首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Efficient irrigation regimes are becoming increasingly important in commercial orchards. Accurate measurements of the components of the water balance equation in olive orchards are required for optimising water management and for validating models related to the water balance in orchards and to crop water consumption. The aim of this work was to determine the components of the water balance in an olive orchard with mature ‘Manzanilla’ olive trees under three water treatments: treatment I, trees irrigated daily to supply crop water demand; treatment D, trees irrigated three times during the dry season, receiving a total of about 30% of the irrigation amount in treatment I; and treatment R, rainfed trees. The relationships between soil water content and soil hydraulic conductivity and between soil water content and soil matric potential were determined at different depths in situ at different locations in the orchard in order to estimate the rate of water lost by drainage. The average size and shape of the wet bulb under the dripper was simulated using the Philip’s theory. The results were validated for a 3 l h−1 dripper in the orchard. The water amounts supplied to the I trees during the irrigation seasons of 1997 and 1998 were calculated based on the actual rainfall, the potential evapotranspiration in the area and the reduction coefficients determined previously for the particular orchard conditions. The calculated irrigation needs were 418 mm in 1997 and 389 mm in 1998. With these water supplies, the values of soil water content in the wet bulbs remained constant during the two dry seasons. The water losses by drainage estimated for the irrigation periods of 1997 and 1998 were 61 and 51 mm, respectively. These low values of water loss indicate that the irrigation amounts applied were adequate. For the hydrological year 1997–1998, the crop evapotranspiration was 653 mm in treatment I, 405 mm in treatment D and 378 mm in treatment R. Water losses by drainage were 119 mm in treatment I, 81 mm in treatment D and 4 mm in treatment R. The estimated water runoff was 345 mm in treatments I and R, and 348 mm in treatment D. These high values were due to heavy rainfall recorded in winter. The total rainfall during the hydrological year was 730 mm, about 1.4 times the average in the area. The simulated dimensions of the wet bulb given by the model based on the Philip’s theory showed a good agreement with the values measured. In a period in which the reference evapotranspiration was 7.9 mm per day, estimations of tree transpiration from sap flow measurements, and of evaporation from the soil surface from a relationship obtained for the orchard conditions, yielded an average daily evapotranspiration of 70 l for one I tree, and 48 l for one R tree.  相似文献   

2.
The oft-touted reason for the efficiency of drip irrigation is that roots can preferentially take up water from localised zones of water availability. Here we provide definitive evidence of this phenomenon. The heat-pulse technique was used to monitor rates of sap flow in the stem and in two large surface roots of a 14 year old apple tree (Malus domestica Borkh. cv. Braeburn). The aim was to determine the ability of an apple tree to modify its pattern of root water uptake in response to local changes in soil water content. We monitored the water status of the soil close to the instrumented roots by using time domain reflectometry (TDR) to measure the soil's volumetric water content, θ, and by using ceramic-tipped tensiometers to measure the soil's matric pressure head, h. A variation in soil water content surrounding the two roots was achieved by supplying a single localised irrigation to just one root, while the other root remained unwatered. Sap flow in the wetted root increased straight away by 50% following this drip irrigation which wetted the soil over a zone of approximately 0.6 m in diameter and 0.25 m in depth. Sap flow in the wetted root remained elevated for a period of about 10 days, that is until most of the irrigation water had been consumed. A comparative study of localised and uniform irrigation was then made. Following irrigation over the full root zone no further change in sap flow in the previously wetted root was observed when referenced to the corresponding sap flow measured in the stem of the apple tree. However sap flow in the previously dry root responded to subsequent irrigations by increasing its flow rate by almost 50%. These results show that apple roots have the capacity to transfer water from local wet areas at much higher rates than normally occurs when the entire root zone is supplied with water. They are also able to shift rapidly their pattern of uptake and begin to extract water preferentially from those regions where it is more freely available. Such an ability supports the use of drip irrigation for the efficient use of scarce water resources. We conclude that the soil-to-root pathway represents a major resistance to water uptake by apple, even at the relatively high soil water pressure heads developed during parts of this experiment, during which the tree was not even under any stress.  相似文献   

