首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A simple method is described for trapping phosphate solubilizing bacteria (PSB) strongly attached to the hyphae of the arbuscular mycorrhizal fungus (AMF) Rhizophagus irregularis (Ri). Bacteria were isolated from the hyphosphere of mycorrhizal leek plants growing on Turface previously inoculated with soil suspensions, obtained from the mycorrhizosphere of mycorrhizal plants growing in agricultural settings or maple forests in Quebec, Canada. Among the best PSB strongly attached to the hyphae of Ri, 26 isolates belonged to Burkholderia spp. and one was identified as Rhizobium miluonense. Four hyphobacteria exhibiting high potential of inorganic and organic P mobilization were further compared with four equivalent mycorrhizobacteria directly isolated from mycorrhizospheric soils sampled. In general, hyphobacteria were superior in mobilizing P from hydroxyapatite and from a low reactivity igneous phosphate rock from Quebec. Release of gluconic acid or the product of its oxidation 2-ketogluconic acid, are the main mechanisms involved in P solubilization. In a two compartments Petri plate system, Ri extraradical hyphal exudates, supported PSB growth and activity. In the absence of PSB Ri showed a negligible P solubilization activity. In the presence of PSB a substantial increase in P mobilization was observed, and the superiority of hyphobacterial activity was also observed under this system. Our results suggest that in developing a bioinoculant based on selected PSB, their interaction with AMF hyphae should not be overlooked.  相似文献   

2.
With the aim to explore the possible role of mineral phosphate-solubilizing bacteria (PSB) in phosphorus (P) cycling in iron-rich, acidic soils, we conducted a survey of PSB naturally colonizing a limonitic crust in the south-east region of Venezuela (Bolívar State). A total of 130 heterotrophic bacterial isolates showing different degrees of mineral tri-calcium phosphate (Ca3(PO4)2)-solubilizing activities were isolated from NBRIP plates. In contrast, no isolates showing iron phosphate (FePO4)- or aluminum phosphate (AlPO4)-solubilizing activities were detected by this experimental approach. The 10 best Ca3(PO4)2-solubilizers were selected for further characterization. These isolates were shown to belong to the genera Burkholderia, Serratia, Ralstonia and Pantoea by partial sequencing analysis of their respective 16S rRNA genes. All the PSB isolates were able to mediate almost complete solubilization of Ca3(PO4)2 in liquid cultures; in contrast, the PSB isolates were less effective when solubilizing FePO4. Two groups of PSB isolates were clearly differentiated on the basis of their Ca3(PO4)2 solubilization kinetics. Acidification of culture supernatants seemed to be the main mechanism for P solubilization. Indeed, gluconic acid was shown to be present in the supernatant of five isolates. Furthermore, detection of genes involved in the production of this organic acid was possible in three isolates by means of a PCR protocol.  相似文献   

3.
Soil phosphorous (P) deficiency is a major constraint to plant production which is overcome by adding inorganic-phosphate as chemical fertilizers. Fluorescent pseudomonads are the diverse group of bacteria able to mobilize sparingly soluble phosphate form. Total three hundred seven fluorescent Pseudomonas isolates were obtained from the Aloe barbadensis (Miller) rhizosphere. These Pseudomonas strains were further evaluated in vitro for their ability to solubilize phosphate and to produce indole acetic acid (IAA), hydrogen cyanide (HCN), siderophore and 1-aminocyclopropane 1- carboxylate (ACC) deaminase. Fifty three (36.8%) isolates produced IAA and 52 (36.1%) isolates produced siderophores whereas 36 (25.0%) and 31 (21.5%) isolates produced HCN and ACC deaminase, respectively. A positive correlation existed between siderophore and ACC deaminase producers. Cluster analysis showed rhizosphere as the major factor influencing the ecological distribution and physiological characterization of phosphate solubilizing bacteria (PSB). Based on partial 16S rRNA gene sequencing PSB were identified as Pseudomonas putida, Pseudomonas sp. and Pseudomonas plecoglossicida with highest phosphate solubilization ability. In conclusion, these phosphate solubilizing fluorescent pseudomonads would help in understanding their role in phosphorus solubilization and identification of potent phosphorus solubilizers from the rhizosphere of commercially grown A. barbadensis.  相似文献   

