首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rock weathering has long been a subject of study for geologists, mineralogists, chemists and soil scientists since the dawn of this century. In methods for investigating rock weathering, three aspects seem to be present. The one is a chemical aspect in which weathering process is considered by comparing chemical composition of fresh parent rock with that of the weathered rock, the difference being attributed to gains or losses of chemica,l elements with respect to a supposed immobile element, usually aluminum. This aspect can elucidate the chemical behaviour of rock, that is, of material as an assemblage of constituent minerals in the environment of weathering. Among many such studies mentioned. PoLYNov's “Cycle of Weathering” (6) is one of the most comprehensive and fruitful acheivements. The second aspect is a mineralogical one, in which interests are directed toward skeletal minerals surviving against severe attacks of weathering. It is commonly observed that some of the original constituent minerals still remain in weathered material after others have been extinguished. The former minerals are more stable than the latter. On the basis of these observations, the sequence of resistantiability or stability to weathering can be determined for many rock forming minerals. GOLDICH's study of rock-weathering (3) is a representative one in this aspect. The third aspect is concerned with clay mineralogy. Primary rock-forming minerals are weathered into very finegrained materials most of which had been believed amorphous until techniques now used in clay mineralogical reserch proved their crystalline state. Besides primary skeletal minerals, weathered materials are now known to consist mainly of both amorphous and crystalline secondary minerals, mostly appearing in minus two micron fraction and being objects of interest in clay mineralogy. Any study of rock weathering hitherto performed stood more or less on the three aspects above mentioned but, all the abovementioned seem to fall into the common tendency of dealing with materials as bulk mass. That is, they were concerned much more with fresh rock versus its weathered end products as a whole rather than with the process or mechanism by which fresh rock changed into weathered material. Thus, in the temperate to subtropical humid region, it is known that, for example, kaolinite minerals, gibbsite, and some of 2: 1 type clay minerals are found in weathered materials of rocks and further that Na, K. Mg. Ca, and Si are leached away, while H, Al, and Fe are concentrated in the weathered products, but it is scarcely understood from what constituent minerals of the parent fresh rock any of the clay minerals now present in the weathered material were derived. Though, a mineralogical or chemical tracing of the courses of decomposing minerals from their initial phases to subsequent modified phases was already pioneered by STEPHEN (8). such a trend is believed, by the author, to be a fourth aspect necessary for further thorough understanding of rock weathering. This way of study may also serve in bridging between experimental data on chemical reactions of specific minerals with reagent solutions on the one hand and observations of mineralogical interrelation of parent minerals to resultant weathering products on the other hand. Granitic rock offers a suitable situation for this fourth aspect because of the ease in picking up mineral grains at various weathering stages due to the coarseness of its constituent minerals and also to its unique mode of physical disintegration.  相似文献   

2.
本文应用岩土工程的试验方法及其分类标准,对崩岗发生区的风化壳岩土进行分析.结果表明:1)依据地质成因和风化程度,风化壳可划分为坡积层和风化岩土层;其中,风化岩土层又分为残积土层、全风化层、强风化层,并以粘、石英含量高、粉、长石含量高分别为各自的典型特征.2)依据土的颗粒组成、塑性指数、颗粒的矿物组成,可将风化壳的岩土分为六大类:粘性土、石英砾砂、粉土类、粉砂、长石砾砂和角砾;且对应的风化壳层次分别为坡积层,残积土层,全风化层,强风化层上部、强风化层中部、强风化层底部.3)坡积层与风化岩土层的性质变化大,界限明显;风化岩土层中各层次之间为渐变过渡关系.  相似文献   

3.
ANDESITE WEATHERING   总被引:1,自引:0,他引:1  
Petrographic and quantitative mineralogical analyses of two andesites and their saprolite (weathered rock) from the Cascade Range in California reveal a mineral weathering sequence in the rocks related to crystal size and composition and to weathering environment. Both the hypersthene andesite and the olivine andesite studied have been subjected to moderate to intensive leaching by acid solutions percolating through the superjacent soil bodies. Although the two parent rocks differ in chemical and mineralogical composition, their weathering to saprolite has followed a similar progression. During early stages of weathering of both rocks, relatively large hypersthene phenocrysts are most resistant. Following in decreasing order of resistance in both cases are plagioclase phenocrysts and finegrained mafic minerals, olivine, and glassy matrix material. Quartz is relatively stable in the earliest weathering stages, but it decreases rapidly with increased weathering. Free iron oxides and clay increase with increased weathering. Amorphous clay dominates the early weathering stages, but as weathering progresses, kaolin increases relative to amorphous clay.  相似文献   