3.
The emergence of intensively managed olive plantations in arid, northwestern Argentina requires the efficient use of irrigation water. We evaluated whole tree daily transpiration and soil evaporation throughout the year to better understand the relative importance of these water use components and to calculate actual crop coefficient (Kc) values. Plots in a 7-year-old ‘Manzanilla fina’ olive grove with 23% canopy cover were either moderately (MI) or highly irrigated (HI) using the FAO method where potential evapotranspiration over grass is multiplied by a given Kc and a coefficient of reduction (Kr). The Kc values employed for the MI and HI treatments were 0.5 and 1.1, respectively, and the Kr was 0.46. Transpiration was estimated by measuring main trunk sap flow using the heat balance method for three trees per treatment. Soil evaporation was measured using six microlysimeters in one plot per treatment. Both parameters were evaluated for 7-10 consecutive days in the fall, winter, mid-spring, summer, and early fall of 2006-2007. Maximum soil evaporation was observed in the summer when maximum demand was combined with maximum surface wetted by the drips and evaporation from the inter-row occurred due to rainfall. Similarly, maximum daily transpiration was observed in mid-spring and summer. Transpiration of MI trees was 30% lower than in HI trees during the summer period. However, this difference in transpiration disappeared when values were adjusted for total leaf area per tree because leaf area was 28% less in the MI trees. Transpiration represented about 70-80% of total crop evapotranspiration (ETc) except when soil evaporation increased due to rainfall events or over-irrigation occurred. We found that daily transpiration per unit leaf area had a positive linear relationship with daily potential evapotranspiration (r2 = 0.84) when considering both treatments together. But, a strong relationship was also observed between transpiration per unit leaf area and mean air temperature (r2 = 0.93). Thus, it is possible to predict optimum irrigation requirements for olive groves if tree leaf area and temperature are known. Calculated crop coefficients during the growing season based on the transpiration and soil evaporation values were about 0.65-0.70 and 0.85-0.90 for the MI and HI treatments, respectively.  相似文献   

4.
Measurements of maximum daily trunk shrinkage (MDS) were performed on adult olive (Olea europaea L. cv. Manzanillo) trees in an experimental farm in Seville (Spain). The objective was to study the feasibility of obtaining maximum daily trunk shrinkage baselines or reference values for use in irrigation scheduling. The trees were irrigated daily above their water requirements in order to obtain non-limiting soil water conditions. The results indicated it is possible to obtain baselines for MDS, despite a certain scattering of the data points representing the relations between MDS and the climatic variables (reference evapotranspiration, solar radiation, vapour pressure deficit and temperature). MDS behaviour was best correlated with midday vapour pressure deficit and midday air temperature (r2 = 0.83 and 0.79, respectively).  相似文献   

5.
Agricultural growers need investment and cost guidelines for drip irrigation to evaluate the economics of getting crops into production as quickly as possible and to minimise economic losses from drought during the productive life of an olive orchard. The benefits of irrigation may include; better olive survival, earlier crop production, greater yields, efficient nutrient distribution, less plant stress, reduced yield variability and improved crop quality.This research was conducted to help olive growers make decisions regarding investments in drip irrigation systems. This analysis was aimed at the farm business level to provide an economic rationale for investing in drip irrigation systems.The net present value (NPV) criterion was used to determine the discounted break-even investment results from published responses to drip irrigation systems. Growers with typical drip irrigation systems can expect investments of US$ 2244 ha−1 with 1.6 ha blocks of olives. Analysis of survey findings indicate that net present value was US$ 3464 ha−1 after an initial investment of US$ 2244 ha−1.  相似文献   