4.
适应玉米的溶磷细菌筛选及其对玉米生长的影响   总被引:5,自引:0,他引:5  
从石灰性土壤中分离获得4株高效溶磷细菌X5、X6、Z4和Z8,研究其生物学特征,探索其单独及复合的溶磷促生潜能。研究发现菌株X5、X6、Z4和Z8均可以利用玉米根系分泌物作碳源生长。菌株X6和Z4均能产生吲哚乙酸(IAA)和铁载体,菌株Z8可产生IAA不产生铁载体,菌株X5可产生铁载体不产生IAA。盆栽试验结果表明,接种单一溶磷菌及4株菌复合处理均可促进玉米生长,但复合菌群的溶磷促生效果显著高于单一菌株。通过16S r RNA基因序列分析研究菌株的分类地位,初步鉴定X5、X6、Z4、Z8分别为荧光假单孢菌(Pseudomonas fluorescens)、草假单胞菌(Pseudomonas poae)、巨大芽孢杆菌(Bacillus megaterium)和枯草芽孢杆菌(Bacillus subtilis)。  相似文献   

5.
This study determined the cell density in the field and the biological activity of culturable phosphate-solubilizing microorganisms (PSMs) present in the Elaeis guineensis Jacq. rhizosphere at two locations in a commercial plantation. Promising isolates found in two soils under different agronomic management conditions were selected. We first calculated the cell density of cultivable PSMs grown in SRS medium (Sundara-Rao and Sinha, 1963) supplemented with the insoluble phosphate sources Ca3(PO4)2, AlPO4, and FePO4. Twenty-two bacteria, ten filamentous fungi, and eight yeast isolates were found. The 16 isolates with the clearest P solubilization halo in Petri dishes were selected to estimate their P solubilization potential in SRS medium with Ca3(PO4)2. No solubilization activity was registered using AlPO4 or FePO4 as the P sources. Ten of the isolates presented solubilization efficiencies between 20 and 82%. Some of these isolates showed high percentages of identity with the 16S and ITS rDNA sequences of the genera Aspergillus, Penicillium, Klebsiella, Burkholderia, and Staphylococcus according to the NCBI and EzTaxon-e databases. The solubilization activity of the isolates was associated with a decrease in the pH and the release of organic acids, such as gluconic, citric, succinic, and acetic acids. Gluconic acid was mainly released by the genera Aspergillus and Penicillium, and these isolates also showed the highest solubilization activities (82 and 80%, respectively). Therefore, these isolates were selected as the most promising isolates present in the oil palm rhizosphere for phosphate solubilization.  相似文献   

6.
Arbuscular mycorrhizal (AM) fungi and phosphate solubilizing bacteria (PSB) have a positive effect on plant productivity primarily through increasing phosphate availability. In order to study the interaction between AM fungi and PSB, we used Bacillus megaterium, a PSB isolated from the sterilized surface of AM germinated spores, and two strains of the AM fungus Glomus intraradices with different mycelial architecture. A greenhouse experiment was designed with maize as host plant with the addition of tribasic calcium phosphate. We tested the hypothesis that PSB, intimately linked with AM fungi, could interact differentially with the two AM strains. We concluded that inoculation with the PSB positively affected maize mycorrhization. Insoluble phosphate alone did not influence the AM extraradical mycelium (ERM) length and maize mycorrhization when bacteria were not inoculated. The results provide evidence that the adverse effect on infectivity for some AM strains might be caused by solubilized phosphorus release to the rhizosphere by PSB. Differences related to the mycelium architecture of each AM strain were observed: the density of PSB in rhizosphere soil was significantly higher only with the GA8 strain coinciding with the highest values of maize biomass. The density of bacteria associated with GA8 mycelium could be the result of the transfer of photosynthates through the rhizosphere; this close contact would favor the persistence of the intimate relationship between PSB and AM hyphae. In the bacteria-free treatments, soil adherence was not significantly altered. Although the highest development of ERM occurred with GA5, plants inoculated with GA8 showed the highest values for soil adherence. This may be due to the AM mycelium which modifies bacterial persistence in the rhizosphere and consequently soil adherence. Our results show that for potential applications, some characteristics of the AM strains are key in the selection of the AM fungi–PSB combinations. These include the tolerance to soluble phosphorus, the rate of root colonization, and ERM development that favors the persistence of bacteria in rhizosphere soil.  相似文献   