4.
Chemical analyses and mineral norm calculations of a Paleudult, situated on a dolerite dike, revealed that the soil was not derived from the dolerite but from schistose material that is found in adjacent areas and which has been deposited over the dolerite.Thin-section micromorphology of the argillic horizon indicates that clay illuviation is now not an active process. With respect to the clay mobility the soil is paleosolic.The weathering of the quartz-dolerite rocks under the deposit of schistose material was studied by analyzing the spheroidal weathering layers of the rock. It appeared that most minerals of the rock dissolve completely and that only little clay has been formed during the early stages of weathering.  相似文献   

5.
Weathering of a calcalkaline granite was studied in the south of Galicia (NW Spain) where the average annual precipitation is 1400 mm and the average annual temperature is 12°C. The original rock contains perthitic K-feldspars, plagioclases with inclusions of muscovite and opaque minerals, quartz and chloritized biotite, with apatite, zircon, sphene and opaques as accessories. In the saprolite the structure of the rock is preserved, the plagioclases show up to grade 4 weathering and the biotites, between 2 and 3. Weathering in quartz and potassium feldspar crystals is manifested only by fracturing. Biotite changes following the parallel linear model and its weathering products are interstratified biotite–vermiculite and iron oxyhydroxides. The plagioclases change to a microgranular material by pseudomorphic transformation. This material, which substitutes the plagioclase, includes small clearly delimited units which retain zones with the optic characteristics of muscovite. X-ray diffraction analyses of microsamples show that they are formed by 1:1 diocthaedral phyllosilicate, smectite and a small quantity of mica. From these facts we concluded that smectite is formed inside the plagioclase crystals, and probably originates from the inclusions of muscovite contained in these crystals, as it is suggested by the microscopic study which shows the increase in volume which occurs when the crystals of muscovite are transformed.  相似文献   

6.
Gibbsite is usually considered as end product of weathering in tropical environments with potentially high leaching rates. However, there are also hints towards gibbsite formation in initial stages of weathering in different climates. This study reports on a systematic approach based on soil forming factors in order to research the conditions of gibbsite formation in northern Thailand highlands. Therefore, three major study sites were chosen, which differ with respect to parent rock, relief, climate and vegetation. The results show that gibbsite is common in soils of the area. Reasons for its occurrence in soils are manifold. It can be a heritage of the parent rock, a result of initial weathering under free draining conditions or an accumulation under intense chemical weathering caused by high rainfall. Especially the investigation in granite and gneiss areas with a high share of primary minerals indicates that gibbsite can be an early and direct transformation without intermediates from micas and feldspars if free drainage is assured. With progressing soil genesis clay formation reduces drainage and favours kaolinite formation. Only sites with extremely high rainfall and low evaporation (high elevations in northern Thailand) show again a dominance of gibbsite in the clay fraction throughout the whole soil profile.  相似文献   

7.
The authors compared the weathering of biotite on different morphological surfaces of the granitic outcroprs of Beni-Toufout (northeast Algeria), using the polarizing microscope, scanning electron microscope and microprobe, and mineralogical analysis.On the youngest surfaces, the optical and crystallographic characters of biotites are preserved, except on edges where folding appears accompanied by loss of pleochroism and birefringence and by ferruginisation. At this stage biotites are still composed of 10-Å minerals with interstratified ones at the edges.In the next stage of weathering, folding affects the whole mineral. Meta-halloysite appears at this stage.Then the weathering proceeds by developmental of “brushes” at ends of minerals and by development of folding, creating large cavities in the mineral, some filled with argillans and other with kaolinite. Mineralogical analysis shows an increase of kaolinite but 10-Å vermiculite and interstratified minerals are still present.The next step consists of a progressive increase of kaolinite and ferruginistation. Cavitation of minerals has become important, but small flakes of unweathered biotite can still be found.In the extreme stage of weathering, the mineral is colorless gray under crossed nicols; its flakes are outlined by ferruginisation. Internal cavities are partially filled with argillans. Mineralogical analysis shows only kaolinite and ferruginous compounds. In this extreme weathering, two subtypes of weathered biotites were observed, one characterized by total kaolinisation with a weak internal cavitation and the second by a very strong internal cavitation and a dominance of ferruginous compounds.The weathering of biotites in Beni-Toufout is intermediate between the temperate forms and those from the tropics. As in Europe, weathering is progressive with a vermiculite stage present but much less developed. As in the tropics, weathering leads to a kaolinisation of biotites.  相似文献   

