首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Variation of high molecular weight gluteninsubunits (HMW-GS) at the Glu-1 lociwas studied using SDS-PAGE method in 43advanced lines or cultivars commonly grownin Iran. Fourteen alleles and 21 alleliccompositions were detected. Among the 43bread wheats analysed only five showed aunique HMW-GS composition. The mostfrequent HMW-GS patterns were 2*, 7+8,2+12 and 2*, 17+18, 2+12 which wereobserved in 13 and six cultivars,respectively. In the remainings, each twoto three lines or cultivars showed a commonHMW-GS pattern. Therefore, allelicvariation at Glu-1 loci is of limitedvalue for cultivar identification comparedwith loci controlling gliadins. Sevencultivars were observed to consist of twoto three biotypes with different alleles.In cultivar Mahdavi a biotype showedinactivity at the Glu-B1 locus. Analready reported rare subunit pair'2***+12' at Glu-D1locus was found in cultivar Kavir. Theresults of scoring cultivars for theirquality based on the HMW-GS compositionswith an average score of eight, wasgenerally good. Cultivars Inia, Tajan, andadvanced lines N-75-11 and N-75-15 showedquality score equal to 10, whereas Alamootand C-75-5 showed quality scores equal tofive. The quality of former and latterlines and cultivars were considered highestand lowest, respectively. The resultsobtained in this study are useful inbreeding programs to improve bread makingquality, developing uniformity andimproving heterogeneous cultivars by meansof selection of the best genotypes.  相似文献   

2.
The high molecular weight (HMW) and B‐zone low molecular weight (B‐LMW) glutenin subunit composition of 45 Algerian durum wheat (Triticum turgidum L. var. durum) landraces and old cultivars were examined by sodium‐dodecyl‐sulphate polyacrylamide gel electrophoresis (SDS‐PAGE). Nine accessions were heterogeneous and presented two or three genotypes. All together, 33 glutenin patterns were detected, including 12 for HMW and 15 for B‐LMW glutenin subunits. Twenty‐four different alleles were identified for the five glutenin loci studied, Glu‐A1 (3), Glu‐B1 (6), Glu‐A3 (8), Glu‐B3 (5) and Glu‐B2 (2). Five new alleles were found, three at Glu‐A3 and two at Glu‐B3. At the Glu‐1 loci, the Glu‐A1c‐Glu‐B1e allelic composition was predominant (31%). For the B‐LMW glutenins, the most common allelic composition was Glu‐A3a‐Glu‐B3a‐Glu‐B2a (36%). The collection analysed shows a high percentage of glutenin alleles and allele combinations related to high gluten strength, together with some others that have not been tested so far. This information could be useful to select local varieties with improved quality and also as a source of genes to develop new lines when breeding for quality.  相似文献   

3.
A number of resistance sources for the Russian wheat aphid have been reported in the last few years and were used to develop resistant cultivars from current commercial cultivars in various breeding programmes. It can be diffcult to distinguish between the cultivars with and without resistance without actual infestation and so in this study we looked at low molecular weight glutenin subunits (LMW-GS) of the two groups. Distinctly different banding patterns were found for the cultivars tested and their isogenic counterparts. Although the LMW-GS and DN1 and DN5 are coded on different chromosomes, the LMW-GS are highly repeatable and banding profiles of each cultivar can be used for the identification of unknown seed.  相似文献   

4.
High molecular weight glutenin subunit composition of Chinese bread wheats   总被引:28,自引:0,他引:28  
Summary The endosperm storage proteins of 205 Chinese bread wheat cultivars and advanced lines were fractionated by SDS-PAGE to determine their high molecular weight (HMW) glutenin subunit composition. Seventeen alleles were identified: three at Glu-A1, eight at Glu-B1, and six at Glu-D1. The most common alleles were Null, 1, 7+8, 7+9, and 2+12. The results indicate that wheats from different regions differ in their frequencies of HMW glutenin subunits, however, none of the subunits could be related to specific environments. The glutenin quality scores of Chinese wheats ranged from 3 to 10, with an average of 6.7. Increasing quality scores have implications in improving steam-bread making quality for Chinese consumers. On the basis of HMW glutenin subunit composition, Chinese wheats are close to European wheats, especially Italian wheats because several Italian introductions are widely distributed in the pedigrees of Chinese wheat.  相似文献   

