首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
In the Mesilla Valley of southern New Mexico, furrow irrigation is the primary source of water for growing onions. As the demand for water increases, there will be increasing competition for this limited resource. Water management will become an essential practice used by farmers. Irrigation efficiency (IE) is an important factor into improving water management but so is economic return. Therefore, our objectives were to determine the irrigation efficiency, irrigation water use efficiency (IWUE) and water use efficiency (WUE), under sprinkler, furrow, and drip irrigated onions for different yield potential levels and to determine the IE associated with the amount of water application for a sprinkler and drip irrigation systems that had the highest economic return.Maximum IE (100%) and economic return were obtained with a sprinkler system at New Mexico State University’s Agriculture Science Center at Farmington, NM. This IE compared with the 54–80% obtained with the sprinkler irrigation used by the farmers. The IEs obtained for onion fields irrigated with subsurface drip irrigation methods ranged from 45 to 77%. The 45% represents the nonstressed treatments, in which an extra amount of irrigation above the evapotranspiration (Et) requirement was applied to keep the base of the onion plates wet. The irrigation water that was not used for Et went to deep drainage water. The return on the investment cost to install a drip system operated at a IE of 45 was 29%. Operating the drip system at a IE of 79% resulted in a yield similar to surface irrigated onions and consequently, it was not economical to install a drip system. The IEs at the furrow-irrigated onion fields ranged from 79 to 82%. However, the IEs at the furrow-irrigated onion fields were high because farmers have limited water resources. Consequently, they used the concept of deficit irrigation to irrigate their onion crops, resulting in lower yields. The maximum IWUE (0.084 t ha−1 mm−1 of water applied) was obtained using the sprinkler system, in which water applied to the field was limited to the amount needed to replace the onions’ Et requirements. The maximum IWUE values for onions using the subsurface drip was 0.059 and 0.046 t ha−1 mm−1 of water applied for furrow-irrigated onions. The lower IWUE values obtained under subsurface drip and furrow irrigation systems compared with sprinkler irrigation was due to excessive irrigation under subsurface drip and higher evaporation rates from fields using furrow irrigation. The maximum WUE for onions was 0.009 t ha−1 mm−1 of Et. In addition, WUE values are reduced by allowing the onions to suffer from water stress.  相似文献   

2.
Artificial subsurface drainage is not an option for addressing the saline, shallow ground water conditions along the west side of the San Joaquin Valley because of the lack of drainage water disposal facilities. Thus, the salinity/drainage problem of the valley must be addressed through improved irrigation practices. One option is to use drip irrigation in the salt affected soil.A study evaluated the response of processing tomato and cotton to drip irrigation under shallow, saline ground water at depths less than 1 m. A randomized block experiment with four irrigation treatments of different water applications was used for both crops. Measurements included crop yield and quality, soil salinity, soil water content, soil water potential, and canopy coverage. Results showed drip irrigation of processing tomato to be highly profitable under these conditions due to the yield obtained for the highest water application. Water applications for drip-irrigated tomato should be about equal to seasonal crop evapotranspiration because yield decreased as applied water decreased. No yield response of cotton to applied water occurred indicating that as applied water decreased, cotton uptake of the shallow ground water increased. While a water balance showed no field-wide leaching, salinity data clearly showed salt leaching around the drip lines.  相似文献   

