, respectively, and annual stocking densities were 1·75, 2·10, 2·50 and 2·50 cows ha?1. There were 18 cows per treatment. Grazed herbage accounted for 0·64, grass‐silage for 0·26 and concentrates 0·10 of annual DM consumed by the cows. Quantities of mineral N (nitrate‐N and ammonium‐N) in soil were measured, following extraction in 2 M KCl (1:2 w/v) shaken continuously for 2 h, on three occasions between late September and early February each winter. Concentrations of nitrate‐N in groundwater from wells inserted vertically to a depth of 1 m were determined throughout both winters. Quantities of mineral N in the soil increased (P < 0·001) with higher N inputs and declined (P < 0·001) with later sampling date. There were no relationships between nitrate‐N concentrations in groundwater and N inputs, N surpluses, deposition of excreta‐N at the soil surface and soil mineral N during both winters. Low losses of nitrate‐N to groundwater were primarily attributed to high rates of denitrification associated with a heavy soil texture, wet anaerobic soil conditions, relatively high organic carbon contents throughout the soil profile and mild soil temperatures throughout the year. Uptake of N by herbage made an important contribution to low N losses over the winter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号