6.
Water transfers within mixed crops systems are complicated to understand due to the large number of complex interactions between the various components. Standard techniques fail to provide the proper assessment of the components of the water balance. Experiments and modeling developments are used to understand the dynamics of water transfers within the association of olive trees with annual crops under irrigation in Central Tunisia. The whole system is represented by a unit area made up of three components: a plot with the annual crop, a plot with the olive tree and a plot of bare soil. The modeling approach is based on the concept of reservoir. The model works on a daily time step and accounts for the lateral transfers of water occurring between the components of the system: (i) the water uptake by the roots of olive trees; (ii) the physical flow of water between the irrigated plot and the non-irrigated ones. A field experiment was carried out during 2 years (2002, 2003) and three crop cycles (spring potato, spring pea and autumn potato) in order to calibrate the model and test its validity. Olive tree transpiration was estimated from sap flow measurements and soil moisture in the different compartments was measured by neutron probe technique. The experimental data compare fairly well with the model outputs. The first purpose of the model is to understand the functioning of the olive tree–annual crop association from a water standpoint, but it can be easily extended to other intercropping systems mixing perennial vegetation with annual crops or used as a management tool. The estimates of the water extracted by the olive trees in each reservoir appear to be much more significant than those of the water physically transferred between reservoirs.  相似文献   

7.
Transpiration of well-watered and regulated deficit irrigated (RDI) citrus trees was determined by sap flow (SF) measurements using the compensation heat-pulse method. Its potential for detection of plant water stress was evaluated in comparison with measurements of midday stem water potential (ψstem). The study was carried out during 2 years in two commercial groves of Clementina de Nules (CN) and Navel Lane Late (NLL). SF measurements were taken in two trees per treatment instrumented with two identical gauges per tree in NLL and two different types of gauges (type 1 shorter than type 2) in CN. The absolute SF values underestimated the tree water use. Averaged over the entire period of water restrictions, a reduction of about 50 % in water application in the RDI trees of both species decreased tree transpiration compared to the control trees only by a 15 %. Both the nocturnal-to-diurnal SF ratio and the relative transpiration were in good agreement with differences in ψstem. Overall, results suggest that SF measurements should be preferentially used in relative terms. Sap flow sensors are useful for detecting plant water stress, but they also highlight some of the problems for accurately measuring transpiration.  相似文献   

8.
Summary Sap flow measurements in the trunk and potential transpiration computed from meteorological data were used during two irrigation seasons to determine orchard water requirement. Standard commercial irrigation was applied except for two trees which were irrigated every 3 days to maintain unlimited soil water availability and used as reference trees. Measured transpiration was proportional to potential transpiration. The ratio between the two, averaged for all trees, was approximately 0.3 when soil water availability was not limiting falling to 0.2 when soil water potential in the main root zone dropped to -90 kPa. This ratio was successfully used to schedule orchard irrigation at an arbitrarily chosen reduction of 20% in the ratio as measured on the first day after irrigation. Yield of individual trees was highly correlated with their seasonally accumulated transpiration. Analysis of variability in transpiration between trees led to the conclusion that orchard transpiration may be determined with acceptable accuracy by this approach which can, therefore, be used to schedule orchard irrigation.Contribution from the Agricultural Research Organization, the Volcani Center, Bet Dagan, Israel. No. 3074-E, 1990 Series  相似文献   

9.
The most common sugarcane variety in the Gharb plain of Morocco (CP 66-345 variety) was grown in a lysimeter in the laboratory. It developed during 6 months with a water-table at 0.7 m below the soil surface. The water-table was then successively maintained with a Mariotte bottle at 0.45, 0.2 and 0.05 m from the soil surface for 21, 31 and 24 days, respectively. Transpiration was measured by Dynamax sap flow sensors. Soil water pressure heads were measured at six different depths; soil hydraulic properties and root density profile were also determined. No transpiration reduction was observed with soil waterlogging. Two different models were used to predict the pattern of root water uptake (RWU) with water-table at 0.45 m below the soil surface. These two models are based on a RWU function used as sink term in the Richards equation. The first model, HYDRUS-2D (Simunek et al., 1996), is based on the α-model RWU (Feddes et al., 1978a) which depends on a reduction function varying according to the soil water pressure head and on the root density. The second model, SIC (Breitkopf and Touzot, 1992) is based on the hr-model RWU (Whisler and Millington, 1968, Feddes et al., 1974). It is proportional to the difference between soil and root pressure heads, to unsaturated hydraulic conductivity and to root density. Calculated soil water flows from pressure head measurements are compared to predicted pressure heads by the two models. These predictions compare well with the measured values and show that sugarcane roots mainly absorbed water in the water-table. However, while goods predictions were obtained using the actual root density profile with the hr-model, it was necessary to modify this profile to obtain proper results using the α-model.  相似文献   