3.
A validated agro-hydrological model soil water atmosphere plant (SWAP) was applied to formulate guidelines for irrigation planning in cotton–wheat crop rotation using saline ground water as such and in alternation with canal water for sustainable crop production. Six ground water qualities (4, 6, 8, 10, 12 and 14 dS/m), four irrigation schedules with different irrigation depths (4, 6, 8 and 10  cm) and two soil types (sandy loam and loamy sand) were considered for each simulation. The impact of the each irrigation scenario on crop performance, and salinization/desalinisation processes occurring in the soil profile (0–2 m) was evaluated through Water Management Response Indicators (WMRIs). The criterion adopted for sustainable crop production was a minimum of pre-specified values of ETrel (≥0.75 and ≥0.65 for wheat and cotton, respectively) at the end of the 5th year of simulation corresponding to minimum deep percolation loss of applied water. The extended simulation study revealed that it was possible to use the saline water upto 14 dS/m alternatively with canal water for cotton–wheat rotation in both sandy loam and loamy sand soils. In all situations pre-sown irrigation must be accomplished with canal water (0.3–0.4 dS/m). Also when the quality of ground water deteriorates beyond 10 dS/m, it was suggested to use groundwater for post-sown irrigations alternately with canal water. Generally, percolation losses increased with the increase in level of salinity of ground water to account for leaching and thus maintain a favourable salt balance in the root zone to achieve pre-specified values of ETrel.  相似文献   

4.
Water research studies in Saudi Arabia clearly showed sever depletion of groundwater. Therefore, the scientifically applied research program related to water saving and conservation in agriculture is essential, where agricultural activities account for more than 85% of the total water consumed. This study aims to investigate the effect of four irrigation levels, two irrigation methods and three clay deposits on water-use efficiency (WUE) of squash and the distributions of salts and roots in sandy calcareous soils. A field experiment was conducted at the college experimental station in 2002 and 2003. It consists of three clay deposits, three rates (CO = 0, C2 = 1.0 and C3 = 2.0%), four irrigation levels (T1 = 60, T2 = 80, T3 = 100 and T4 = 120% of Eto) using surface (IM1) and subsurface (IM2) drip irrigation.Results indicated that squash fruit yield was significantly increased with the increase in irrigation water level for each season. Generally, WUE values were increased as linearly with applied irrigation water and decreased at the highest irrigation level. Types of clay deposits significantly affected fruit yields compared with the control. The yield increase was 12.8, 8.35 and 6.4% for Khulays, Dhruma and Rawdat clay deposits, respectively. The differences between surface and subsurface drip on fruit yields and WUE were also significant. Results indicated that moisture content of subsurface-treated layer increased dramatically, while salts were accumulated at the surface and away from the emitters in subsurface drip irrigation. Intensive root proliferation is observed in the clay-amended subsurface layer compared with non-amended soil. The advantages of subsurface drip irrigation were related to the relative decrease in salt accumulation in the root zone area where the plant roots were active and water content was relatively higher.  相似文献   

5.
In general, cotton is irrigated by surface methods in Turkey although sprinkler and drip irrigation have been suggested as a means of supplying most types of crops with frequent and uniform applications of water, adaptable over a wide range of topographic and soil conditions. Recently, sprinkler irrigation systems have been introduced for cotton as a result of increased pressure to develop new irrigation technology suited to limited water supply as well as to specific topographic and soil conditions. In this study, the effects of three different irrigation methods (furrow, sprinkler and drip) on seed-cotton yield, shedding ratio and certain yield components are presented. The research was carried out in The Southeastern Anatolia Region (GAP) of Turkey from 1991 to 1994. The maximum cotton yields were 4380, 3630 and 3380 kg/ha for drip, furrow and sprinkler irrigation, respectively. Drip irrigation produced 21% more seed-cotton than the furrow method and 30% more than the sprinkler method. Water use efficiencies (WUE) proved to be 4.87, 3.87 and 2.36 kg/ha/mm for drip, furrow and sprinkler, respectively. Shedding ratios ranged from 50.8 to 59.0% (furrow), 52.9 to 64.8% (sprinkler), 50.8 to 56.8% (drip), depending on the amount of water applied. The shedding ratio for sprinkler irrigation was significantly higher than that of either furrow (P=0.10) or drip irrigation (P=0.05), resulting in lower seed-cotton yield for sprinkler irrigation. For all methods, a quadratic relationship was found between the amount of water applied and shedding ratios, with the least shedding occurring between 1000 and 1500 mm of water. Both limited and over-irrigation increased the shedding ratio for all methods. Accordingly, a lower boll number per plant and a lower seed-cotton yield were obtained from sprinkler-irrigated cotton; a significantly decreasing linear relationship between the shedding ratio and the total cotton yield and boll number per plant.  相似文献   