5.
Three major types of B subunits of glutenin patterns were detected among 240 durum wheat lines collected from eleven countries by the one-step one-dimensional SDS-PAGE procedure. Most commercial durum lines had the LMW-2 type while extensive variation of other banding patterns was found for lines particularly from North African and Mediterranean region. A total of 281 wild and less-cultivated tetraploid wheat lines (var. dicoczoides, Triticum dicoccum and T. polonicum) were also studied for the variation of low molecular weight glutenin subunits and extensive variation was found. The complexity of banding patterns observed among the T. turgidum species indicate a rich source of glutenin variation with a potential value to be used for quality improvement of cultivated wheat when their functional properties have been tested.  相似文献   

6.
A PCR assay has been developed for selecting low molecular weight (LMW) glutenin genes, located on chromosome 1B, and related to durum wheat quality characteristics. Most durum wheat lines possessing good technological properties can be identified on the basis of the presence of specific 1B LMW glutenin components that have been designated LMW-2 glutenin subunits. On the basis of nucleotide sequences corresponding to LMW glutenin genes, a series of specific oligonucleotide primers were prepared and used in PCR analysis. A pair of these primers gave a single amplification product which can distinguish between durum wheat lines possessing LMW-2 glutenin subunits and lines possessing other 1B-LMW allelic variants. Because the proposed PCR analysis can be carried out using part of the endosperm of a single seed, it represents a helpful approach for speeding up the selection of genotypes possessing LMW-2 glutenin subunits. This part of primers could also be very useful in genome mapping analysis and for testing the purity of wheat flour stock.  相似文献   

7.
Durum wheat quality is controlled by endosperm protein content and composition. Electrophoretic, protein content and SDS sedimentation analyses were carried out on a large collection of accessions of durum wheat from Turkey, and compared with Italian cultivars. A number of patterns were detected, resulting from the combination of different alleles at genomes A and B, and new allelic variants were identified. Genotypes with the same allele at Gli-B1 showed inconsistencies in the comparison of low molecular weight glutenin subunits (LMW-GS), suggesting caution in considering γ-gliadins as genetic markers for pasta quality. Variation in protein content and SDS sedimentation values was wider in the Turkish material than in the Italian cultivars, the values of which were in line with cultivars from Australia, Canada, France, and the USA. A substantial amount of the variation in gluten properties was explained in terms of protein composition, with LMW-GS making the largest contribution. Reversed phase high performance liquid chromatography (RP-HPLC) analyses were carried out on two biotypes of the Italian cultivar Lira that differ at the Gli-B1/Glu-B3 loci (Lira 42 has γ-42, LMW-1, and poor quality; whereas Lira 45 has γ-45, LMW-2, and good quality). The results indicated that differences in quality may be due to: 1) the absolute amount of LMW glutenins which was greater in LMW-2; 2) the relative predominance of LMW-s type and LMW-m type subunits in Lira 45 glutenins which act as polymer chain extenders; and 3) the higher proportion of the α-type and γ-type glutenin subunits, in Lira 42 glutenins, which have an additional (nine) cysteine residue in the N-terminal region and act as glutenin chain terminators. The conclusion reached was that breeding for quality should consider selection for LMW-GS and against α-type and γ-type glutenin subunits. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
A total of 50 bread-wheat varieties bred in Pakistan were characterized for the composition of the high-molecular-weight glutenin subunit (HMW-GS). The glutenin subunits, as revealed by sodium dodecyl-sulfate-polyacrylamide-gel electrophoresis (SDS-PAGE) were numbered according to Payne's numbering system and, varieties were accordingly assigned theoretical quality scores. All varieties were found to possess either subunit 1 or 2* coded by the A genome. Subunits 17+18 and 7 + 9 of the B genome and 5+10 of the D genome were predominantly found in this set of varieties. The frequency of the appearance of Glu-l alleles in the varieties was different from that seen in other countries, especially in terms of the absence of the ‘null’ form of the A genome and the presence of novel subunits at the Glu-Bl and Glu-Dl loci. The compositions of HMW-GS were generally of good quality, with more than 50% of the varieties achieving quality scores of 9–10 with a high (8.6) average score. The results in this study indicate that wheat varieties bred in Pakistan have a narrow genetic base in terms of HMW glutenin subunits. It appears that the breeders have been selecting wheat genotypes of glutenin subunits associated with good quality without knowing the actual composition of these subunits. The database established on the basis of these results is useful for wheat-improvement programmes aimed at varietal identification and breeding for good quality parameters.  相似文献   