7.
Phosphorus availability is a major limiting factor for yield of most crop species. The objective of this study was to compare the solubilization of three sources of phosphorus (P) by different fungal isolates and to determine the possible mechanisms involved in the process. Talaromyces flavus (S73), T. flavus var flavus (TM), Talaromyces helicus (L7b) and T. helicus (N24), Penicillium janthinellum (PJ), and Penicillium purpurogenum (POP), fungal strains isolated from the rhizosphere of crops, are known to be biocontrol agents against pathogenic fungi. The P solubilization efficiency of these fungal strains in liquid media supplemented either with tricalcium phosphate (Ca3(PO4)2; PC), aluminum phosphate (AlPO4; AP), or phosphorite (PP) depended on the source of P and the fungal species. The type and concentration of organic acids produced by each species varied according to the source of available P. In the medium supplemented with PC, the highest proportion was that of gluconic acid, whereas in the media supplemented with the other P sources, the highest proportion was that of citric and valeric acids. This suggests that the release of these organic compounds in the rhizosphere by these microorganisms may be important in the solubilization of various inorganic P compounds. Results also support the hypothesis that the simultaneous production of different organic acids by fungi may enhance their potential for solubilizing insoluble phosphate.  相似文献   

8.
The phylogenetic diversity of phosphate solubilizing bacteria(PSB)distributed in P-rich soils in the Dianchi Lake drainage area of China was characterized,and the tricalcium phosphate(TCP)solubilizing activities of isolated PSB were determined.Among 1 328 bacteria isolated from 100 P-rich soil samples,377 isolates(28.39%of the total)that exhibited TCP solubilization activity were taken as PSB.These PSB showed different abilities to solubilize TCP,with the concentrations of solubilized P in bacterial cultures varying from 33.48 to 69.63 mg L-1.A total of 123 PSB isolates,with relatively high TCP solubilization activity(>54.00 mg L-1),were submitted for restriction fragment length polymorphism(RFLP)analysis,which revealed 32 unique RFLP patterns.Based on these patterns,62 representative isolates,one to three from each RFLP pattern,were seffected for 16S rRNA sequencing.Phylogenetic analysis placed the 123 PSB into three bacterial phyla,namely Proteobacteria,Actinobacteria and Firmicutes.Members of Proteobacteria were the dominant PSB,where 107 isolates represented by 26 RFLP patterns were associated with the genera of Burkholderia,Pseudomonas,Acinetobacter,Enterobacter,Pantoea,Serratia,Klebsiella,Leclercia,Raoultella and Cedecea.Firmicutes were the subdominant group,in which 13 isolates were affiliated with the genera of Bacillus and Brevibacterium.The remaining 3 isolates were identified as three species of the genus Arthrobacter.This research extends the knowledge on PSB in P-rich soils and broadens the spectrum of PSB for the development of environmentally friendly biophosphate fertilizers.  相似文献   