6.
A field experiment was conducted in 1995 and 1996 to examine the effects of different irrigation methods on yields and Phytophthora root rot disease of chile plants (Capsicum annum New Mexico `6–4'). Three irrigation methods, daily drip, 3-day drip, and alternate row furrow irrigation, were applied to plots infested with P. capsici and uninfested plots. For both years, the drip irrigation (either daily or 3-day) created higher marketable green chile yields than the alternate row furrow irrigation (p < 0.05), and the yields between the daily and 3-day drip irrigation were statistically similar. The effect of irrigation on marketable combined yields was similar to that on green chile yields. In 1995, root rot disease incidence in the infested plots was significantly higher under alternate row furrow irrigation than for daily and 3-day drip irrigation. There was no disease development in the uninfested plots regardless of the irrigation method. The disease decreased green chile yield by 55% (p < 0.1), and combined yield (green + red chile) by 36% (p < 0.1) in 1995 compared to that in uninfested plots in alternate row furrow irrigation. In 1996, however, no disease occurred in any treatment. The results suggested that drip irrigation increases chile yield through providing either favorable soil moisture conditions or unfavorable conditions for Phytophthora propagation.  相似文献   

7.
The drained and irrigated marshes in south-west Spain are formed on soils of alluvial origin from the ancient Guadalquivir river estuary. The most important characteristics of these soils are the high clay content (about 70%), high salinity, and a shallow, extremely saline, water table. The reclaimed area near Lebrija, called Sector B-XII (about 15,000 ha), has been under cultivation since 1978. Some years, however, water supply for irrigation is limited due to drought periods. The objective of this work was to evaluate the effects of irrigation with high and moderately saline waters on soil properties and growth and yield of cotton and sugar beet crops. The experiments were carried out during 1997 and 1998 in a farm plot of 12.5 ha (250 m×500 m) in which a drainage system had been installed, consisting of cylindrical ceramic sections (0.3 m long) forming pipes 250 m long, buried at a depth of 1 m and spaced at intervals of 10 m. These drains discharge into a collecting channel perpendicular to the drains. Two subplots of 0.5 ha (20 m×250 m) each were selected. In 1997 cotton was growing in both subplots, and irrigation was applied by furrows. One subplot (A) was irrigated with fresh water (0.9 dS m−1) during the whole season, while in the other subplot (B) one of the irrigations (at flowering stage) was with water of high salinity (22.7 dS m−1). During 1998 both subplots were cropped with sugar beet. Subplot A was irrigated with fresh water (1.7 dS m−1) during the whole season, while in subplot B two of the irrigations were with moderately saline water (5.9–7.0 dS m−1). Several measurement sites were established in each subplot. Water content profile, tensiometric profile, water table level, drainage water flow, soil salinity, and crop development and yield were monitored. The results showed that after the irrigation with high saline water (subplot B) in 1997 (cotton), the soil salinity increased. This increase was more noticeable in the top layer (0–0.3 m depth). In contrast, for the same dates, the soil of subplot A showed no changes. After five irrigations with fresh water, the salinity of the soil in the subplot B reached values similar to those before the application of saline water. In 1998 (sugar beet) the application of moderately saline water in subplot B also increased soil salinity, but this increase was lower than in 1997. The irrigation with high saline water affected crop development. Cotton growth was reduced in comparison with that in the subplot irrigated only with fresh water. Despite this negative effect on crop development, the crop yield was the same as in the subplot A. Sugar beet development did not show differences between subplots, but yield was higher in subplot B than in subplot A.  相似文献   