9.
The HMW and B‐LMW glutenin subunits composition of 120 durum wheat germplasm grown in Algeria was examined using SDS‐PAGE. All together, 39 glutenin patterns were detected, including eight for HMW and 21 for B‐LMW glutenin subunits. Twenty‐six different alleles were identified for the five glutenin loci studied, that is, Glu‐A1 (3), Glu‐B1 (7), Glu‐A3 (5), Glu‐B3 (9) and Glu‐B2 (2). Two new alleles were found at Glu‐B3 locus: Glu‐B3new1 encodes for five subunits (7 + 8 + 14 + 16 + 18) and Glu‐B3new2 codes for five subunits (4 + 6* + 12 + 15 + 15*), of which subunit 15* with mobility between bands 15–16 was not described previously. At the Glu‐1 loci, the Glu‐A1c/Glu‐B1e allelic composition was predominant. For the B‐LMW glutenins, the most common allelic composition was Glu‐A3a/Glu‐B3a/Glu‐B2a. The collection analysed shows glutenin alleles and allele combinations related to high gluten strength. This information could be useful to select varieties with improved quality and also as a source of genes to develop new lines when breeding for quality.  相似文献   

10.
Y. F. Zhu    Y. W. Li    Y. Chen    H. Li    H. Liang    S. J. Yue    A. M. Zhang    X. Q. Zhang    D. W. Wang    X. Jia 《Plant Breeding》2005,124(5):421-427
Significant progress has been made in understanding the structure of high molecular weight (HMW) glutenin subunits and their role in determining the end use quality of wheat grains. However, few reports have dealt with the development and characterization of knock out mutants for HMW glutenin subunit genes. Here, the molecular analysis of MB14, a mutant derived from an elite Chinese wheat variety Xiaoyan 54 through chemical mutagenesis is described. SDS‐PAGE and Western blot experiments revealed that, in the seeds of homozygous MB14 plants, the expression of the 1Bx14 subunit was specifically blocked whereas the remaining four subunits (1Ax1, 1By15, 1Dx2, 1Dy12) accumulated to levels comparable to those in the wild type plants. The 5′‐flanking region and the open reading frame (ORF) of the mutant 1Bx14 allele were amplified and compared to the corresponding regions of wild type 1Bx14. The nucleotide sequences of the 5′‐flanking regions from the mutant and wild type 1Bx14 alleles were identical. However, the ORF of the mutant allele differed from that of the wild type 1Bx14 by three point substitutions, one of which resulted in a premature stop codon in the mutant ORF. Interestingly, the mutant 1Bx14 allele was still transcribed in the developing seeds, but no truncated translation product could be detected by Western blot analysis. Potential application of the 1Bx14 knock out mutant in studying the biological function of 1Bx14 and its contribution to the end use quality control in hexaploid wheat is discussed.  相似文献   