9.
《Soil biology & biochemistry》2001,33(12-13):1741-1747
Two Venezuelan phosphate rocks (PRs), apatite deposits from Monte-Fresco and Navay areas, and two minerals, Florida apatite and Utah variscite were used to investigate phosphate solubilization by the wild type strain IR-94MF1 of Penicillium rugulosum initially selected for its high mineral phosphate activity (Mps+) and two of its mutants Mps++ and Mps. In liquid cultures, the three fungal strains showed better growth on the Navay PR than on Monte Fresco PR. The Utah variscite was the best phosphorus (P) source for the growth of the wild type and the Mps++ mutant. Solubilization of the various P sources by the wild-type IR-94MF1 and the Mps++ mutant resulted mostly from the action of organic acids. Citric acid seemed to be more active agent for the solubilization of the Utah variscite while gluconic acid appeared to be responsible for the solubilization of the Florida apatite and the Monte Fresco PR. Both organic acids are likely involved in the solubilization of the Navay PR. The Mps- mutant did not produce any organic acid when grown on all the P sources used.  相似文献   

10.
ABSTRACT

The exploitation of phosphate mines generates an important quantity of phosphate sludge that remains accumulated and not valorized. In this context, composting with organic matter and rhizospheric microorganisms offers an interesting alternative and that is more sustainable for agriculture. This work aims to investigate the synergetic effect of arbuscular mycorrhizal fungi (AMF), phosphate-solubilizing bacteria (PSB) and phospho-compost (PC), produced from phosphate-laundered sludge and organic wastes, and their combination on plant growth, phosphorus solubilization and phosphatase activities (alkaline and acid). Inoculated mycorrhizae and bacteria strains used in this study were selected from plant rhizosphere grown on phosphate-laundered sludge. Significant (p < .05) increases in plant growth was observed when inoculated with both consortia and PC (PC+ PSB+ AMF) similar to those recorded in plants amended with chemical fertilizer. Tripartite inoculated tomato had a significantly (p < .05) higher shoot height; shoot and root dry weight, root colonization and available P content, than the control. Co-inoculation with PC and AMF greatly increased alkaline phosphatase activity and the rate of mycorrhizal intensity. We conclude that PC and endophytic AMF and PSB consortia contribute to a tripartite inoculation in tomato seedlings and are coordinately involved in plant growth and phosphorus solubilization. These results open up promising prospects for using formulate phospho-compost enriched with phosphorus-solubilizing microorganisms (PSM) in crop cultivation as biofertilizers to solve problems of phosphate-laundered sludge accumulation.  相似文献   

11.
Many phosphate solubilizing microorganisms (PSM) require external pyrroloquinoline quinone (PQQ) for strong phosphorus (P) solubilization in vitro. The objective of this study was to isolate efficient and PQQ-independent PSM. A total of 21 PSM were isolated from the rhizosphere soil of wheat and maize grown in the pots. Acinetobacter strains were the only PQQ-independent and most effective solubilizers of tricalcium phosphate containing agar. The mean P dissolved in liquid cultures of Acinetobacter strains in a 5-day incubation ranged from 167 to 888 μg/ml P. The pH dropped to below 4.7 from 7.8 in six isolates, which produced gluconic acid in concentrations ranging between 27.5 and 37.5 mM. There was a linear regression between soluble P and gluconic acid concentrations in the bacterial cultures (P < 0.05; R 2 = 0.59). Inoculation with Acinetobacter sp. WR922 significantly (P < 0.05) increased wheat (Triticum aestivum L.) P content by 27% at 15 days after emergence (DAE) and dry matter by 15% at 30 DAE compared to the control. The plant P content in inoculated plants at 30 DAE was linearly correlated with soluble P of the bacterial cultures (P < 0.05; R 2 = 0.69). Gluconic acid production directly affected phosphate solubilization in vitro, which in turn influenced plant P content of inoculated plants in PQQ-independent P-solubilizing Acinetobacter strains.  相似文献   