8.
Decades of irrigation on the west side of the San Joaquin Valley without sufficient drainage have created large areas where shallow ground water (<1.5 m) has become a problem for agriculture. Because drainage outflow is restricted as a result of environmental concerns, reducing the amount of irrigation applied is a farm management solution for this situation. One option to reduce the amount of irrigation water is to include shallow ground water use as a source of water for crop production when scheduling irrigation. The objective for this study is to describe soil water fluxes in the presence of saline, shallow ground water under a safflower crop. Two weighing lysimeters, one with and one without shallow saline ground water were used to measure crop evapotranspiration of surface drip irrigated safflower. A saline water table (14 dS/m) was maintained in one of the lysimeters. Ground water use as part of crop evapotranspiration was characterized using hourly measurements of the water level in a ground water supply tank (Mariotte bottle). Ground water contribution of up to 40% of daily crop water use was measured. On a seasonal basis, 25% of the total crop water use originated from the ground water. The largest ground water contribution was shown to occur at the end of the growing season, when roots are fully developed and stored soil water in the root zone was depleted. The applied irrigation on the crop grown in the presence of a water table was 46% less than irrigation applied to the crop without a water table. The reduction of irrigation was obtained by using the same irrigation schedule as on the lysimeter without ground water, but through smaller applied depths per irrigation event.  相似文献   

9.
A field experiment was conducted during summer season of 1998 at the Main Research Station, University of Agricultural Sciences, Hebbal, Bangalore. Experiment consisted of four irrigation levels and two methods of planting. Drip irrigation at 0.8 Epan with normal planting recorded significantly higher green cob (20.07 t ha−1) and fodder yield (24.87 t ha−1) compared to either drip at 0.6 Epan or weekly surface irrigation at 0.8 Epan, while drip at 0.4 Epan under paired planting (10.53 and 15.23 t ha−1, respectively registered the lowest. Drip at 0.4 Epan with normal planting recorded higher WUE of green cob and fodder (48.21 and 61.22 kg ha mm−1) with total water requirement of 330.46 mm. With increase in water use (drip at 0.6 Epan, drip/surface irrigation at 0.8 Epan) the water use efficiency decreased. Drip irrigation at 0.8 Epan resulted in higher leaf water potential (−4, −7, −8 bars) at 20, 40 and 60 DAS before irrigation. Consequently, the RWC in the leaf was 81.10% and the available soil moisture ranged from 55.62 to 61.91%.  相似文献   

10.
Different irrigation scheduling methods and amounts of water ranging from deficit to excessive amounts were used in cotton (Gossypium hirsutum L.) irrigation studies from 1988 to 1999, at Lubbock, TX. Irrigation scheduling treatments based on canopy temperature (Tc) were emphasized in each year. Surface drip irrigation and recommended production practices for the area were used. The objective was to use the 12-year database to estimate the effect of irrigation and growing season temperature on cotton yield. Yields in the irrigation studies were then compared with those for the northwest Texas production region. An irrigation input of 58 cm or total water application of 74 cm was estimated to produce maximum lint yield. Sources of the total water supply for the maximum yielding treatments for each year averaged 74% from irrigation and 26% from rain. Lint yield response to irrigation up to the point of maximum yield was approximated as 11.4 kg ha−1 cm−1 of irrigation between the limits of 5 and 54 cm with lint yields ranging from 855 to 1630 kg ha−1. The intra-year maximum lint yield treatments were not limited by water input, and their inter-year range of 300 kg ha−1 was not correlated with the quantity of irrigation. The maximum lint yields were linearly related to monthly and seasonal heat units (HU) with significant regressions for July (P=0.15), August (P=0.07), and from May to September (P=0.01). The fluctuation of maximum yearly lint yields and the response to HU in the irrigation studies were similar to the average yields in the surrounding production region. The rate of lint yield increase with HU was slightly higher in the irrigation studies than in the surrounding production area and was attributed to minimal water stress. Managing irrigation based on real-time measurements of Tc produced maximum cotton yields without applying excessive irrigation.  相似文献   

