首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two varieties of lentil were grown in tanks filled with clay, and were irrigated with waters containing three different levels of salinity. Salinity affected the germination and survival of the seedlings; the pre-dawn leaf-water potential and maximum osmotic adjustment; the development of leaf area, dry matter and number of flowers, and, finally, the yield.Lentil has a high water-use efficiency, about 2 kg m−3 under non-saline conditions, much higher than legumes such as broadbean and soybean. The crop, however, is much more salt sensitive and can only be grown on non-saline soils. At an ECe of 2 dS/m, the limit between non-saline and slightly saline soils, the yield reduction is about 20% and at an ECe of 3 dS/m it is 90–100%.The salt tolerance classification, made after a greenhouse experiment with nutritive solutions, was not confirmed by the experiments reported here.  相似文献   

2.
Two varieties of chickpea (Cicer arietinum L.) and faba bean (Vicia faba), differing in drought tolerance according to the classification of the International Center for Agronomic Research in Dry Areas (ICARDA), were irrigated with waters of three different salinity levels in a lysimeter experiment to analyse their salt tolerance.The drought-sensitive varieties are more salt tolerant than the drought-tolerant varieties. Under saline conditions, the drought-sensitive varieties show a much higher yield up to a salinity threshold, corresponding with an electrical conductivity (ECe) between 2.5 and 3 dS/m for chickpea and between 5.5 and 6 dS/m for faba bean.The drought-sensitive varieties are able to improve or maintain the water-use efficiency when irrigated with saline water. This ability can be ascribed to
  • •the larger biomass production owing to the later senescence, which allows a better utilization of the irrigation water;
  • •the late flowering of chickpea.
  相似文献   

3.
A field lysimeter study was conducted to investigate the effect of initial soil salinity and salinity level of brackish subirrigation water on tuber weight and tuber size of three potato (Solanum tuberosum L.) cultivars (Kennebec, Norland and Russet Burbank) under simulated arid conditions. Both saline and non-saline initial soil conditions were simulated in a total of 36 lysimeters. Eighteen lysimeters were flushed with fresh water (0.2 dS/m), while the remaining 18 lysimeters were flushed with brackish water (2 dS/m). For each soil condition, two subirrigation water concentrations, 1 and 9 dS/m, were used in nine lysimeters each. For each subirrigation water treatment, three potato cultivars were grown. In all lysimeters, water table was maintained at 0.4 m from the soil surface. Arid conditions were simulated by covering the lysimeter top with plastic mulch, allowing the potato shoots to grow through a cut in the mulch. The average root zone salinities (ECw) were found to be 1.2 and 1.5 dS/m in non-saline lysimeters subirrigated with 1 and 9 dS/m waters, respectively. The corresponding salinities were 3.2 and 3.7 dS/m in the saline lysimeters. Across cultivars, there was no significant effect of either initial soil salinity or subirrigation water salinity on total tuber weight. However, the weight of Grade A tubers was higher in non-saline soil than in saline soil. Kennebec and Russet Burbank Grade A tuber weights were not affected by the initial soil salinity. On the contrary, a significant reduction in Grade A and total tuber weight under initially saline soil was evident for the Norland cultivar.  相似文献   

