首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
采用超声波法提取五倍子单宁酸,根据中心组合(Box-Behnken)试验设计原理,以响应面分析法优化提取工艺条件.结果表明,五倍子单宁酸的最佳提取工艺条件为乙醇体积分数48%、料液比1:23(m/V,g/mL)、提取温度59℃和提取时间29 min,在此条件下单宁酸提取率达7.32%.  相似文献   

2.
[目的]研究干构树叶中黄酮的提取和分离工艺。[方法]采用超声波辅助乙醇提取构树叶中黄酮,在单因素试验基础上进行了正交试验,并对黄酮提取物进行了分离纯化。[结果]各因素对黄酮提取率的影响从大到小次序为料液比、超声时间、乙醇浓度、超声温度。在超声频率40 k Hz下,最佳提取工艺条件为料液比1∶30(g∶ml)、超声时间40 min、乙醇浓度50%、超声温度50℃,黄酮提取得率可达4.01%。在最佳条件下提取构树叶,减压浓缩提取液后加入石油醚萃取,水相用盐酸酸化至p H=2,再加入乙酸乙酯萃取,酯相减压回收溶剂得到提取产物,产物得率为5.94%,其中黄酮质量含量为35.36%。[结论]该工艺简单易行、稳定性好,提取物中黄酮含量较高。  相似文献   

3.
响应面法优化超声波辅助提取桑叶多糖的工艺研究   总被引:4,自引:0,他引:4  
针对桑叶多糖的超声波辅助提取,首先通过单因素试验选取影响因素与水平,然后在单因素试验的基础上采用四因素三水平的响应面分析法,依据回归分析确定较优提取工艺条件. 结果表明,其较优工艺条件为:提取温度81.5℃,超声波时间30 min,超声波功率100 W,水料比为10 mL/g.采用该工艺条件,桑叶多糖的提取得率达到2.99%   相似文献   

4.
【目的】莴笋废弃物中含有丰富的天然叶绿素,利用莴笋废弃物提取叶绿素,提高莴笋废弃物利用价值,同时为叶绿素提取原料开拓新的资源。【方法】在单因素试验基础上,选取提取时间、液固比、提取温度、转速为自变量,叶绿素得率为响应值,根据Box-Behnken中心组合试验设计原理采用4因素3水平的响应面分析法,研究各自变量及其交互作用对叶绿素提取量的影响,得到二次多项式回归方程的预测模型。【结果】通过软件分析,本试验回归模型预测莴笋废弃物叶绿素提取的理论最佳工艺条件为:提取时间56.66min,液固比13.71m L/g,提取温度43.35℃,转速152.18rpm,在此条件下,叶绿素理论得率可达0.7706mg/g。验证试验,得到实际叶绿素得率为0.7665mg/g,与理论值相比,其相对误差为0.53%。【结论】最佳提取工艺条件为:提取时间57min,液固比14m L/g,提取温度43℃,转速150rpm。在此条件下叶绿素实际得率为0.7665mg/g,与预测值0.7706mg/g相对误差为0.53%。  相似文献   

5.
响应面分析法优化桑叶叶绿素提取工艺   总被引:3,自引:0,他引:3  
为优化桑叶叶绿素提取工艺,根据单因素试验结果与响应面分析法中的Box-Behnken中心组合设计原则选取试验因素与水平,从中选取对叶绿素提取结果有明显影响的提取时间、提取温度、提取液料比3个因素进行优化;并利用Design Expert 7.1.6分析软件对试验数据进行分析.结果表明:桑叶叶绿素提取的最佳工艺参数为提取时间5.25 h,提取温度56.5℃,液料比103∶1;在此条件下,桑叶叶绿素质量分数为5.376 mg/g,与预测值5.451 mg/g接近.说明根据Box-Behnken模型、采用响应面分析法得到的桑叶叶绿素提取优化工艺准确可靠.  相似文献   

6.
刘姗  胡洪利  陈惠 《河南农业科学》2013,42(1):148-151,159
利用超声波辅助提取,结合响应面法(RSM)优化金龙胆草总黄酮的提取工艺。在单因素基础上选取试验因素水平,根据中心组合设计原理采用三因素三水平的响应面分析法进行最佳工艺的优化。结果表明,在分析各个因素的显著性和交互作用后,得出金龙胆草总黄酮的最佳提取工艺条件为:提取工作时间23.4min,间隔2s,乙醇体积分数73%,料液比1∶38,在此条件下实际提取的总黄酮含量为8.285%。采用超声波辅助提取金龙胆草总黄酮的提取工艺方便可行,得到的总黄酮含量较高,值得进一步开发研究。  相似文献   