11.
The present investigation was undertaken to evaluate the effect of various levels of water and N application through drip irrigation on seed cotton yield and water use efficiency (WUE). In this experiment three levels of water (Epan 0.4, 0.3, and 0.2) and three levels of N (100, 75, and 50% of recommended N, 75 kg/ha) through drip were compared with check-basin method of irrigation under two methods of planting (normal sowing, NS; paired sowing, PS). The results revealed that when the same quantity of irrigation water and N was applied through drip irrigation system, it increased the seed cotton yield to 2144 from 1624 kg/ha (an increase of 32%) under check-basin method of irrigation. When the quantity of water through drip was reduced to 75%, the increase in seed cotton yield was 12%; however, when water was reduced to 50%, it resulted 2% lower yield than check-basin. The decrease in N through fertigation resulted in reduction in seed cotton yield at all the levels of water supply, but the magnitude of reduction was the highest at highest level of water supply. In paired sowing (PS), 20% higher seed cotton yield was obtained as compared with check-basin method under NS along with 50% saving of water. In paired sowing the sacrifice of 9% seed cotton yield as compared with NS resulted in saving of 50% water as well as the cost of laterals because there was one lateral for two paired rows. The WUE increased by 26% (22.1 from 17.6 kg/ha cm) in drip irrigation system when same quantity of water and N fertilizer was applied as compared with check-basin. WUE was not affected with quantity of water but decrease in rate of N caused a decrease in WUE at all the quantities of water applied. In general, WUE was higher in PS as compared with NS. The agronomic efficiency of nitrogen increased from 21.65 to 28.59 kg of seed cotton per kg of N applied when same quantity of water and N was applied through drip irrigation as compared with check-basin. However, decrease in quantity of water applied resulted in a decrease in agronomic efficiency of N but reverse was true for rates of N applied. When the same quantity of water and N was applied under both the methods of planting, PS produced 22% higher seed cotton yield and along with reduced cost owing to half the number of laterals required.  相似文献   

12.
Four different levels of drip fertigated irrigation equivalent to 100, 75, 50 and 25% of crop evapotranspiration (ETc), based on Penman–Monteith (PM) method, were tested for their effect on crop growth, crop yield, and water productivity. Tomato (Lycopersicon esculentum, Troy 489 variety) plants were grown in a poly-net greenhouse. Results were compared with the open cultivation system as a control. Two modes of irrigation application namely continuous and intermittent were used. The distribution uniformity, emitter flow rate and pressure head were used to evaluate the performance of drip irrigation system with emitters of 2, 4, 6, and 8 l/h discharge. The results revealed that the optimum water requirement for the Troy 489 variety of tomato is around 75% of the ETc. Based on this, the actual irrigation water for tomato crop in tropical greenhouse could be recommended between 4.1 and 5.6 mm day−1 or equivalent to 0.3–0.4 l plant−1 day−1. Statistically, the effect of depth of water application on the crop growth, yield and irrigation water productivity was significant, while the irrigation mode did not show any effect on the crop performance. Drip irrigation at 75% of ETc provided the maximum crop yields and irrigation water productivity. Based on the observed climatic data inside the greenhouse, the calculated ETc matched the 75–80% of the ETc computed with the climatic parameters observed in the open environment. The distribution uniformity dropped from 93.4 to 90.6%. The emitter flow rate was also dropped by about 5–10% over the experimental period. This is due to clogging caused by minerals of fertilizer and algae in the emitters. It was recommended that the cleaning of irrigation equipments (pipe and emitter) should be done at least once during the entire cultivation period.  相似文献   

13.
Due to the increasing demand for food and fiber by its ever-increasing population, the pressure on fresh water resources of Pakistan is increasing. Optimum utilization of surface and groundwater resources has become extremely important to fill the gap between water demand and supply. At Lahore, Pakistan 18 lysimeters, each 3.05 m × 3.05 m × 6.1 m deep were constructed to investigate the effect of shallow water tables on crop water requirements. The lysimeters were connected to bottles with Marriotte siphons to maintain the water tables at the desired levels and tensiometers were installed to measure soil water potential. The crops studied included wheat, sugarcane, maize, sorghum, berseem and sunflower. The results of these studies showed that the contribution of groundwater in meeting the crop water requirements varied with the water-table depth. With the water table at 0.5 m depth, wheat met its entire water requirement from the groundwater and sunflower absorbed more than 80% of its required water from groundwater. Maize and sorghum were found to be waterlogging sensitive crops whose yields were reduced with higher water table. However, maximum sugarcane yield was obtained with the water table at or below 2.0 m depth. Generally, the water-table depth of 1.5–2.0 m was found to be optimum for all the crops studied. In areas where the water table is shallow, the present system of irrigation supplies and water allowance needs adjustments to avoid over irrigation and in-efficient use of water.  相似文献   