11.
Z.-Y. Deng    J.-C. Tian    G.-X. Sun 《Plant Breeding》2005,124(5):428-431
Three near‐isogenic lines (NILs) of wheat involving Glu‐B1 and Glu‐D1 alleles were used to study the genetic contribution of high molecular weight glutenin subunits (HMW‐GS) to gluten strength. The HMW‐GS composition of each NILs was determined by SDS‐PAGE. No significant differences were found in grain protein contents among the NILs. Gluten strength and dough‐mixing properties were measured by the Farinograph, the Extensograph, and SDS‐sedimentation (SDS‐SE). Results indicated that line 2, containing the Glu‐1B 14 + 15 and Glu‐1D 5 + 10 combination of subunits, had higher values for flour quality, dough rheological parameters, and bread‐baking quality when compared with lines 8 and 13. Line 8, containing Glu‐1B 7 + 9 and Glu‐1D 5 + 10, was better than line 13 with the Glu‐1B 14 + 15 and Glu‐1D 10 combination. Some major parameters appeared significantly different. The presence of Glu‐1B 14 + 15 was associated with higher dough strength based on SDS‐SE volume and several rheological parameters when compared with Glu‐1B 7 + 9. Lines with subunit 10 at Glu‐D1 performed significantly worse than those with 5 + 10 in gluten index, SDS‐SE volume, Farinograph stability time, Extensograph area and bread‐baking quality.  相似文献   

12.
Multiplex-PCR typing of high molecular weight glutenin alleles in wheat   总被引:26,自引:0,他引:26  
W. Ma  W. Zhang  K.R. Gale 《Euphytica》2003,134(1):51-60
In Australian commercial cultivars, each high molecular weight glutenin (Glu-1) homoeologous locus consists of one of two predominant alleles: Glu-A1a (subunit Ax1) or Glu-A1b (subunit Ax2*) at the GluA1 locus, Glu-B1b (Bx7 and By8 subunits) or Glu-B1i (Bx17 and By18 subunits) at the Glu-B1 locus, and Glu-D1d (Dx5 and Dy10 subunits) or Glu-D1a (Dx2 and Dy12 subunits) at the Glu-D1 locus. PCR-based assays have been developed in this study to discriminate between these common alleles at each locus. Primers specific for the Glu-A1 Ax2* gene give a single fragment of 1319 bp only in the presence of this gene. Primers targeting the Glu-B1 locus resulted in a co-dominant marker for which the Bx7 genotype produced two fragments (630 bp and 766 bp) and the Bx17 genotype a single fragment (669 bp). The third pair of primers was specific for the Dx5 gene and resulted in a single band of 478 bp. A multiplexed PCR assay was established which permitted the discrimination of the major HMW glutenins in a single PCR reaction and agarose gel assay. As the HMW glutenin composition of a wheat line is extremely important in determining the functional properties of wheat gluten, these markers are useful for the purposes of marker-assisted breeding. These markers may also be useful for the purpose of DNA-based identification of wheat varieties. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
By electrophoretic analysis of F2 progenies from crosses among the hexaploid wheat varieties ‘Cajeme 71’, ‘Ablaca’, ‘Anza’ and ‘Pané 247’, two new prolamin loci Gli-D4 and Gli-D5, were mapped on the short arm of chromosome ID. The Gli-D4 locus controls gliadins of type γ and is situated on the short arm of chromosome ID between the centromere and the Gli-D1 locus with a genetic distance of 10.1±2.4 cM from this locus. The Gli-D5 locus controls gliadin type ω and was mapped 3.7 ± 0.8 cM from Gli-Dl and located between Gli-Dl and the telomere.  相似文献   

