首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The lesser mealworm, Alphitobius diaperinus (Panzer), is an important pest in poultry facilities. The toxicity of cyfluthrin and tetrachlorvinphos to five strains of the lesser mealworm was compared with the toxicity to a susceptible laboratory strain. Bioassays were carried out with both larvae and adults. For the susceptible strain, cyfluthrin and tetrachlorvinphos had similar toxicity to adults, but cyfluthrin was 5 times more toxic to larvae when compared with tetrachlorvinphos. High levels of resistance to tetrachlorvinphos in two beetle strains were detected in both larvae and adults, although these strains were heterogeneous and still contained susceptible individuals. Resistance to cyfluthrin ranged from 1.7- to 9.5-fold for adults and from 0.5- to 29-fold for larvae at the LC(95). Overall, the patterns of resistance did not mirror the insecticide use patterns reported at these facilities. The implications of these results to management of the lesser mealworms are discussed.  相似文献   

6.
BACKGROUND: The susceptibility of adult house cricket, Acheta domesticus (L.), adult convergent lady beetle, Hippodamia convergens (Guérin‐Méneville), and larval fall armyworm, Spodoptera frugiperda (JE Smith), to resmethrin and δ‐phenothrin synergized with piperonyl butoxide (PBO) was evaluated in a laboratory bioassay procedure. RESULTS: The 1 day LC50 values for resmethrin + PBO were 23.2, 32.08 and 307.18 ng cm?2 for A. domesticus, H. convergens and S. frugiperda respectively. The 1 day LC50 values for δ‐phenothrin + PBO were 26.9, 74.91 and 228.57 ng cm?2 for A. domesticus, H. convergens and S. frugiperda respectively. The regression relationship between species mortality and concentration explained 51–81% of the variation for resmethrin + PBO and 72–97% of the variation for δ‐phenothrin + PBO. The LC50 values decreased with time for these insecticides for all surrogate species. In terms of sensitivities among the insects to resmethrin + PBO and δ‐phenothrin + PBO, A. domesticus was most sensitive, followed by H. convergens and then S. frugiperda. CONCLUSION: The results indicate that resmethrin + PBO was generally more toxic than δ‐phenothrin + PBO. Based on the results, A. domesticus seems to be a good surrogate species for estimating potential non‐target terrestrial insect impacts from exposure to pyrethroids used in public health applications. Copyright © 2008 Society of Chemical Industry  相似文献   

7.
8.
9.
10.
There is a long history of using natural products as the basis for creating new pesticides but there is still a relatively low percentage of naturally derived pesticides relative to the number of pharmaceuticals derived from natural sources. Biopesticides as defined and regulated by the US Environmental Protection Agency (EPA) have been around for 70 years, starting with Bacillus thuringiensis, but they are experiencing rapid growth as the products have got better and more science‐based, and there are more restrictions on synthetic chemical pesticides. As such, biopesticides are still a small percentage (approximately US$3–4 billion) of the US$61.3 billion pesticide market. The growth of biopesticides is projected to outpace that of chemical pesticides, with compounded annual growth rates of between 10% and 20%. When integrated into crop production and pest management programs, biopesticides offer the potential for higher crop yields and quality than chemical‐only programs. Added benefits include reduction or elimination of chemical residues, therefore easing export, enabling delay in the development of resistance by pests and pathogens to chemicals and shorter field re‐entry, biodegradability and production using agricultural raw materials versus fossil fuels, and low risk to non‐target organisms, including pollinators. Challenges to the adoption of biopesticides include lack of awareness and education in how to deploy their unique modes of action in integrated programs, testing products alone versus in integrated programs, and lingering perceptions of cost and efficacy. © 2019 Society of Chemical Industry  相似文献   