14.
Water conservation strategies for center pivot and furrow irrigation in the Central Platte Valley of Nebraska were evaluated using computer simulation. Irrigation requirements, grain yield, return flow and net depletion (gross irrigation minus return flow) of groundwater were simulated for a period of 29 years for Hord and Wood River silt loam soils. Grain yields were simulated for a typical corn variety for non-limiting water supplies (maximum attainable yield), for two levels of deficit irrigation (irrigation limited to certain growing periods), and for dryland conditions. Additional simulations were performed for a short-season corn, grain sorghum, and soybeans. The impacts of tillage practices on water conservation were also investigated.Center pivot irrigation on the Hord silt loam required 75–125 mm/year less water application than furrow irrigation. For the Wood River silt loam, water applications were the same for both irrigation systems. Applied water depths were reduced by an additional 75–125 mm using deficit irrigation with only a small reduction in yield. Return flow to the groundwater was small for well-managed pivots but high for some furrow irrigation systems based on the assumption that all deep percolation returns to the aquifer in the Central Platte Valley. Net depletion (gross irrigation minus return flow) of the groundwater for a center pivot with LEPA was 50 mm (17%) less than a center pivot with impact sprinklers. Ridge till had a net depletion 50 mm (25%) less than conventional tillage (double disk, plant) for furrow systems.  相似文献   

15.
Effects on water use, green bean yield, irrigation water-use efficiency (IWUE), water-use efficiency (WUE), plant dry weight and crop water relationship were investigated for two-drip irrigation techniques and four irrigation water levels in the Mediterranean region of Turkey. The treatments were conventional (SDI) and alternating subsurface drip irrigation (SPRD). At each irrigation event, half of the volume of water applied to the SDI was applied to one side of the crop, representing the partial rootzone-drying treatment. All treatments received 295 mm of irrigation during crop establishment, prior to beginning the different irrigation regimes. Differing irrigation amounts corresponded to four crop-pan coefficients (Kcp1 = 0.6, Kcp2 = 0.8, Kcp3 = 1.0 and Kcp4 = 1.2), appropriate to pan data. Total water applied to the SDI and SPRD treatments ranged from 366 to 437 mm and from 331 to 366 mm, respectively, depending on Kcp values, with water uptake varying from 396 to 470 mm and 364 to 409 mm, respectively. While differences of green bean yield and dry plant weights were not significantly affected by the SDI and SPRD irrigation techniques, the overall irrigation water saving was found to be 16% for the SPRD irrigation treatment compared with the SDI treatment. SPRD irrigation techniques increased IWUE, WUE, and slopes of yield water relationships. Increase in slopes of the yield–irrigation water and yield–water-use function of SPRD according to the equivalent slopes of the SDI were 215.8 and 151.4%, respectively. SPRD increased the green bean yield response factor (ky) with value of 128.4% according to the equivalent slopes of the SDI. In conclusion, irrigation scheduling based on a 0.8 crop-pan coefficient is recommended for conventional SDI, with 1.0 being more appropriate for partial rootzone-drying practice.  相似文献   