7.
响应面法优化小米糠黄色素的超声波提取工艺研究   总被引:1,自引:0,他引:1  
以小米副产物小米糠为原料,在单因素试验的基础上,采用响应面法优化小米糠黄色素的超声波提取工艺,研究超声功率、超声液料比、提取温度、提取时间对提取效果的影响。结果表明:超声功率384 W,液料比30∶1 m L·g-1,提取温度42℃,提取时间34.6 min,小米糠黄色素OD值达到3.5±0.2。  相似文献   

8.
响应面法优化超声波辅助提取玛咖总黄酮的工艺研究   总被引:1,自引:0,他引:1  
[目的]优化玛咖总黄酮的超声波辅助提取工艺.[方法]采用Box - Behnken试验设计及响应面分析法对玛咖总黄酮的超声波提取工艺进行优化,建立回归模型.[结果]得到回归方程:Y=2.080 +0.074 X1 -0.099X2-0.057X3-0.697X12 -0.209X22 -0.336X32 +0.005X1X2+0.05X1X3+0.169X2X3;最佳提取工艺为乙醇浓度70.3;、料液比1∶27、超声时间28.4 min,此工艺条件下玛咖总黄酮的提取率为2.113;,与模型预测值吻合.[结论]响应面回归方程与试验结果拟合性好,可用于实际预测,为玛咖总黄酮的提取提供了参考.  相似文献   

9.
[目的]对超声波提取蓝莓工艺进行优化,为其商业化生产提供技术支持.[方法]以蓝莓冻干粉为试验原料,在单因素试验基础上选择乙醇浓度、料液比、超声时间等3个因素进行响应面设计,采用Box-Behnken中心组合试验设计和响应面分析法,建立以蓝莓多酚含量为响应值的二次回归方程.[结果]通过响应面分析建立蓝莓多酚超声萃取回归方程为:y=10.88-0.15x1+0.042x2+0.055x3-0.27x1x2-0.15x1x3-0.090x2x3-0.56x12-0.35X22-0.15x32(x1为乙醇浓度,x2为料液比,x3为超声时间,y为蓝莓多酚萃取率,R2=0.9692),该模型拟合度好;并确定蓝莓多酚萃取的影响因素顺序为:x1>x3>x2;最佳提取工艺条件为:提取次数两次、超声功率400 W、乙醇浓度55%、料液比1:25、超声时间1.5 h,在此条件下蓝莓多酚含量为11.05 mg/g.[结论]研究建立的模型适合蓝莓多酚超声波提取,可用于实际生产.  相似文献   

10.
以长白山野生核桃壳为原料提取棕色素,在单因素试验的基础上,通过响应面法优化超声波提取山核桃壳色素工艺,并建立回归模型。结果表明,V(溶液)∶m(山核桃壳)(液料比)=17 mL∶1 g、乙醇体积分数50%、超声功率152 W,山核桃壳色素吸光度的预测值为0.801,通过优化方案的验证实验得出色素的吸光度为0.799。与常规水浴法提取山核桃壳色素相比,超声辅助法的提取效果更好。  相似文献   

11.
为优化人参叶总皂苷提取工艺,采用单因素试验,考察温度、时间、液料比对人参叶中总皂苷得率的影响。再采用3因素3水平的响应面分析法确定人参叶总皂苷提取的优化工艺,同时建立人参叶总皂苷提取的二次项数学模型,并验证其可靠性。结果表明:热水浸提法提取人参叶总皂苷的最佳条件为温度100 ℃、时间4.2 h、液料比16。在最佳条件下,人参叶总皂苷得率为人参叶质量的14.23%。   相似文献   

12.
采用响应曲面法优化微波辅助提取柿叶中总黄酮的工艺,以提高柿叶黄酮的提取得率。结果表明:微波辅助提取柿叶总黄酮的最佳工艺为:微波功率422.360 W、提取时间20.970 min、液料比20.660∶1,此时柿叶总黄酮的得率达6.15%。说明响应曲面法是一种很好的优化柿叶黄酮提取工艺的方法。  相似文献   