4.
Eight-year-old Murcott orange trees grown in greenhouse lysimeters filled with sandy soil were subjected to irrigation with saline water to investigate the influence of salinity on daily evapotranspiration (ET). The study was conducted in Japan from 1 August to 15 September 2000. The study duration was divided into three periods of about 2 weeks each. In period I, all lysimeters planted with a tree were irrigated with 60 mm of non-saline water at the water content of 70% of field capacity (FC). Salinity treatments for period II started on 14 August. The treatments during period II were as follows: Lysimeter 1 (L1) had 32 mm non-saline water with an electrical conductivity (ECI) of 1.0 dS/m applied. At the same time Lysimeter 2 (L2) had 32 mm of saline water with an ECI of 8.6 dS/m applied when the water content decreased to 70% of FC. Lysimeter 3 (L3) had 16 mm saline water (ECI=8.6 dS/m) applied at 85% of FC. The irrigation amounts during period II were equal to those corresponding to 1.2 times of water required to reach FC. Treatments in period III were the same as in period I.Daily ET was similar for all weighing lysimeters during period I. The average relative ET for L2 and L3 with respect to L1 (L2/L1 and L3/L1) were similar during this period, with a mean value of 0.99. During period II, ET from L1 was consistently higher than that from L2 and L3. In addition, L3 with a higher irrigation frequency because of irrigation at higher soil water content resulted in higher ET than L2. The average relative ET of period II was 0.71 and 0.88 for both L2 and L3. During the last half of period III, reductions occurred in the ET differences between the saline treatments (L2 and L3) and non-saline control (L1).Evaporation rates from soil did not exceed 0.7 mm per day. Transpiration rates from L1, L2 and L3 during period II varied between 6.3 and 3.1 mm per day, 4.5 and 2.2 mm per day, and 5.8 and 3.0 mm per day, respectively. The results reflected a tangible difference of water extraction by roots from individual soil layers. Maximum water uptake by these trees was observed at layer of 30–60 cm. Nevertheless, no clear differences in water extraction pattern between trees were observed.Approximately, 95% of drainage occurred during the first 2 days following irrigation. The electrical conductivity of soil water (ECS) and the electrical conductivity of drainage water (ECD) for the saline water treatments (L2 and L3), compared to the control (L1) were significantly different during period II. ECS values were 2–5 times higher in saline treatments compared to the control treatment. After irrigating trees with saline water, ECS increased from 5 to 14 and 16 dS/m in L2 and L3, respectively. Similarly, in both saline treatments, ECD values were greatly increased after irrigation. During period III, ECD values increased from 5 to 8 dS/m in L2, and from 3 to 11 dS/m in L3. By contrast, ECS declined from 14 to 5 dS/m in L2, and from 16 to 3 dS/m in L3 over the same period.  相似文献   

5.
Salt-tolerant crops can be grown with saline water from tile drains and shallow wells as a practical strategy to manage salts and sustain agricultural production in the San Joaquin Valley (SJV) of California. Safflower (Carthamus tinctorius L.) was grown in previously salinized plots that varied in average electrical conductivity (ECe) from 1.8 to 7.2 dS m−1 (0–2.7 m depth) and irrigated with either high quality (ECi<1 dS m−1) or saline (ECi=6.7 dS m−1) water. One response of safflower to increasing root zone salinity was decreased water use and root growth. Plants in less saline plots recovered more water on average (515 mm) and at a greater depth than in more salinized plots (435 mm). With greater effective salinity, drainage increased with equivalent water application rates. Seed yield was not correlated with consumptive water use over the range of 400–580 mm. Total biomass and plant height at harvest were proportional to water use over the same range. Safflower tolerated greater levels of salinity than previously reported. Low temperatures and higher than average relative humidity in spring likely moderated the water use of safflower grown under saline conditions.  相似文献   

6.
Summary The salt tolerance of irrigated Jerusalem artichokes (Helianthus tuberosus L.) was assessed in terms of biomass of both above ground parts and tubers in greenhouse and field trials. Salinity of irrigation water ranged from 0.7 to 12 dS m–1 in the greenhouse trial and from 0.2 to 10 dS m–1 in the field trial. Yield response of the dry matter of tubers of greenhouse-grown plants and of above ground parts of greenhouse-grown and fieldgrown plants, fell within the moderately tolerant category of Maas and Hoffman (1977). However, tuber yields in the field on a heavy clay loam fell within the moderately sensitive category, described by the equation, Y = 100 – 9.62 (ECe-0.4), where Y = yield (t ha–1) as a % of that under non-saline conditions and ECe = electrical conductivity of saturation extract in the rootzone (0–30 cm). The Cl concentration of leaves increased linearly with increasing external salinity and increased from tubers to stems to leaves. In contrast, leaf Na remained low except at the highest salinities, despite consistently higher stem Na; indicating some mechanism for restriction of leaf Na up to a certain external salinity.  相似文献   