16.
The average productivity of rice–wheat sequence is quite impressive in the Trans Indo-Gangetic Plain (India) but these gains are over-shadowed due to declining groundwater, particularly in the areas, where groundwater quality is either good or marginal. The groundwater decline can be reversed through artificial groundwater recharge and by adopting suitable land and water management practices. Groundwater recharge is found technically feasible through vertical shafts conducting water from the ground surface directly to aquifers, after it has been passed through a sand-gravel filter. The recharge rate through this system is almost equal to a shallow cavity/filter well yield (about 11 l/s) and its cost is estimated at about INR 10/100 m3 (1 US$ = 45 INR). Further study in the Kaithal and Karnal districts of Haryana for stabilizing watertable within 6–7 m, which permits continuous use of shallow tubewell technology, indicated that the rice area could be supported at 60% of cultivable command area (CCA) and wheat between 65 and 80% of CCA with the existing management practices. The cultivation of wheat crop is sustainable in larger area, mainly due to its medium water requirement, salt resistance characteristics and consistent market demand resulting in assured returns. There is a possibility of supporting rice at a higher level, if part of the area (up to 10%) is left fallow and used for rainwater conservation and recharge. The fallow area may be subsequently put under early rabi (winter) crops like mustard, gram and other pulses. The effect of varying irrigation and fallowing would increase 23% equivalent wheat yield by changing land and water management practices. The analysis further indicated that the adoption of proposed irrigation management practices might stabilize watertable at desired level of 6–7 m in 10–15 years in high (3–4 m), 5 years in medium (5–10 m) and 40 years in deep (>10 m) watertable areas.  相似文献   

17.
This research was conducted during the spring seasons of 2000 and 2002 in Hatay province located in the East Mediterranean Region of Turkey. The research investigated the effects of two drip irrigation methods and four different water stress levels on potato yield and yield components. The surface drip (SD) and subsurface drip (SSD) irrigation methods were used. The levels were full irrigation (I100), 66% of full irrigation (I66), 33% of full irrigation (I33) and un-irrigated (I0) treatments. Five and three irrigation were applied in 2000 and 2002 early potato growing seasons, respectively. Total irrigation amount changed from 102 to 302 mm and from 88 to 268 mm in 2000 and 2002, respectively. Seasonal evapotranspiration changed between 226 and 473 mm and 166 and 391 mm in 2000 and 2002, respectively. SD and SSD irrigation methods did not result in a significant difference on yield. However, SD method has more advantages than SSD method, which has difficulties in replacement and higher system cost. Irrigation levels resulted in significant difference in both years on yield and its components. Water stress significantly affected the yield and yield parameters of early potato production. Water deficiency more than 33% of the irrigation requirement could not be suggested.Water use efficiency (WUE) of SD irrigation methods had generally higher values than SSD irrigation methods. Treatment I33 gave maximum irrigation water use efficiency (IWUE) for both years. SSD irrigation method did not provide significant advantage on yield and WUE, compared to SD irrigation in early potato production under experimental conditions. Therefore, the SD irrigation method would be recommended in early potato production under Mediterranean conditions.  相似文献   

18.
The ridge and furrow rainfall harvesting (RFRH) system with mulches is being promoted to increase water availability for crops for higher and stable agricultural production in many areas of the Loess Plateau in northwest China. In the system, plastic-covered ridges serve as rainfall-harvesting zones and stone-, straw- or film-mulched furrows serve as planting zones. To adopt this system more effectively, a field study (using corn as an indicator crop) was conducted to determine the effects of different ridge:furrow ratios and supplemental irrigation on crop yield and water use efficiency (WUE) in the RFRH system with mulches during the growing seasons of 1998 and 1999.The results indicated that the ridge:furrow ratios had a significant effect on crop yield and yield components. The 120:60 cm ridge and furrow (120 cm wide ridge and 60 cm wide furrow) system increased yield by 27.9%, seed weight per head by 14.8%, seed number per head by 7.4% and 1000-seed weight by 4.7%, compared with the 60:60 cm ridge and furrow (60 cm wide ridge and 60 cm wide furrow) system. No differences in WUE were found between the two ratio systems. For corn and winter wheat, the optimum ridge:furrow ratio seems to be 1:1 in the 300-mm rainfall area, 1:2 in the 400-mm rainfall area and 1:4 in the 500-mm rainfall area. The optimum ridge:furrow ratio seems to be 1:3 for millet in the 300-mm rainfall area, although it is unnecessary to adopt RFRH practice in regions with more than 400 mm rainfall. The most effective ridge size for crop production seems 60 cm in the Loess Plateau. Implementing supplemental irrigation in the RFRH system is also a useful way to deal with the temporal problem of moisture deficits. In the case of corn, supplemental irrigation at its critical growth stage can increase both grain yield and WUE by 20%. The combination of in situ RFRH system with supplemental irrigation practice will make the RFRH system more attractive.  相似文献   