10.
To determine the existence of rainfall concentration beneath olive trees, throughfall and stemflow was measured in three olive trees during 12 rainfall events, using 36 rain gauges per tree and a stemflow collection system. Data from different rainfall events were aggregated to assess the spatial correlation in throughfall. Only one out of the three trees showed a clear spatial dependency structure.Rainfall concentration under the tree canopy, as a consequence of rainfall redistribution of throughfall, was relatively unimportant with few and sparse locations showing a percentage of throughfall with respect to rainfall in open area >100% and none above 125%. Throughfall showed a consistent storm to storm pattern in spatial distribution among high rainfall events, and non-consistent patterns among low rainfall events. Stemflow was found to be the most important mechanism of canopy induced flux concentration, in events where rainfall depth was large enough to saturate the olive canopy. Stemflow was estimated to infiltrate in a radial area up to 0.5 m from the tree trunk, depending on tree characteristics and rainfall intensity. The area surrounding the tree trunk appears to be the most relevant area for potential research dealing with the influence of concentrated canopy induced water fluxes on the transport of chemicals to deeper layers within the soil.  相似文献   

11.
Direct measurements of the xylem sap flow by the stem heat balance technique can be a valuable aid for determining the irrigation demand of field crops. In the present study, soybean (Glycine max (L.) Merr.) sap flow was evaluated under well-watered and water-stressed conditions using Dynamax SGA10 sap flow gauges. Solar radiation was measured continuously throughout the growing season. Soil water content was measured before and after each irrigation. There was a close relationship between solar radiation and xylem sap flow. The water flux in the soybean stems responded realistically to changes in the soil water content. However, the absolute values of sap flow were highly questionable. Calculating crop transpiration from sap flow measurements, the results were up to 4 times as high as calculated transpiration from soil moisture data and simulated transpiration using the locally calibrated soybean crop growth model SOYGRO. A sensitivity analysis of the stem heat balance technique gave no indications of technique or input errors. The gauge design was possibly not appropriate for the outdoor installation on soybeans.  相似文献   

12.
Eight-year-old Murcott orange trees grown in greenhouse lysimeters filled with sandy soil were subjected to irrigation with saline water to investigate the influence of salinity on daily evapotranspiration (ET). The study was conducted in Japan from 1 August to 15 September 2000. The study duration was divided into three periods of about 2 weeks each. In period I, all lysimeters planted with a tree were irrigated with 60 mm of non-saline water at the water content of 70% of field capacity (FC). Salinity treatments for period II started on 14 August. The treatments during period II were as follows: Lysimeter 1 (L1) had 32 mm non-saline water with an electrical conductivity (ECI) of 1.0 dS/m applied. At the same time Lysimeter 2 (L2) had 32 mm of saline water with an ECI of 8.6 dS/m applied when the water content decreased to 70% of FC. Lysimeter 3 (L3) had 16 mm saline water (ECI=8.6 dS/m) applied at 85% of FC. The irrigation amounts during period II were equal to those corresponding to 1.2 times of water required to reach FC. Treatments in period III were the same as in period I.Daily ET was similar for all weighing lysimeters during period I. The average relative ET for L2 and L3 with respect to L1 (L2/L1 and L3/L1) were similar during this period, with a mean value of 0.99. During period II, ET from L1 was consistently higher than that from L2 and L3. In addition, L3 with a higher irrigation frequency because of irrigation at higher soil water content resulted in higher ET than L2. The average relative ET of period II was 0.71 and 0.88 for both L2 and L3. During the last half of period III, reductions occurred in the ET differences between the saline treatments (L2 and L3) and non-saline control (L1).Evaporation rates from soil did not exceed 0.7 mm per day. Transpiration rates from L1, L2 and L3 during period II varied between 6.3 and 3.1 mm per day, 4.5 and 2.2 mm per day, and 5.8 and 3.0 mm per day, respectively. The results reflected a tangible difference of water extraction by roots from individual soil layers. Maximum water uptake by these trees was observed at layer of 30–60 cm. Nevertheless, no clear differences in water extraction pattern between trees were observed.Approximately, 95% of drainage occurred during the first 2 days following irrigation. The electrical conductivity of soil water (ECS) and the electrical conductivity of drainage water (ECD) for the saline water treatments (L2 and L3), compared to the control (L1) were significantly different during period II. ECS values were 2–5 times higher in saline treatments compared to the control treatment. After irrigating trees with saline water, ECS increased from 5 to 14 and 16 dS/m in L2 and L3, respectively. Similarly, in both saline treatments, ECD values were greatly increased after irrigation. During period III, ECD values increased from 5 to 8 dS/m in L2, and from 3 to 11 dS/m in L3. By contrast, ECS declined from 14 to 5 dS/m in L2, and from 16 to 3 dS/m in L3 over the same period.  相似文献   