7.
The physiological behavior and yield response of maize under irrigation with saline water was studied in the laboratory and in the field. In the laboratory, the germination rate decreased only when the electrical conductivity (EC) of the substrate solution was above 17 dS/m. The osmotic potential of germinating maize seedlings decreased in proportion to the decrease in osmotic potential of the substrate.In the field, two maize cultivars (a field maize and a sweet maize) were irrigated alternately with saline (11 days from sowing), fresh (21 days from emergence), and saline (from day 33 to harvest) water and compared with maize irrigated with saline water continuously throughout the season. Four levels of irrigation water salinity were used (ECi = 1.2, 4.5, 7.0 and 10.5 dS/m).In the field no osmotic adjustment by the leaf sheaths of plants in response to salinity was observed. The osmotic potential of corn leaf sheaths (π) decreased with ontogeny in all treatments. The midday leaf water potential (ψL) in maize irrigated with 10.5 dS/m water was 0.75 MPa lower than in plants irrigated with 1.2 dS/m water.In the continuous treatment grain yield was reduced significantly with each increase in salt concentration, and the relationship between relative yield (y) and ECi could be expressed as y = 100?8.7 (ECi-0.84). With alternating irrigation and 7.0 dS/m treatment the grain yield was the same as in the low EC treatment (6.98 kg/m2).  相似文献   

8.
In irrigated agriculture, the production of biomass and marketable yield depend largely on the quantity and salinity of the irrigation water. The sensitivity of field-grown muskmelon (Cucumis melo L. cv. Galia) to water deficit was compared, using non-saline (ECi= 1.2 dS m–1) and saline (ECi=6.3 dS m–1) water. Drip irrigation was applied at 2-day intervals at seven different water application rates for each water quality, including a late water-stress treatment. Neutron scattering measurements showed that the soil layers below the root zone remained dry throughout the experiment, indicating negligible deep percolation. Thus, the sum of the seasonal amount of applied water and the change in soil moisture approximated the cumulative evapotranspiration (ET). Gradual buildup of water and salt stresses resulted in small treatment effects on the size of the vegetative cover and large effects on leaf deterioration and fruit production. Crop responses to salinity may result from an osmotic component of the soil water potential or from other salt effects on the crop physiology. Relating plant data to cumulative ET allowed a distinction to be made between the effect on water availability and specific salinity effects. The relation between fruit fresh weight and ET was not sensitive to ECi. The slopes for fruit dry weights were also insensitive to ECi but the intercept was larger for saline treatments. At any given ET saline water increased fruit number, increased fruit dry matter content and decreased fruit netting, in comparison with non-saline water. The combination of salinity and soil-water deficit was detrimental to fruit quality. Saline soil-water deficit decreased the percentage of marketable (netted) fruit and caused an early end to the period of marketable fruit production. Non-saline soil-water deficit increased the percentage of marketable fruit and had no effect on the duration of the production period. Late non-saline water stress caused a pronounced increase in the percentage of marketable fruit.  相似文献   

9.
Summary The salt tolerance of mature Santa Rosa plum trees was assessed on 20-year-old trees grown in the San Joaquin Valley of California. The experimental design consisted of six levels of irrigation water salinity (electrical conductivities of 0.3 to 8 dS/m) replicated five times with each replication consisting of ten trees. Salinity treatments imposed in March 1984 did not influence tree yields harvested in June 1984. In 1985, the second year of treatments, yield from the highest salt treatment (electrical conductivity of irrigation water, EC i , of 8 dS/m) was reduced by half; the number of fruit harvested was reduced 40%, and fruit size was reduced significantly. Foliar damage was so severe by the end of 1985 that nonsaline water was applied to the two highest salt treatments (EC i = 6 and 8 dS/m) in an attempt to restore tree vigor. In 1986 salt effects had become progressively worse on the continuing saline treatments. A linear piece-wise salt tolerance curve is presented for soil salinity values, expressed as the electrical conductivity of saturated extracts (EC e ) integrated to a soil depth of 1.2 m over a 2-year period. The salt tolerance threshold for relative yield (Y r ) based on 3 years of data was 2.6 dS/m and yield reduction at salinity levels beyond the threshold was 31% per dS/m (Y ir=100 – 31 [EC e – 2.6]j). Significant foliar damage occurred when leaf chloride concentrations surpassed 200 mmol/kg of leaf dry weight (0.7%). Sodium concentrations in the leaves remained below 10 mmol/kg (0.02%) until foliar damage became severe. This suggests that chloride was the dominant ion causing foliar damage.  相似文献   