19.
This study was designed to evaluate the yield response of low-energy precision application (LEPA) and trickle-irrigated cotton grown on a clay-textured soil under the arid Southeast Anatolia Project (GAP) area conditions during the 1999 growing season at Koruklu in Turkey. The effects of four different irrigation levels (100, 75, 50, and 25% of cumulative Class-A pan evaporation on a 6-day basis) for LEPA, and two irrigation intervals (3-day and 6-day) and three different levels (100, 67, and 33% of cumulative Class-A pan evaporation on a 3-day and 6-day basis) for the trickle system on yield were investigated. Water was applied to alternate furrows through the double-ended Fangmeier drag-socks in the LEPA system. Trickle irrigation laterals were laid out on the soil surface at a spacing of 1.40 m. A total of 814 mm of water was applied to the full-irrigation treatments (100%) for both irrigation systems. Seasonal water use ranged from 383 to 854 mm in LEPA treatments; and 456 to 868 mm in trickle treatments. Highest average cotton yield of 5850 kg/ha was obtained from the full-irrigation treatment (100%) in trickle-irrigated plots with 6-day intervals. The highest yield in LEPA plots was obtained in LEPA-100% treatment with an average value of 4750 kg/ha. Seed cotton yields varied from 2660 to 5040 kg/ha and 2310 to 5850 kg/ha in trickle irrigation plots with 3-day and 6-day intervals, respectively, and from 2590 to 4750 kg/ha in LEPA plots. Irrigation levels both in LEPA and trickle-irrigated plots significantly increased yield. However, there was no significant yield difference between 100 and 67% irrigation levels in trickle-irrigated plots. Maximum irrigation water use efficiency (IWUE) and water use efficiency (WUE) were found as 0.813 and 0.741 kg/m3 in trickle-irrigated treatment of 67% with 6-day interval. Both IWUE and WUE values varied with irrigation quantity and frequency. The research results revealed that both the trickle and LEPA irrigation systems could be used successfully for irrigating cotton crop under the arid climatic conditions of the GAP area in Turkey.  相似文献   

20.
The effects of irrigation methods, application rates and initial moisture content on soil water storage and surface runoff were studied in soils liable to surface crust formation during 1995–1996 at the University of Jordan Research Station near Al-Muwaqqar village. Four irrigation methods were tested (sprinkler, furrow, basin and trickle) and four application rates (6.2, 14.4, 24.4 and 28.4 mm/h). Two runs were performed (soil initially dry and soil initially wet). Basin irrigation provided the highest application efficiency followed by trickle, sprinkler and furrow irrigation methods. Entrapping water by the basin borders increased soil water storage by allowing more water to infiltrate through the surface crust. Decreasing the application rate from 28.4 to 6.2 mm/h increased soil water storage significantly in all 150 mm layers to a depth of 600 mm. If the soil was already wet, soil moisture storage decreased owing to siltation during the prewetting and formation of a surface crust and low soil water storage capacity. A sedimentary crust formed at the bottom of the furrows in the furrow irrigation treatment, which reduced soil water storage and increased surface runoff significantly owing to the reduction in infiltration. Increasing the application rate from 6.2 to 28.4 mm/h in the furrow surface irrigation treatment increased the runoff discharge 10-fold. Even with the lowest application rate the runoff coefficient under sprinkler irrigation was 20.3% indicating high susceptibility of Al-Muwaqqar soils to surface crust formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号