13.
We used sap flow and trunk diameter measurements for assessing water stress in a high-density ‘Arbequina’ olive orchard with control trees irrigated to replace 100 % of the crop water needs, and 60RDI and 30RDI trees, in which irrigation replaced ca. 60 and 30 % of the control, respectively. We calculated the daily difference for both tree water consumption ( $ D_{{E_{\text{p}} }} $ ) and maximum trunk diameter (D MXTD) between RDI trees and control trees. The seasonal dynamics of $ D_{{E_{\text{p}} }} $ agreed reasonably well with that of the stem water potential. We identified peculiarities on the response $ D_{{E_{\text{p}} }} $ to changes in water stressing conditions, which must be taken into account when using the index. An analysis of the water stress variability in the orchard is required for choosing the instrumented trees. The reliability of the D MXTD index was poorer than that of $ D_{{E_{\text{p}} }} $ . The maximum daily shrinkage (MDS) was not a reliable water stress indicator.  相似文献   

14.
A computer simulation model, SWAP93, was used to simulate the soil water balance of sugarcane (Saccharum officinarum L.) over a period of 6 years, in order to develop an efficient irrigation scheduling scheme for Sindh, Pakistan. Given the limitations and inflexibility of the existing warabandi irrigation system, which does not allow on-demand irrigation, only irrigation depth and irrigation interval were varied in order to assess the best irrigation depth/interval combination for sugarcane production. Twelve irrigation treatments were simulated. These treatments were four irrigation amounts (900, 1200, 1650 and 1800 mm) and three irrigation frequencies (7, 10 and 15 days). Three seasons with rainfall totaling less than 20 mm were compared with three seasons of over 200 mm rainfall. Two approaches were used in assessing the irrigation schemes: yield parameters and water management response indicators. Treatment parameters (e.g. irrigation amounts, weather conditions, soil characteristics, etc.) served as input for SWAP93, actual transpiration was calculated and then used in a crop water production function to predict yield and water use efficiency. Additionally, water management response indicators were derived from model outputs, and used to assess the impact of the schemes on soil salinity and water logging. Both these indicators and the yield and water use efficiency indicated that a seasonal total of 1650 mm, applied at a 15-day interval was the best irrigation scheme for the region.  相似文献   

15.
Water balance of Swamp Mahogany (Eucalyptus robusta Sm.) and Rhodes grass (Chloris gayana Kunth var. Callide) plantations was studied in large experimental plots, which were irrigated with secondary treated sewage effluent. The tree plots designated as T10, T20, T30 and T40 received four different nitrogen (N) concentrations of 10, 20, 30 and 40 mg/l, respectively. The grass plot designated as G30 received one N level (30 mg/l). The objective of the study was to compare growth and water use of these plantations and the possible effluent losses to the environment.There was little response to N treatment in the first year of tree growth. A significant response to high N concentration was observed in tree treatment plots in the second year of the growth. Thus, at 20 month stage, the T40 trees reached a height of 4.1 m and had a leaf area index (LAI) of 2.5 compared with 2.2 m and 1.6, respectively in T10 trees. As expected, the T40 treatment had the largest interception losses (10%) and the least runoff and interflow. There was a progressive decrease in runoff and interflow with reductions in the level of nitrogen applied.Annual evapotranspiration was calculated to be 982 and 1191 mm, in the first and second year for grass compared with 1126 and 1269 mm, respectively for the T30 treatment. Grass and trees receiving the same concentration of N in effluent (30 mg/l) were transpiring at similar monthly rates, with crop factors of 0.79 for the grass and 0.85 for the trees, which were not statistically different. These results in plots subject to regular effluent irrigation are markedly different from findings of previous studies, which indicated a very large increase in water use of trees compared to grass vegetation under dryland conditions. Although evapotranspiration utilised the largest portion of the incoming water to the plots, the need for irrigation was reduced by the occurrence of frequent rainfall at the site. Runoff comprised the largest off site loss mechanism, especially during high rainfall periods indicating that coastal areas with low irrigation demand provide a limited opportunity for land disposal of effluent. Other site characteristics such as shallow soils increase the risks of environmental pollution through runoff from application site. Increase in area of application and adoption of a filtering technique will reduce risks to the soil and the environment.  相似文献   