12.
Low availability of phosphorus(P) is a major constraint for optimal crop production, as P is mostly present in its insoluble form in soil. Therefore,phosphate-solubilizing bacteria(PSB) from paddy field soils of the Indo-Gangetic Plain, India were isolated, and their abundance was attempted to be correlated with the physicochemical characteristics of the soils. Ninety-four PSB were isolated on Pikovskaya's agar medium, and quantitative phosphate solubilization was evaluated using NBRIP medium. The isolates solubilized P up to a concentration of 1 006 μg mL~(-1) from tricalcium phosphate with the secretion of organic acids. These isolates were identified by 16 S rRNA gene sequence comparison, and they belonged to Gammaproteobacteria(56 isolates),Firmicutes(28 isolates), Actinobacteria(8 isolates), and Alphaproteobacteria(2 isolates). Phylogenetic analysis confirmed the identification by clustering the isolates in the clade of the respective reference organisms. The correlation analysis between PSB abundance and physicochemical characteristics revealed that the PSB population increased with increasing levels of soil organic carbon, insoluble P, K~+, and Mg~(2+). The promising PSB explored in this study can be further evaluated for their biofertilizer potential in the field and for their use as potent bio-inoculants.  相似文献   

13.
Mangroves form an important ecosystem of Great Nicobar, a continental island in the Bay of Bengal with luxuriant tropical rainforests. The rhizosphere of the mangrove plants of Great Nicobar was investigated for the presence of arbuscular mycorrhizal fungus (AMF) and phosphate solubilising bacteria (PSB). The soils of the Great Nicobar mangroves were silt–clays and were poor in phosphate content. Five species of AMF belonging to the genus Glomus were isolated. The %AMF colonization in the mangrove plants was between 0 and 17%, and the presence of AMF in the aerenchymatous cortex suggests that the mangrove plants may be aiding in AMF survival by providing oxygen. Two strains of phosphate solubilising Pseudomonas aeruginosa were found in the mangrove soils of Great Nicobar. Phosphate solubilisation by the two isolated strains was almost 70% under in vitro conditions. PSB may play a role in the mangrove ecosystems of Great Nicobar by mobilising insoluble phosphate. The plant roots could pick up the released phosphate directly or with the aid of AMF hyphae.  相似文献   

14.
The extent to which soil phosphorus (P) status affected the incidence of soil phosphate-solubilising bacteria (PSB) and their taxonomic abundance and diversity was examined at three long-term fertiliser trials (Whatawhata, Winchmore and Ballantrae) in New Zealand. Bacteria were isolated from rhizosphere (ryegrass and clover) and non-rhizosphere soils differing in P status. The P-solubilising phenotype was determined on agar supplemented with sparingly-soluble mineral phosphates (Ca2OH(PO4)3 and CaHPO4). The frequency of P-solubilisation in the bacterial population was significantly greater (P < 0.001) in soils of low-P status, demonstrating a selection pressure for this trait based on soil P availability. P-solubilising bacteria from high-P level soils and soils which had not received P fertiliser (nil-P soils) were identified based on 16S rRNA-gene sequence analysis. Across the samples, the P-solubilising community was very rich with 39 genera of PSB found, spanning 24 families and 4 phyla. At Ballantrae and Winchmore, the PSB composition differed (P < 0.05) across soil P status, which was associated with an alteration in abundance of Actinobacteria, Pseudomonadaceae and Moraxellaceae. The phylogenetic composition of PSB differed significantly (P < 0.05) between sites, however nearly half the families were common across all sites, constituting a ‘core community’ of P-solubilising bacteria for these New Zealand pasture soils. As the abundance and composition of P-solubilising bacteria are under strong selection pressure affected through farm management strategies, better understanding of their ecology provides the opportunity to increase the availability of soil P for plant-uptake.  相似文献   