14.
A set of bread wheat and durum wheat cultivars adapted to Spanish conditions was tested for resistance against leaf rust caused by different pathotypes of Puccinia triticina in field trials and in growth chamber studies. Lower levels of resistance were found in durum wheat than in bread wheat. The most frequent Lr genes found in bread wheat were Lr1, Lr10, Lr13, Lr20, Lr26 and Lr28. In durum wheat, additional resistance genes that differed from the known Lr genes were identified. The level of partial resistance to leaf rust was in general low, although significant levels were identified in some bread wheat and durum wheat cultivars.  相似文献   

15.
Summary The aim of this study was to assess the effect of specificGlu-B1 HMW-GS on biscuit-making quality. Three soft spring wheat cultivars with the sameGlu-A1 andGlu-D1 HMW-GS, but differentGlu-B1 HMW-GS were used in crosses. F24 derived lines were developed from these crosses.Glu-B1 HMW-GS 6+8 and 17+18; and 7+9 and 17+18 were compared. Lines with HMW-GS 6+8 versus those with HMW-GS 17+18 had a higher flour protein- and alveograph P/L ratio, shorter mixograph mixing time, more vitreous kernels, and a lower alveograph distensibility and strength (all values significant at p=0.05). Lines with HMW-GS 7+9 compared to those with 17+18 showed significant differences for flour extraction and biscuit diameter. The presence of HMW-GS 17+18 was significantly correlated with several biscuit-making quality characteristics in the Dirkwin/Zaragosa F24 lines but not in the Waverley/Zaragosa F24 lines, therefore the effect of HMW-GS 17+18 was modified by the genetic background in which they were expressed.  相似文献   

16.
Near-isogenic Rht lines of ten modern bread wheat (Triticumaestivum L.) and six durum wheat (T. turgidum L.) cultivars weredeveloped and evaluated in replicated trials under three soil moisturetreatments for two years in northwestern Mexico. The three soil moisturetreatments were created by providing one, two or six irrigations during eachcrop season. Grain yield and other traits were measured for each line ineach trial. Mean grain yields of short and tall T. aestivum or T.turgidum isolines were similar in the lowest yielding environment whenmean grain yields (0% grain moisture) of T. aestivum and T.turgidum were 2,232 and 1,870 kg ha-1, respectively. Mean grainyield of dwarf T. aestivum was significantly higher than that of tallgenotypes in another five trials with moderate to high yields. Theperformance of dwarf and tall T. turgidum isolines was unpredictablein moderate yielding trials, and the dwarf isolines yielded significantly morein trials that received six irrigations. Given that the tall isolines producedsignificantly more straw than their shorter counterparts, cultivation of tallwheats may be beneficial in semiarid environments where farmers' yields areclose to 2.5 t ha-1 or lower, and straw has value.  相似文献   

17.
Subunits of high molecular weight glutenins strongly influence wheat bread making quality and can be associated with important agronomic traits. Polish winter wheats show a significant quantitative dominance of the null allele over the coding alleles of the Glu-A1 locus. To identify the causes of such skewed distribution, 116 F5 lines obtained from six cross combinations were analyzed for their HMW glutenin subunits and 11 agronomic characteristics, such as plant height and uniformity, leaf blotch and leaf rust resistance, grain yield per plot, number of grains per ear, grain yield per ear, 1000 kernel weight, frost tolerance, total protein content and the SDS-sedimentation value. The SDS-sedimentation value, resistance to leaf blotch and frost tolerance showed statistically significant associations with the status of the Glu-A1 locus. It appears that chromosome 1A with the null allele at Glu-A1 carries a closely linked locus responsible for frost tolerance. With early strong selection for winter hardiness, the null allele of Glu-A1 becomes fixed in advanced breeding materials despite its strong negative impact on the end use quality.  相似文献   