16.
The main goal of this research was to evaluate the potential of the dual approach of FAO-56 for estimating actual crop evapotranspiration (AET) and its components (crop transpiration and soil evaporation) of an olive (Olea europaea L.) orchard in the semi-arid region of Tensift-basin (central of Morocco). Two years (2003 and 2004) of continuous measurements of AET with the eddy-covariance technique were used to test the performance of the model. The results showed that, by using the local values of basal crop coefficients, the approach simulates reasonably well AET over two growing seasons. The Root Mean Square Error (RMSE) between measured and simulated AET values during 2003 and 2004 were respectively about 0.54 and 0.71 mm per day. The basal crop coefficient (Kcb) value obtained for the olive orchard was similar in both seasons with an average of 0.54. This value was lower than that suggested by the FAO-56 (0.62). Similarly, the single approach of FAO-56 has been tested in the previous work (Er-Raki et al., 2008) over the same study site and it has been shown that this approach also simulates correctly AET when using the local crop coefficient and under no stress conditions.Since the dual approach predicts separately soil evaporation and plant transpiration, an attempt was made to compare the simulated components of AET with measurements obtained through a combination of eddy covariance and scaled-up sap flow measurements. The results showed that the model gives an acceptable estimate of plant transpiration and soil evaporation. The associated RMSE of plant transpiration and soil evaporation were 0.59 and 0.73 mm per day, respectively.Additionally, the irrigation efficiency was investigated by comparing the irrigation scheduling design used by the farmer to those recommended by the FAO model. It was found that although the amount of irrigation applied by the farmer (800 mm) during the growing season of olives was twice that recommended one by the FAO model (411 mm), the vegetation suffered from water stress during the summer. Such behaviour can be explained by inadequate distribution of irrigation. Consequently, the FAO model can be considered as a potentially useful tool for planning irrigation schedules on an operational basis.  相似文献   

17.
The study was undertaken in order to quantify the effect of 12-year irrigation by drip emitters placed on one side of the tree trunk on the rooting pattern of Gloster apple trees (Malus domestica Borkh) grafted on M26 rootstock under the conditions of south-west Poland. The orchard was established in 1994 and since 1995 was drip irrigated under three treatments: V0 - without irrigation (control), V1 - intensive irrigation, and V2 - economical irrigation. In March 2007, after 12 years of irrigation, a profile trench observation method was used to map the number and the location of root distribution in clay loam (Luvisol) soil.The root system architecture was largely affected by irrigation. In case of the trees irrigated intensively (V1), the study showed asymmetry in the distribution of roots of diameter <1 mm and 1-3 mm. In V1, shallow root system, concentrated in the wetted zone developed on the irrigated side of the tree, where on the side of the tree trunk opposite the emitter trees developed significantly larger numbers of roots, which penetrated deeper soil layers. There were no statistically significant differences in the number of roots between both sides of the tree trunk under the treatment with economical irrigation (V2). Moreover, spatial roots distribution over the entire soil profile was found to be the most uniform compared to the other experimental treatments (V0 and V1). Finally, the study examined the relationship between root system and yield. Obtained results showed that in the 3-year period less frequent water application (V2) resulted in the highest yield.  相似文献   