8.
Chemical and mineral studies were carried out on weathered materials from six profiles developed on granites located in different areas of Brazil. Quartz and K-feldspar are the most abundant minerals overall. Kaolinite is the most common secondary mineral and is principally a feldspar weathering product. Mica breakdown is associated with smectite formation in semi-arid regions. In more humid regions mica weathering products include interlayered mica-vermiculite, vermiculite and kaolinite. Changes in the concentrations of Si, Al and K reflect the weathering behaviour of quartz, kaolinite, K-feldspar respectively, although K mobilities sometimes appear to be governed by processes related to the formation of secondary minerals. Ca and Mg are the first elements to exhibit depletion and their removal rates are very fast relative to K. P is also among the most mobile elements. Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba and Pb concentrations were measured. The first row transition metals are the most depleted. Rb and Sr are retained relative to Na, Mg, and Ca, and Ba accumulates as weathering proceeds. Y, Zr, Nb and Pb concentrations show little variation. The conclusion is that the factors controlling deep leaching are complex and the common notion that weathering rates are higher at lower latitudes should be reassessed.  相似文献   

9.
Weathering phenomena on the Campos do Jorda?o Plateau have been analysed in order to show their relationship to geomorphic compartition and morphogenetic dynamics.Correlations between weathering characteristics of surficial materials and geomorphic compartments are more conspicuous in saprolite than in soils.On the plateau highest areas gibbsite is the most important secondary mineral; at lower altitudes kaolinite prevails. Thus the spatial distribution of secondary minerals seems to out-line two weathering processes—alitization and monosialitization—defined and interpreted as two different stages within a general alitic weathering trend.On hillslopes, bedrock weathering degree reflects the intensity of morphogeneticactions. Hillslope deposit profiles frequently show degrees and sequences of weathering related to downslope mouvement processes rather than to incipient post-depositional pedogenetic activity.Red ferralitic materials overlaid by superficial podzolized ones point to the super-position of two pedogenetic trends linked to variations in environmental conditions.Ferralitic materials would be remnants of weathering processes active during the Tertiary at lower altitudes, prior to the plateau uplift.  相似文献   

10.
In the preceeding paper (1), the general character of the weathering profile of granodiorite indicated that physical weathering was prevailing in the lower two zones and chemical weathering was dominant in the upper zone of the profile. It was also shown that the weathering profile has been developed in a severe chemical environment under oxidizing condition such as that encountered in the subtropical or warm temperate humid climate. The chemical weathering of the constituent minerals of the parent rock and the materials produced from them in such a weathering environment will now be examined. In this paper, the stability or duration of the primary minerals will bestudied.  相似文献   

11.
Abstract

Twenty‐eight agriculturally important Delaware soils were cropped intensively in a greenhouse experiment. There was no consistent positive correlation between K uptake and percent sand, silt, clay, clay minerals of the clay fraction, K‐feld‐spars of the sand fraction or K‐feldspar weathering of the soils from the A horizon. Only potassium feldspar from the sand fraction and K‐feldspar weathering correlated with K uptake in the soils of the B horizon. This correlation was only significant at the latter part of the experiment when nonexchangeable K was probably the source of plant available K.  相似文献   

12.
The system SiO2 -AlOOH-Fe2 O3 -H2 O is used to show certain short-comings in the use of single minerals to index weathering stages. An alternative (analogous to the metamorphic facies concept) is proposed in which three stages are recognized, one of which can already be defined in terms of mineral assemblages, while the two earlier stages should eventually prove open to this treatment.  相似文献   

13.
贡嘎山海螺沟冰川退缩区土壤序列矿物组成变化   总被引:1,自引:1,他引:1  
阐明土壤中矿物随时间变化的机制是理解矿物风化和土壤发育的基础。利用X射线衍射法对贡嘎山海螺沟冰川退缩区土壤矿物组成随成土作用时间变化进行了定量分析。结果表明,冰川退缩区成土母质的矿物组成同质性较高,以硅酸盐矿物为主(约90%),包括:斜长石(28.5%)、石英(24.5%)、黑云母、钾长石、普通辉石、角闪石、绿泥石、蛭石;并有少量碳酸盐矿物,如方解石(8%)、白云石(2.3%);以及磷酸盐矿物磷灰石(2.1%)。退缩区土壤的矿物组成总体呈新发育土壤特征,随着成土年龄的增加,方解石逐渐被风化成为草酸钙石,角闪石、黑云母、磷灰石和绿泥石含量逐渐降低,长英质矿物的相对含量有所增加。成土作用中矿物组成的变化受植被原生演替和土壤p H的影响,快速发育的植被导致土壤p H迅速降低,风化程度增强。  相似文献   