10.
The effect of irrigation with saline (0.1-7.6 dS m-1) water on the growth of six cultivars of lucerne was assessed over four irrigation seasons at Tatura, Victoria, Australia. Measurements made in the study included shoot dry matter production, shoot ion concentrations, flowering incidence, root distribution and soil salinity and sodicity levels. After four seasons, soil ECe levels had risen to 4.2 dS m-1 at the beginning of the irrigation season and this increased to around 6 dS m-1 at the end of the season for the highest salinity irrigation treatment (7.6 dS m-1). The soils in the two most saline irrigation treatments also became sodic (SAR1:5>3) by the third and fourth seasons. By the second season, cultivars differed significantly in salt tolerance as defined by the rate of decline in dry matter production. The cultivars CUF 101 and Validor were consistently the most salt-tolerant cultivars, although cv. Southern Special produced the greatest amount of dry matter over all salinity treatments. Root densities at depths from 0 to 60 cm were greater under saline (2.5 and 7.6 dS m-1) than under non-saline conditions (0.1 dS m-1). Flower production was increased by salinity. It was concluded that, despite the presence of intraspecific variation for salt tolerance, it is detrimental to irrigate lucerne with water at electrical conductivities greater than 2.5 dS m-1 on a red-brown earth in southern Australia.  相似文献   

11.
Summary Experiments were conducted in lysimeters (1985) and field plots (1986) to evaluate changes in soil moisture and salinity status following irrigations with different blends of a saline water, SW (ECiw = 6.4 dS/m) and non-saline water, NSW (0.3 dS/m) and their effects on the growth and yield of Mungbean (Vigna radiata L. Wilczek). Normalised to the yield of the treatment receiving NSW (100%), relative seed yields (RY) declined to 73, 11 and 3%, respectively, for the treatments receiving SWNSW blends of 12 (2.5 dS/m), 21 (4.7 dS/m) and SW as such. RY increased to 64 and 74% when NSW was substituted for presowing irrigation and 21 SWNSW blend and SW, respectively were used for postsowing irrigations. Due to moderating effect of rainfall (9.8 cm) during the growing season of 1986, valus of RY obtained with 12 and 21 SWNSW blends were 81 and 42% and increased to 96 and 82% when these waters were applied after presowing irrigation with NSW. Irrigation at presowing with non-saline water leached the salts of shallow depths leading to better germination and initial growth. In addition, plants were able to extract greater amounts of water even from deeper soil layers. The RY of Mungbean was related to the weighted time averaged salinity of the 0–120 cm soil depth (ECe) by RY = 100-20.7 (ECe-1.8). The study indicated that applying NSW for presowing irrigation to Mungbean is more beneficial than using it after blending with saline water.  相似文献   

12.
The drained and irrigated marshes in south-west Spain are formed on soils of alluvial origin from the ancient Guadalquivir river estuary. The most important characteristics of these soils are the high clay content (about 70%), high salinity, and a shallow, extremely saline, water table. The reclaimed area near Lebrija, called Sector B-XII (about 15,000 ha), has been under cultivation since 1978. Some years, however, water supply for irrigation is limited due to drought periods. The objective of this work was to evaluate the effects of irrigation with high and moderately saline waters on soil properties and growth and yield of cotton and sugar beet crops. The experiments were carried out during 1997 and 1998 in a farm plot of 12.5 ha (250 m×500 m) in which a drainage system had been installed, consisting of cylindrical ceramic sections (0.3 m long) forming pipes 250 m long, buried at a depth of 1 m and spaced at intervals of 10 m. These drains discharge into a collecting channel perpendicular to the drains. Two subplots of 0.5 ha (20 m×250 m) each were selected. In 1997 cotton was growing in both subplots, and irrigation was applied by furrows. One subplot (A) was irrigated with fresh water (0.9 dS m−1) during the whole season, while in the other subplot (B) one of the irrigations (at flowering stage) was with water of high salinity (22.7 dS m−1). During 1998 both subplots were cropped with sugar beet. Subplot A was irrigated with fresh water (1.7 dS m−1) during the whole season, while in subplot B two of the irrigations were with moderately saline water (5.9–7.0 dS m−1). Several measurement sites were established in each subplot. Water content profile, tensiometric profile, water table level, drainage water flow, soil salinity, and crop development and yield were monitored. The results showed that after the irrigation with high saline water (subplot B) in 1997 (cotton), the soil salinity increased. This increase was more noticeable in the top layer (0–0.3 m depth). In contrast, for the same dates, the soil of subplot A showed no changes. After five irrigations with fresh water, the salinity of the soil in the subplot B reached values similar to those before the application of saline water. In 1998 (sugar beet) the application of moderately saline water in subplot B also increased soil salinity, but this increase was lower than in 1997. The irrigation with high saline water affected crop development. Cotton growth was reduced in comparison with that in the subplot irrigated only with fresh water. Despite this negative effect on crop development, the crop yield was the same as in the subplot A. Sugar beet development did not show differences between subplots, but yield was higher in subplot B than in subplot A.  相似文献   