11.
Biorational and regular insecticide applications were evaluated for management of the diamondback moth (DBM) Plutella xylostella in cabbage (Brassica oleracea var capitata) in Karnataka State, India, in 1996 and 1997. The IPM programme, based on the pheromone trap catch threshold of eight moths per trap per night, included utilization of the parasitoid Cotesia plutellae. (250 000 adults ha−1), the predator Chrysoperla carnea (2500 eggs ha−1), the neem‐based chemical nimbecidine (625 ml ha−1), the bacterium Bacillus thuringiensis (500 ml ha−1), and the synthetic insecticide phosalone (2.8 litre ha−1). The IPM programme induced a reduction of trap catches, egg and larval populations and, therefore, a low level of damage to the crop. The economic analysis showed that the cost of the IPM treatments was also considerably lower than that of ordinary insecticide practice (average of $62 relative to $123 ha−1, respectively). Gross profit was also clearly higher in IPM plots than in farmer's fields, ranging from $777 to $810 ha−1 in the IPM plots compared with $456 to $462 ha−1 in the insecticide‐treated fields. As a consequence of lower input costs and higher gross profit, net profit in IPM treatments was even more favourable, and the economic savings associated with the utilization of the IPM programme amounted to $380 ha−1 in 1996 and $410 ha−1 in 1997. © 2000 Society of Chemical Industry  相似文献   

12.
The foundation of an integrated pest management program involves valid treatment thresholds, accurate and simple monitoring methods, effective natural controls, selective pesticides and trained individuals who can implement the concept. The Integrated Control Concept written by Stern, Smith, van den Bosch and Hagen elucidated each of these points in an alfalfa ecosystem. Alfalfa hay (Medicago sativa L.) has a low per acre value, requires little hand labor and is primarily marketed in the USA. In contrast, fresh market table grape (Vitis vinifera L.) has a high per acre value, requires frequent hand labor operations, suffers unacceptable cosmetic damage and is marketed throughout both the USA and the world. Each of the components of a working IPM program is present in table grape production. Marketing grapes to foreign countries presents special problems with pests considered invasive and where residue tolerances for some selective insecticides are lacking. However, fresh market grape farmers are still able to deal with these special problems and utilize an IPM program that has resulted in a 42% reduction in broad‐spectrum insecticide use from 1995 to 2007. Copyright © 2009 Society of Chemical Industry  相似文献   

13.
Several heat‐based methods, such as soil solarization, are being developed as alternative practices for managing soil‐borne pests and pathogens. The effectiveness of these practices is often inconsistent or marginal, thus commanding the need for their integration with other methods. The main objective of this study was to determine synergistic interaction between soil fumigants and temperature. Soil infested with citrus nematode Tylenchulus semipenetrans was exposed to methyl bromide or 1,3‐dichloropropene at various temperatures. Fumigant degradation was concurrently measured and concentration‐time index (ct) was calculated and correlated to the recovered nematode population. In untreated soil, nematode survival was not affected by temperatures of 20–30 °C, but was strongly reduced at ≥ 40 °C. In fumigated soil, nematode suppression was much greater at 30 °C than at 20 °C, and the ct required for nematode elimination at 30 °C was < 50% of that needed at 20 °C for both fumigants. These results suggest that these fumigants became more active with increasing temperature in the sub‐lethal temperature range. It also implies that, when integrated with a heat‐based practice, reduced rates of fumigants may provide adequate pest control, thus minimizing the environmental input of chemical fumigants. © 2000 Society of Chemical Industry  相似文献   

14.
15.
16.
17.
18.
19.
20.
A preinoculative soil drench application of 0·5 mm β‐aminobutyric acid (BABA) significantly inhibited colonization of oilseed rape (Brassica napus, susceptible cultivar Falcon) by Verticillium longisporum and also prevented plant stunting caused by the pathogen. To better understand the defence responses induced by BABA, the presence of occlusions in the plant hypocotyl, levels of salicylic acid (SA) and hydrogen peroxide (H2O2), phenylalanine ammonia lyase (PAL) activity and expression of PR‐1 and PDF1.2 genes were examined. Transverse sections through the hypocotyl region of BABA‐treated plants showed clear vessels surrounded by phenol‐storing cells, in contrast to numerous obstructed vessels in water‐treated plants, in response to the pathogen. A significant increase in SA levels was observed in the hypocotyls of both water‐ and BABA‐treated plants in response to the pathogen; however, SA levels were unrelated to disease resistance. The level of H2O2 decreased in both treatments in response to the pathogen. A significant increase in PAL activity was observed in hypocotyl tissues of BABA‐treated plants. The expression patterns of PR‐1 and PDF1.2 were similar in the two treatments in response to the pathogen, indicating no involvement of these genes in resistance. The results indicate a similar organ specificity of the plant hypocotyl for chemically induced internal resistance as for genotype‐related resistance, two phenomena which, however, are based on contrasting cytological responses in the vascular tissues. Nonetheless, evidence is provided that the activity of the phenylpropanoid pathway plays a crucial role in both types of resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号