18.
Olive is one of the fruit tree species for which measurements of the trunk diameter variation (TDV) has shown a lower potential both for monitoring water stress and for scheduling irrigation. This is particularly true in the case of old, big olive trees with heavy fruit load. Fernández et al. (2011, J. Environ. Exp. Bot. 72, 330-338) observed that the daily difference for maximum trunk diameter between deficit irrigated ‘Manzanilla’ olive trees and control trees growing under non-limiting soil water conditions, termed DMXTD, is more sensitive and reliable for detecting the water stress of the trees than other widely used TDV-derived indices. However, they considered their results as preliminary because of the lack of replications. The aim of this work was to evaluate the usefulness of the DMXTD index for detecting plant water stress in an orchard with 12-year-old ‘Arbequina’ olive trees with heavy fruit load. The performance of DMXTD for detecting water stress of the trees was compared to that of the signal intensity for the maximum daily shrinkage (SI-MDS) derived from the same TDV records. Results showed that SI-MDS was not useful for indicating the water stress of the trees. On the other hand, the dynamics of DMXTD mimicked those of the soil and plant water status. Four instrumented trees per treatment (replicates) were enough to reduce the uncertainty of the TDV measurements to a reasonable level. Our results show that DMXTD is a useful index to detect the onset, and severity, of water stress in mature ‘Arbequina’ olive trees with heavy fruit load. They also suggest a potential of DMXTD for scheduling low frequency deficit irrigation strategies.  相似文献   

19.
The effect of irrigation frequency on soil water distribution, potato root distribution, potato tuber yield and water use efficiency was studied in 2001 and 2002 field experiments. Treatments consisted of six different drip irrigation frequencies: N1 (once every day), N2 (once every 2 days), N3 (once every 3 days), N4 (once every 4 days), N6 (once every 6 days) and N8 (once every 8 days), with total drip irrigation water equal for the different frequencies. The results indicated that drip irrigation frequency did affect soil water distribution, depending on potato growing stage, soil depth and distance from the emitter. Under treatment N1, soil matric potential (ψm) Variations at depths of 70 and 90 cm showed a larger wetted soil range than was initially expected. Potato root growth was also affected by drip irrigation frequency to some extent: the higher the frequency, the higher was the root length density (RLD) in 0–60 cm soil layer and the lower was the root length density (RWD) in 0–10 cm soil layer. On the other hand, potato roots were not limited in wetted soil volume even when the crop was irrigated at the highest frequency. High frequency irrigation enhanced potato tuber growth and water use efficiency (WUE). Reducing irrigation frequency from N1 to N8 resulted in significant yield reductions by 33.4 and 29.1% in 2001 and 2002, respectively. For total ET, little difference was found among the different irrigation frequency treatments.  相似文献   

20.
Water research studies in Saudi Arabia clearly showed sever depletion of groundwater. Therefore, the scientifically applied research program related to water saving and conservation in agriculture is essential, where agricultural activities account for more than 85% of the total water consumed. This study aims to investigate the effect of four irrigation levels, two irrigation methods and three clay deposits on water-use efficiency (WUE) of squash and the distributions of salts and roots in sandy calcareous soils. A field experiment was conducted at the college experimental station in 2002 and 2003. It consists of three clay deposits, three rates (CO = 0, C2 = 1.0 and C3 = 2.0%), four irrigation levels (T1 = 60, T2 = 80, T3 = 100 and T4 = 120% of Eto) using surface (IM1) and subsurface (IM2) drip irrigation.Results indicated that squash fruit yield was significantly increased with the increase in irrigation water level for each season. Generally, WUE values were increased as linearly with applied irrigation water and decreased at the highest irrigation level. Types of clay deposits significantly affected fruit yields compared with the control. The yield increase was 12.8, 8.35 and 6.4% for Khulays, Dhruma and Rawdat clay deposits, respectively. The differences between surface and subsurface drip on fruit yields and WUE were also significant. Results indicated that moisture content of subsurface-treated layer increased dramatically, while salts were accumulated at the surface and away from the emitters in subsurface drip irrigation. Intensive root proliferation is observed in the clay-amended subsurface layer compared with non-amended soil. The advantages of subsurface drip irrigation were related to the relative decrease in salt accumulation in the root zone area where the plant roots were active and water content was relatively higher.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号