13.
A validated agro-hydrological model soil water atmosphere plant (SWAP) was applied to formulate guidelines for irrigation planning in cotton–wheat crop rotation using saline ground water as such and in alternation with canal water for sustainable crop production. Six ground water qualities (4, 6, 8, 10, 12 and 14 dS/m), four irrigation schedules with different irrigation depths (4, 6, 8 and 10  cm) and two soil types (sandy loam and loamy sand) were considered for each simulation. The impact of the each irrigation scenario on crop performance, and salinization/desalinisation processes occurring in the soil profile (0–2 m) was evaluated through Water Management Response Indicators (WMRIs). The criterion adopted for sustainable crop production was a minimum of pre-specified values of ETrel (≥0.75 and ≥0.65 for wheat and cotton, respectively) at the end of the 5th year of simulation corresponding to minimum deep percolation loss of applied water. The extended simulation study revealed that it was possible to use the saline water upto 14 dS/m alternatively with canal water for cotton–wheat rotation in both sandy loam and loamy sand soils. In all situations pre-sown irrigation must be accomplished with canal water (0.3–0.4 dS/m). Also when the quality of ground water deteriorates beyond 10 dS/m, it was suggested to use groundwater for post-sown irrigations alternately with canal water. Generally, percolation losses increased with the increase in level of salinity of ground water to account for leaching and thus maintain a favourable salt balance in the root zone to achieve pre-specified values of ETrel.  相似文献   

14.
Seven varieties of durum wheat (Triticum turgidum), provided by ICARDA, were tested in a greenhouse experiment for their salt tolerance. Afterwards two varieties, differing in salt tolerance, were irrigated with waters of three different salinity levels in a lysimeter experiment to analyse their salt tolerance.The characteristics of the salt tolerant variety compared to the salt sensitive variety are:
  • -a shorter growing season and earlier senescence;
  • -a higher pre-dawn leaf water potential;
  • -a stronger osmotic adjustment;
  • -a better maintenance of the number of productive stems per plant.
Salt tolerance of durum wheat corresponds with drought tolerance because the tolerance is caused by earlier senescence and stronger osmotic adjustment, both reducing the transpiration of the plant.  相似文献   

15.
Summary Field studies were conducted for a period of ten years (1974 to 1984) on Typic Ustochrept to determine the sustained effects of saline irrigation water electrical conductivity (EC iw ) 3.2 dS/m, sodium adsorption ratio (SAR) 21 (mmol/1)1/2 and residual sodium carbonate (RSC) 4me/1, on the build up of salinity in the soil profile and yield of crops grown under fixed rice-wheat and maize/millet-wheat rotations. Saline waters were continuously used with and without the addition of gypsum (at the rate needed to reduce RSC to zero) applied at each irrigation. In maize/millet-wheat rotation, two additional treatments viz. (i) irrigation with 50% extra water over and above the normal 6 cm irrigation, and (ii) irrigation with good water and saline water alternately, were also kept. The results showed that salinity increased rapidly in the profile during the initial years but after five years (1979–1984) the average soluble salt concentration in 0–90 cm soil profile did not appreciably vary and the mean EC e values under saline water treatment remained almost similar to EC iw , under both the crop rotations.Saline water irrigation increased pH and Na saturation of the soil, reduced water infiltration rate and decreased yields of maize, rice and wheat. The differences in the build up of salinity and ESP of the soil under the two cropping sequences seemed to be related with the differences in leaching that occurred under rice-wheat and maize/millet-wheat rotations. Application of gypsum increased the removal of Na from the profile, appreciably decreased the pH and Na saturation and improved water infiltration rate and raised crop yields. Application of non-saline and saline waters alternately was found to be a useful practice but irrigation with 50% extra water to meet the leaching requirement did not control salinity and hence lowered crop yields.  相似文献   