15.
Phosphate-solubilizing bacteria (PSB) possessing the ability to solubilize insoluble inorganic phosphate were isolated from the rhizosphere soil of wheat. A laboratory study was conducted to investigate the solubilization of phosphate by a known PSB, Enterobacter agglomerans, and by a genetically manipulated bacterium, Escherichia coli. A second laboratory study investigated the release of P from E. agglomerans compared with known acids. For the first laboratory study, a cosmid (pHC79) library of phosphate-solubilizing gene(s) from E. agglomerans chromosome DNA was constructed in E. coli JM109. The clone JM109 (pKKY) showing phosphate solubilization properties was screened on standard medium containing hydroxyapatite (HY). The P concentration significantly increased at 5 and 10 days for JM109 (pKKY) compared with JM109 (pHC79), the control. Although the P concentration increased, there was no significant change in their pHs. Furthermore, an increase in colony-forming units (CFUs) was seen at 5 and 10 days for JM109 (pKKY) but not for JM109 (pHC79). Artificial acidification of the culture medium with HCl, citric acid, oxalic acid, and lactic acid was achieved by shaking for 48h. Acidification with these selected acids solubilized more HY than E. agglomerans growing for 42h at similar pHs. However, a high P concentration was measured in culture medium with E. agglomerans growing for 84h despite similar pHs. Our results suggest that acid production may play an important role in HY solubilization, but is not the sole reason for the increase in P concentration in culture medium. Received: 12 February 1996  相似文献   

16.
Phosphorus (P) is the second key nutrient for plants and it affects several attributes of plant growth. Identification of a potent phosphate solubilizing microorganism capable of transforming the insoluble P into soluble and plant-accessible forms is considered as the best eco-friendly option for providing inexpensive P to plants. Hence, this study was focused to assess the growth enhancement traits of the phosphate solubilizing bacteria (PSB) isolated from chili rhizosphere. Twelve PSB were isolated by enrichment culture technique and its P solubilization efficiency was checked using Vanadomolybdate phosphoric yellow color method. Among them, two potent strains PS2 and PS3, identified as Pseudomonas aeruginosa KR270346 and KR270347 based on biochemical and molecular characterization, were selected for further study. The Pseudomonas aeruginosa isolates interestingly showed the presence of various potential plant growth-promoting properties including indole acetic acid and siderophore production. The growth enhancement effect of Pseudomonas aeruginosa isolates on chilli showed promising results, and the growth parameters were found to be statistically signi?cant when compared to control. The results demonstrated an eloquent impact on various aspects, namely microbial count and PSB population, phosphatase and dehydrogenase activity, available phosphorous in the soil, plant nutrient uptake, and yield parameters. Inoculation of these two isolates together with the addition of rock phosphate increased comparable amount of available P and these treatments were statistically at par throughout the growth period. The results con?rmed the growth-promoting potential of the isolates to develop as biofertilizers either alone or as components of integrated nutrient management systems.  相似文献   

17.
Ten phosphate-solubilizing bacterial strains belonging to genera Pseudomonas, Burkholderia, Enterobacter, Serratia, Klebsiella, and Aeromonas were tested for mineral phosphate solubilization activity in Pikovskaya's broth using different phosphate sources at four temperatures (15, 25, 35, and 45 οC). Dicalcium and tricalcium phosphate were solubilized more effectively (≥1000 mg L?1) than ferric and rock phosphate (≥100 mg L?1) and 35 °C was found to be the optimum temperature. Although Klebsiella and Aeromonas spp. are well known for their dinitrogen (N2)–fixing ability, to the best of our knowledge, this is the first report of inorganic phosphate solubilization by Klebsiella terrigena and Aeromonas vaga. Interestingly, A. vaga BAM-77 is the most efficient strain at solubilizing inorganic phosphorus (P) even in the presence of 8% sodium chloride (NaCl) at pH 10. These findings indicate that all four strains are efficient P solubilizers under variable conditions of temperature, pH, and P source and thus can be recommended for P fertilization in different soils.  相似文献   