13.
利用微波辅助技术提取竹叶多糖。在单因素试验的基础上,运用响应面分析法,研究液固比、提取时间、提取温度对竹叶多糖提取率的影响,建立多糖提取得率的二次回归方程,并确定了竹叶多糖的最佳提取工艺条件为:微波功率为600 W,微波提取温度124℃,提取时间44 min,液固比41:1,采用该工艺条件,提取1次,竹叶多糖的提取率达到0.45%。而理论预测多糖得率是0.456%,实际得率达到理论预测值的98.68%。  相似文献   

14.
响应面法优化山楂叶中黄酮提取工艺   总被引:3,自引:0,他引:3  
为确定山楂叶中总黄酮的最佳提取工艺,选取乙醇体积分数、提取时间、提取温度、料液比4个影响提取效果的因素进行单因素试验,并利用Design-Expert 7进行响应面分析试验.结果表明,山楂叶中总黄酮的最佳提取工艺条件为:乙醇体积分数65%,提取温度70℃,提取时间60 min,料液比42:1,此条件下黄酮提取量为7.4...  相似文献   

15.
采用响应曲面法优化甘草饮片中甘草酸的超声提取工艺   总被引:3,自引:0,他引:3  
根据Box-B ehnken的中心组合实验设计原理,在单因素试验的基础上,采用三因素三水平的响应曲面分析法,建立了甘草饮片中甘草酸超声提取的二次多项数学模型,并以甘草酸提取率为响应值作响应面和等高线,考察了浸泡时间、超声时间和液固比对甘草酸超声提取的影响。结果表明,甘草酸超声提取的优化工艺条件为:浸泡时间151.3 m in,超声时间48.8 m in,液固比10.2 mL/g;在此工艺条件下,甘草酸提取率为21.06%。  相似文献   

16.
小米黄色素超声波辅助提取工艺的响应面法优化   总被引:1,自引:0,他引:1  
【目的】筛选超声波辅助提取小米黄色素的最佳提取工艺参数。【方法】在单因素试验的基础上,采用响应面法对超声波辅助提取小米黄色素的工艺参数进行了优化。【结果】响应面法优化试验得到了二次多项式回归模型(R2=0.9884),该模型能较好地反映各因素与响应值之间的关系。模型方差分析表明,影响小米黄色素超声波提取的主要因素为超声波功率,其次是提取时间,液料比影响最小。【结论】最佳提取工艺为:超声波功率510 W,液料比5.0∶1,提取时间46 min。在该提取工艺下,小米黄色素含量为(4.24±0.04)mg/kg。  相似文献   

17.
响应面分析法优化金柑多糖的提取工艺   总被引:1,自引:0,他引:1  
采用响应面分析法优化金柑多糖的提取工艺,研究液料比、温度、时间、乙醇含量和提取次数5个因素对多糖提取率的影响,利用SAS 9.2响应面的分析程序得到回归方程.结果表明,所得的方程达到显著水平,多糖的最佳提取工艺条件为:液料比(毫升∶克)38∶1、提取温度88℃、提取2.5 h、乙醇含量70%和提取3次,实际测得的多糖提取率为1.81%,与理论预测值基本一致.  相似文献   

18.
以黄色素吸光度为衡量指标,在单因素试验基础上, 运用Box Behnken 中心组合采用四因子三水平试验模型,建立回归方程,以响应面分析法(RSM)对连翘花黄色素的提取工艺进行优化。结果表明,以料液比1∶28(V/m),乙醇浓度96%,超声时间31 min,超声温度72℃为提取条件,实际平均色素吸光度为0735 5,理论值为0755 7,二者相差较小。  相似文献   

19.
【目的】采用响应曲面法建立Box-Behnken模型,优化夏枯草中迷迭香酸的超声提取工艺。【方法】以料(g)液(mL)比(1∶10,1∶20,1∶30,1∶40,1∶50,1∶60)、乙醇体积分数(40%,50%,60%,70%,80%,90%)、提取时间(10,20,30,40,50,60min)为考察因素,迷迭香酸提取率为考察指标,在单因素试验的基础上,采用3因素3水平响应曲面法分析,确定夏枯草中迷迭香酸的最优提取工艺。【结果】夏枯草中迷迭香酸最佳提取工艺参数为:料(g)液(mL)比1∶28,乙醇体积分数74%,提取时间55min,在该工艺参数条件下,迷迭香酸提取率达0.52%,与预测值0.54%偏差较小,说明响应曲面法优化超声提取夏枯草中迷迭香酸工艺的参数准确可靠。【结论】得到了夏枯草中迷迭香酸提取的优化条件,本研究所用方法具有可行性和实用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号