16.
Saline water has been included as an important substitutable resource for fresh water in agricultural irrigation in many fresh water scarce regions. In order to make good use of saline water for agricultural irrigation in North China, a semi-humid area, a 3-year field experiment was carried out to study the possibility of using saline water for supplement irrigation of cucumber. Saline water was applied via mulched drip irrigation. The average electrical conductivity of irrigation water (ECiw) was 1.1, 2.2, 2.9, 3.5 and 4.2 dS/m in 2003 and 2004, and 1.1, 2.2, 3.5, 4.2 and 4.9 dS/m in 2005. Throughout cucumber-growing season, the soil matric potential at 0.2 m depth immediately under drip emitter was kept higher than −20 kPa and saline water was applied after cucumber seedling stage. The experimental results revealed that cucumber fruit number per plant and yield decreased by 5.7% per unit increase in ECiw. The maximum yield loss was around 25% for ECiw of 4.9 dS/m, compared with 1.1 dS/m. Cucumber seasonal accumulative water use decreased linearly over the range of 1.5-6.9% per unit increase in ECiw. As to the average root zone ECe (electrical conductivity of saturated paste extract), cucumber yield and water use decreased by 10.8 and 10.3% for each unit of ECe increase in the root zone (within 40 cm away from emitter and 40 cm depths), respectively. After 3 years irrigation with saline water, there was no obvious tendency for ECe to increase in the soil profile of 0-90 cm depths. So in North China, or similar semi-humid area, when there is no enough fresh water for irrigation, saline water up to 4.9 dS/m can be used to irrigate field culture cucumbers at the expense of some yield loss.  相似文献   

17.
The analysis of irrigation and drainage management and their effects on the loading of salts is important for the control of on-site and off-site salinity effects of irrigated agriculture in semi-arid areas. We evaluated the irrigation management and performed the hydrosalinity balance in the D-XI hydrological basin of the Monegros II system (Aragón, Spain) by measuring or estimating the volume, salt concentration and salt mass in the water inputs (irrigation, precipitation and Canal seepage) and outputs (evapotranspiration and drainage) during the period June 1997–September 1998. This area is irrigated by solid-set sprinklers and center pivots, and corn and alfalfa account for 90% of the 470 ha irrigated land. The soils are low in salts (only 10% of the irrigated land is salt-affected), but shallow (<2 m) and impervious lutites high in salts (average ECe=10.8 dS m−1) and sodium (average SARe=20 (meq l−1)0.5) are present in about 30% of the study area.The global irrigation efficiency was high (Seasonal Irrigation Performance Index=92%), although the precipitation events were not sufficiently incorporated in the scheduling of irrigation and the low irrigation efficiencies (60%) obtained at the beginning of the irrigated season could be improved by minimising the large post-planting irrigation depths given to corn to promote its emergence. The salinity of the irrigation water was low (EC=0.36 dS m−1), but the drainage waters were saline (EC=7.5 dS m−1) and sodic (SAR=10.3 (meq l−1)0.5) (average values for the 1998 hydrological year) due to the dissolution and transport of the salts present in the lutites. The discharge salt loading was linearly correlated (P<0.001) with the volume of drainage. The slope of the daily mass of salts in the drainage waters versus the daily volume of drainage increased at a rate 25% higher in 1997 (7.6 kg m−3) than in 1998 (6.1 kg m−3) due to the higher precipitation in 1997 and the subsequent rising of the saline watertables in equilibrium with the saline lutites. Drainage volumes depended (P<0.001) on irrigation volumes and were very low (194 mm for the 1998 hydrological year), whereas the salt loading was moderate (13.5 Mg ha−1 for the 1998 hydrological year) taking into account the vast amount of salts stored within the lutites. We concluded that the efficient irrigation and the low salinity of the irrigation water in the study area allowed for a reasonable control of the salt loading conveyed by the irrigation return flows without compromising the salinization of the soil’s root-zone.  相似文献   