18.
Pearl millet is an efficient alternative to maize as a pollen source for haploid production in bread wheat. To compare haploid production frequencies in other Triticeae species, the crossabilities of two genotypes each of bread wheat, durum wheat and hexaploid triticale with four pearl millet genotypes and a maize control were examined. Embryos were obtained from crosses of all three species with both pearl millet and maize. However, significant differences in crossability were found among the three species (10.5–79.8% seed development and 1.4–15.8% embryo formation), as well as among genotypes of durum wheat (7.2–23.7% and 2.1–6.4%) and hexaploid triticale (0.3–20.6% and 0.1–2.7%). Crossability of bread wheat with pearl millet was relatively high. Haploid plants were regenerated from crosses of all three species with pearl millet. As in the case of maize crosses, low crossabilities of durum wheat and hexaploid triticale with pearl millet can be attributed to the absence of D-genome chromosomes.  相似文献   

19.
Summary Variation for high molecular weight (HMW) glutenin subunits is reported in Afghan hexaploid wheat landraces from different locations in the country ranging in altitude from 395 to 3170 metres. The variation appeared to be independent of the altitude and geographical location of the landraces. Studies of a number of samples from each of five sites revealed that at some sites there was allelic variation at theGlu-A1 andGlu-B1 loci coding from HMW glutenin subunits, but there was no variation at theGlu-D1 locus within and between sites.  相似文献   

20.
Two hundred and seventy-three CIMMYT bread wheat cultivars and advanced lines grown under irrigated conditions in Mexico during the 2005-06 Yaqui crop cycle were characterized for quality-related genetic traits using gene-specific markers for some high- and low-molecular-weight glutenin subunit (HMW-GS and LMW-GS) genes, polyphenol oxidase (PPO), phytoene synthase (PSY), and waxy genes. Of them, 142 were analyzed for quality parameters including SDS sedimentation volume (SDS-SV), dough mixing time, and Alveograph parameters, and for HMW-GS and LMW-GS compositions using sodium-dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and reversed-phase high-performance liquid chromatography (RP-HPLC). For the Ppo-A1 locus tested with the marker PPO18, the frequencies of alleles Ppo-A1a and Ppo-A1b were 79.1 and 20.2%, respectively, and no PCR fragment was amplified in 2 lines (0.73%), whereas 227 lines (83.2%) contained the allele Ppo-D1a and 46 lines (16.8%) had Ppo-D1b detected by markers PPO16 and PPO29. For the marker YP7A, 142 lines (52.0%) were assumed to have the allele Psy-A1a and 131 lines (48.0%) contained the allele Psy-A1b. In the case of the marker YP7B for the gene Psy-B1, the alleles Psy-B1a and Psy-B1b were detected in 155 (56.8%) and 43 (15.8%) lines, respectively, and 75 (27.4%) lines possessed the allele Psy-B1d detected by the marker YP7B-3. All 273 lines contained the alleles Wx-A1a and Wx-D1a as determined by markers MAG264 and MAG269, respectively. Using the marker Wx-B1, 204 lines (74.7%) were presumed to have the Wx-B1a allele and 69 (25.3%) possessed Wx-B1b. The over-expressing allele of Bx7 OE and subunit By8*, not clearly seen with SDS-PAGE, were detected by RP-HPLC. The numbers of lines with subunits Ax2*, By8, By9, Bx17, Bx20, Dx5, and Glu-B3j were 90, 16, 57, 5, 46, 118, and 33, respectively, in the 142 lines analyzed with molecular markers, and were consistent with the results obtained by SDS-PAGE, except for one line with the 1A.1R translocation. Subunits Ax1 and Ax2* at the Glu-A1 locus showed significantly better effects on all quality parameters than subunit Null. Subunits 5 + 10 gave significantly better effects for all parameters. Subunit Glu-A3b showed more positive effects than its alternative alleles on SDS-SV and SDS-sedimentation volume/protein content index (SPI). The allele Glu-B3g showed the best effect on SDS-SV and Alveograph W, whereas Glu-B3j, associated with the 1B.1R translocation, exhibited a strongly negative effect on all quality parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号