18.
Available phosphorus is limiting in most cultivable soils in several parts of India, including Rajasthan. Four phosphate-solubilizing bacterial strains viz. Pseudomonas fluorescens BAM-4, Burkholderia cepacia BAM-6, B. cepacia BAM-12 and Aeromonas vaga BAM-77 were isolated from the rhizosphere of pearl millet (Pennisetum glaucum, cv. Raj 171), mung bean (Phaseolus aureus, cv. RMG 492) and sesame (Sesamum indicum, cv. RT 46). To the best of our knowledge, this is the first report on phosphate solubilization by Aeromonas vaga. Seed inoculation of mung bean with or without tricalcium phosphate (TCP) was performed to study the effect of single and dual bacterial inoculations in pot trials having sterilized sandy loam soil, and was found to enhance the growth and yield of plants. The results were on a par with chemical fertilizer, single superphosphate (SSP) and commercial biofertilizers, PSB (Bacillus polymyxa) and MC (Pseudomonas striata), used as standard reference. Addition of TCP to soil gave better results and dual inoculation was more effective than single inoculation of bacteria. Among the four strains studied, A. vaga and P. fluorescens were found to be more valuable as single inoculants in terms of plant growth, whereas in combination treatments, P. fluorescens along with B. cepacia and A. vaga performed very well both in the presence and absence of TCP.  相似文献   

19.
A way to bring phosphate-saturated soils back to an environmentally safe P level is by P mining through plants. Phosphate-solubilizing bacteria (PSB) could be very useful for increasing mining efficiency over time. The goal of this research was to investigate the adaptation and performance of PSB in conditions of high total P content in soil. In the first experiment, the P-solubilizing capacity of five PSB species (three Bacillus spp. and two Pseudomonas spp.) were tested under fully controlled conditions on several growth media with different forms of insoluble phosphate (FePO4, AlPO4, or (Ca)3(PO4)2) added at different rates. The colony growth after 14 days of inoculation demonstrated that all five bacteria were able to proliferate and solubilize P on each of the tested growth media, in contradiction with the normally used technique of halo determination. In the second experiment, the same bacterial species were inoculated in pure quartz sand amended with a nutrient solution and P was added separately in an insoluble form, as Fe–P, Al–P, or Ca–P. The extractable ammonium lactate ranged from 3.2 to 6.9 and 29.0 to 40.7 mg?kg?1 sand for the insoluble Al–P and Fe–P treatments, respectively. Pseudomonas putida and Bacillus brevis performed best as PSB at high P concentration where the P is fixed with Al or Fe. In the third experiment, P. putida and B. brevis were inoculated in an acidic sandy, P-saturated soil for 4 weeks. The inoculation of the PSB gave promising results in solubilizing P.  相似文献   

20.
The objectives of this work were to isolate and characterize walnut phosphate-solubilizing bacteria (PSB) and to evaluate the effect of inoculation with the selected PSB stains to walnut seedlings fertilized with or without insoluble phosphate. Thirty-four PSB strains were isolated and identified under the genera Pseudomonas, Stenotrophomonas, Bacillus, Cupriavidus, Agrobacterium, Acinetobacter, Arthrobacter, Pantoea, and Rhodococcus through a comparison of the 16S ribosomal DNA sequences. All isolated PSB strains could solubilize tricalcium phosphate (TCP) in solid and liquid media. Phosphate-solubilizing activity of these strains was associated with a drop in the pH of medium. A significantly negative linear correlation was found between culture pH and phosphorus (P) solubilized from inorganic phosphate. Three isolates Pseudomonas chlororaphis (W24), Bacillus cereus (W9), and Pseudomonas fluorescens (W12) were selected for shade house assays because of their higher phosphate-solubilizing abilities. Under shade house conditions, application of W24 or W12 remarkably improved plant height, shoot and root dry weight, and P and nitrogen (N) uptake of walnut seedlings. These increases were higher on combined inoculation of PSB with TCP addition. The most pronounced beneficial effect on growth of walnut plants was observed in the co-inoculation of the three PSB strains with TCP addition. In comparison, the isolate of W9 failed to increase available soil P, nutrient levels in plants, or to promote plant growth, suggesting that more insoluble phosphate compounds than tricalcium phosphate should be used as substrates to assess the phosphate-solubilizing ability of PSB under greenhouse conditions. The present results indicated that strains P. chlororaphis or P. fluorescens could be considered for the formulation of new inoculants of walnut, even of more woody plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号