18.
Salt tolerance of mature Williams Bon Cretien pear trees was assessed in a field trial on a duplex, slowly permeable clay loam. The trees were irrigated with a range of salinities; electrical conductivity of irrigation water (ECw) of 0.2 to 1.4 dS/m by flood for seven years or 0.2 to 2.1 dS/m by microjet sprinklers for nine years. Water-table levels were maintained below 3 m by a groundwater pump. Yield and leaf ion content were assessed during the treatment period. Aspects of growth and physiology were monitored in the 0.2 and 2.1 dS/m microjet treatments during the seventh irrigation season.Soil profile salinities varied between 3.0 and 4.3 dS/m for the most saline flood treatment and from 1.5 to 2.6 dS/m for the most saline microjet treatment. Soil sodicity (sodium absorption ratio) increased during the experiment, reaching a maximum of 9 in the most saline treatments. The salinity treatments caused reduced yields after seven years. In the most saline treatment (ECw = 2.1 dS/m, microjet-irrigated), yield decreased to about 60 and 50% of the control in the eighth and ninth years, respectively, and 40% of trees were dead in the ninth year. Leaf ion concentrations (in January) of the most saline treatment were at excess levels (>0.1% Cl and >0.02% Na) from 1982 to 1990. There were significant (P<0.01) negative linear relationships between yield in 1990 and leaf Na and Cl, measured both in 1990 and in 1989. During the seventh season of saline irrigation, lateral shoot growth was reduced, leaves and fruit were smaller and leaf fall was earlier in the 2.1 dS/m treatment compared with the control. Dawn and midday water potential and osmotic potential were not significantly affected by saline irrigation. Midday CO2-assimilation rates (A) and leaf conductance to water vapour diffusion (g) were similar for 2.1 dS/m irrigated and control trees, however there was a trend towards a reduction in A and g of these salt-treated trees late in the irrigation season when leaf Na and Cl had increased to 250 and 240 mM (tissue water basis) respectively.  相似文献   

19.
Drainage water salinity data from 71 public deep tubewells and 79 pipe drainage units near Faisalabad, Pakistan, were studied. Drainage water salinity of the tubewells and the pipe drains remained approximately constant with time. This was attributed to the deep, highly conductive, unconfined aquifer underlying the area, which facilitates lateral groundwater inflow into the drained areas. Tubewells alongside surface drains showed average electrical conductivity, sodium adsorption ratio, and residual sodium carbonate values of 3.2 dS m−1, 17.2 (meq l−1)0.5, and 6.4 meq l−1, respectively. For pipe drains, which are situated in areas with comparable conditions, the corresponding values were 2.5 dS m−1, 12.2 (meq l−1)0.5, and 3.7 meq l−1, respectively. Tubewells have an inferior drainage water quality because they attract water from greater depths, where the water is more saline.  相似文献   

20.
Pistachio can be grown in the central desert of Islamic Republic (I.R.) of Iran with adverse conditions such as shallow saline groundwater tables. The contribution of water from shallow, saline groundwater to crop water use may be important in such conditions. The objectives of this study were to determine the contributions from shallow, saline groundwater to water use of pistachio seedlings, and how this contribution was affected by groundwater depth, salinitiy, and irrigation conditions. The results indicated that an increase in groundwater depth resulted in significant increase in root depth and significant decrease in seasonal evapotranspiration (ET), transpiration, and groundwater contribution to the plant water use. Non-saline shallow (30–120 cm depth) groundwater under irrigated and non-irrigated conditions contributed 72.4–89.7% and 90.7–100.0% of plant water use, respectively. However, these contributions were 57.2–74.8% and 79.3–100.0% for irrigated and non-irrigated conditions, respectively for saline shallow (30–120 cm depth) groundwater. The effect of groundwater depths (D, cm) on groundwater contributions (q, %) was found to be influenced by the salinity levels of the groundwater (EC, dS m−1). The linear multiple regression equations were q = 97.5 − 1.24(EC) − 0.194(D) and q = 105.9 − 0.48(EC) − 0.154(D) for irrigated and non-irrigated conditions, respectively. The maximum reductions in relative plant dry weight of 80.3% and 44.8% were occurred under non-irrigated condition and saline groundwater depth of 30 cm and non-saline water depth of 60 cm, respectively. Root depth analysis indicated that vertical root growth caused the root to reach a moist layer near the groundwater. A very close to 1:1 relationship between relative reduction in top dry weight (1 − y/ym) and relative reduction in transpiration (1 − T/Tm) was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号