14.
The clay mineralogy of thirty-two profiles located mainly in the Vale of Strathmore and developed on glacial till derived from Lower Red Sandstone sediments and lavas has been investigated by X-ray diffraction. The soils were selected so that the parent material was related predominantly to one of the rock types common in the Lower Old Red Sandstone succession—namely, marl, sandstone, lava, or conglomerate. Comparison of the < 1.4μm fractions separated from fresh rock samples with those separated from the C horizons of the soils clearly established the dominant influence of parent rock on the soil-clay mineralogy. The clay minerals inherited by the soil often include unusual trioctahedral expansible minerals such as saponite, interstratified vermiculite-chlorite, and smectite-vermiculite, as well as more common types like mica, montmorillonite, and chlorite. Kaolinite is also found but it is not certain that it is only of inherited origin. Weathering of the clays during soil formation brings about complete degradation of the expansible trioctahedral minerals, a process usually well advanced in the B or even at the top of the C horizon, and vermiculitization of mica. The latter process occurs mainly in the A horizon, with concomitant precipitation of interlayer aquohydroxy-aluminium ions thereby forming a vermiculite-chlorite intergrade. Chlorite and kaolinite appear to be little affected by weathering. The weathering transformations are most pronounced in freely drained acid soils (pH < s) and are at a minimum in poorly drained soils and where the pH remains above 6. The susceptibility to weathering of the trioctahedral expansible minerals results in relatively high values for exchangeable magnesium at the base of the profile.  相似文献   

15.
Texture is one of the major criterions in soil classification, probably because it has a decisive influence on soil properties. This is particularly true for volcanic ash soils. Most ashes are largely composed of sand and silt particles with little clay (11, 15). The ash weathers very rapidly (1), and clay site particles less than 2 microns in diameter occur even within a few months, as shown by Ishii at the authors' laboratory. Those clay size particles produced in the early stage of weathering are slightly weathered ones (2), and are still subject to rapid weathering, losing bases and silica under humid and well drained conditions. In consequence the clay fraction of volcanic ash soils is composed of particles which vary in degree of weathering from slightly altered glass and feldspar to true clay mineraloids and minerals. The clay fraction of younger soils as a whole is less and that of older ones is more weathered. Weathering brings a remarkable change in the properties of volcanic ash soils; for example, an inerease in soil acidity, lowering of base saturation and bulk density, or accumlation of organic matter. These changes must exert a great influence on soil fertility directly or indirectly.  相似文献   

16.
QUANTIFICATION OF WEATHERING, SOIL GEOCHEMISTRY AND SOIL FERTILITY   总被引:2,自引:0,他引:2  
Continental chemical weathering is discussed with reference to a diagram, in which the ratio (CaO + Na2O + K2O)/(Al2O3+ CaO + Na2O + K2O) is plotted against the ratio (SiO2+ CaO + Na2O + K2O)/(Al2O3+ SiO2+ Na2O + K2O). The former ratio is a measure of the degree of feldspar breakdown, which is accompanied by the formation of secondary minerals (illite, smectite, etc.). The second ratio is a measure of the enrichment during weathering of Al, Si oxide phases such as kaolinite, quartz and gibbsite. The application of the diagram to a series of global examples leads to the statement: 1) Chemical weathering is the principal process by which continental surfaces are modified. 2) The extent of chemical weathering is correlated with the age of continental surfaces. 3) Global agricultural productivity is correlated with geologically recent additions of fresh rock debris by processes of volcanism, glaciation or alluviation.  相似文献   

17.
The clay minerals of more than 200 soil samples collected from various sites of Fujian Province were studied by the X-ray diffraction method and transmission electron microscopy to study their distribution and evolution.Montmorillonite was found in coastal solonchak,paddy soils derived from marine deposit,lacustrine deposit and river deposit,and some lateritic red soil,red soil and yellow soil with a low weathering degree.Chlorite existed mainly in coastal solonchak and paddy soil developed from marine deposit.1.4nm intergradient mineral appeared frequently in yellow soil,red soil and lateritic red soil.The content of 1.4nm intergradient mineral increased with the decrease of weathering degree from lateritic red soil to red soil to yellow soil.Hydrous micas were more in coastal solonchak,paddy soils derived from marine deposit,lacustrine deposit and river deposit.and puple soil from purple shale than in other soils.Kaolinte was the most important clay mineral in the soils iun this province.The higher the soil weathering degree,the more the kaolinite existed.From yellow soil to red soil to lateritic red soil,kaolinite increased gradually,Kaolinite was the predominant clay mineral accompanied by few other minerals in typical lateritic red soil. Tubular halloysite was a widespread clay mineral in soils of Fujian Province with varying quantities.The soil derived from the paent rocks rich in feldspar contained more tubular halloysite.Spheroidal halloysite was found in a red soil and a paddy soil developed from olivine basalt gibbsite in the soils in this district was largely“primary gibbsite” which formed in the early weathering stage.Gibbsite decreased with the increase of weathering degree from yellow soil to red soil to lateritic red soil.Goethite also decreased in the same sequence while hematite increased.  相似文献   

18.
Since the Indonesian archipelago is part of the very active and dynamic Pacific Ring of Fires, the volcanic eruptions occur from time to time. Immediately after the eruption of Mount Talang in West Sumatra (April 12, 2005), volcanic ashes, both unleached and leached were collected. The deposits from Mt. Talang were andesitic to basaltic in composition. The volcanic ash consisted of volcanic glass, plagioclase feldspar in various proportions, orthopyroxene, clinopyroxene, olivine, amphibole, titanomagnetite. We conducted the total elemental analysis of the bulk samples of the volcanic ash. The contents of major, trace and rare elements as well as heavy metals were determined by wet chemical methods and x-ray fluorescence (XRF) analyses. Although the volcanic ash of Mt. Talang are still very new, an evaluation of the geochemical weathering indices was performed with the objective of showing the volcanic ash condition at the early stage of weathering. Eight weathering indices were evaluated. The results showed that the unleached volcanic ash has higher Ruxton Ratio (R), Weathering Index of Parker (WIP), Product of Weathering Index (PWI) and Silica Titanium Index (STI) values compared to the leached ash, while the leached ash exhibited higher Chemical Index of Alteration (CIA), Chemical Index of Weathering (CIW), Vogt’s Residual Index (VO), and Plagioclase Index of Alteration (PIA). These weathering indices can be used to quantify the condition of the volcanic ashes at the initial stage of weathering, to evaluate their fertility, to provide a better understanding of element mobility during weathering, and predict the source of soil nutrients as well as determine the products of primary minerals alteration.  相似文献   

19.
A Xeralf on feldspathic sandstone was sampled from a hillslope in the Mount Lofty Ranges in order to study its genesis and, in particular, the origin of the strong texture contrast. Micromorphological study demonstrated that the clay present in void argillans and papules in the B2 horizon accounted for only a small amount of the clay present. Elemental analysis of the whole soil (< 2 mm) and sand, silt and clay fractions showed that there had been considerable weathering of both quartz and microcline, which were the dominant minerals present. Kaolinite is the dominant clay mineral weathering product. Illite appears to be forming from vermiculite in the A horizon. Using zircon as an internal standard, it was shown that elemental losses of SiO2 and reductions in weight and volume were similar in A and B horizons. Losses of aluminium and potassium were greatest in the A horizon, least in the B3. There has been an absolute increase in the amount of iron. A possible source is iron from heavy mineral bands upslope. It was concluded from the similarity of the quartz particle-size distributions of the A2, B2 and B3 horizons that the intensity of weathering of quartz was the same in A and B horizons. In the case of feldspar (mostly microcline), there is a greater proportion of feldspar in the fine sand and silt fractions of the A2 horizon than in the B horizon. Weathering of feldspar is greatest in the A horizon. The texture profile is principally a function of greater lateral loss of clay from the A horizons compared to the B horizons.  相似文献   

20.
为了研究微地形下紫色土的矿物组成和土壤酸度之间的关系,采集了重庆合川丘陵地区典型的紫色土壤,通过电渗析模拟酸化,并通过X射线衍射光谱分析电渗析前后的矿物组成以及酸度变化。结果表明:不同地形部位的紫色土随着地形部位的降低,土壤原生矿物的比重逐渐降低,土壤的发育程度越来越高。紫色母岩及其发育的土壤pH大小关系为母岩石骨子土半沙半泥土豆瓣泥。pH变化与土壤中的方解石、钠长石和钾长石等矿物的含量有紧密关系。电渗析模拟土壤酸化后发现,石骨子土和半沙半泥土的pH分别降低了4.3,3.8个单位,同时土壤原生矿物分解风化,表明土壤原生矿物(如长石类矿物)可以缓冲土壤的酸化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号