首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
The determination of target uniformity for sprinkler irrigation system should consider the impacts of nonuniformity of water and fertilizers on crop yield. Field experiments were therefore conducted in north China plains to address the impacts of nonuniformly applied water and fertilizers on winter wheat yield. Irrigation water and fertilizers were applied through a solid set sprinkler system. Three experimental plots were used with seasonal Christiansen uniformity coefficients (arithmetic mean of individual CUs) ranging from 62 to 82%. Each plot was divided into 3m×3m grids. Sprinkler water depth and concentration of fertilizer solution for each grid was measured both below and above the canopy for each individual irrigation event. The spatial distribution of soil moisture for each experimental plot was also measured periodically to determine irrigation times and amounts. On harvest, grain yield and total nitrogen content of plant stems were measured for each grid. The experimental results showed that the uniformity of fertilizer applied increased with sprinkler water uniformity. The distributions of both fertilizers and water applied through sprinkler system can be represented by a normal distribution function. Field experiments also demonstrated that the uniformity of sprinkler-applied water and fertilizers has insignificant effect on winter wheat yield for the studied uniformity range. The current standard for sprinkler uniformity (for example, the target CU is equal to or higher than 75% in China) is high enough for obtaining a reasonable crop yield in dry sub-humid regions.  相似文献   

9.
10.
11.
12.
为了探究谷朊粉颗粒热风干燥过程中的干燥特性及水分迁移规律,开展了谷朊粉颗粒2因素3水平全因素热风干燥试验,考察不同干燥温度(50、60、70 °C)和颗粒厚度(4.24、9.15、15.52 mm)下的干燥特性,运用低场核磁共振技术分析了干燥过程中的水分迁移规律,并建立干燥动力学模型和水分预测模型。结果表明:谷朊粉颗粒干燥速率和水分比随温度升高而显著降低(P<0.05);有效水分扩散系数随温度升高和颗粒厚度增加而增大。决定系数(R2)、离差平方和(\begin{document}$ {\chi }^{2} $\end{document})、均方根误差(RMSE)计算结果表明,Modified Page薄层干燥模型对谷朊粉颗粒的干燥试验数据具有较高的拟合精度,而且建立了模型参数(kn)与干燥温度(T)、颗粒厚度(H)的回归模型(R2>0.926)。低场核磁共振横向弛豫时间(T2)反演谱显示,随干燥时间的增加,各水分峰面积逐渐减小,而且峰位置逐渐向结合水靠近,并建立了含水率(M)与干燥时间(t)、颗粒厚度(H)、干燥温度(T)、弛豫反演图谱总峰面积(A)之间的回归关系,结果表明预测效果较好(R2=0.933)。研究结果可为谷朊粉颗粒干燥工艺提供参考。   相似文献   

13.
Summary The interactive effects of 0.0%, 0.4%, and 0.8% of a gel conditioner, Jalma, and four waters: salt solution (SS), distilled (DW), natural sewage (SW), and well (WW) waters on swelling (S), effective mean pore radius ( ), water penetrability (), diffusivity (D), and weighted-mean diffusivity ( ) in loamy sand and loam soil columns were investigated. The diffusivities of water in untreated soil columns were nearly independent of water quality. In general for both soils, S decreased, and , , and increased with increase in water salinity and decrease in % Jalma. For the loamy sand of SS, WW, SW, and DW were reduced, respectively by 15%, 39%, 45%, and 55% due to the addition of 0.4% Jalma and by 15%, 52%, 69%, and 83% due to addition of 0.8% Jalma compared to untreated control. It was concluded that 0.4% Jalma is the optimum rate when sewage (EC=1.6 dSm–1) or other waters of low salinity are used for irrigation and 0.8% Jalma when well water (EC =6.4 dSm–1) is used. When the irrigation water is of high salinity (EC =42.5 dSm–1), use of this gel conditioner is not recommended. Effective mean pore radius proved to be a reliable predictor of the multiple effects of texture, Jalma and water salinity on and .  相似文献   

14.
Irrigation scheduling requires an operational means to quantify plant water stress. Remote sensing may offer quick measurements with regional coverage that cannot be achieved by current ground-based sampling techniques. This study explored the relation between variability in fine-resolution measurements of canopy temperature and crop water stress in cotton fields in Central Arizona, USA. By using both measurements and simulation models, this analysis compared the standard deviation of the canopy temperature to the more complex and data intensive crop water stress index (CWSI). For low water stress, field was used to quantify water deficit with some confidence. For moderately stressed crops, the was very sensitive to variations in plant water stress and had a linear relation with field-scale CWSI. For highly stressed crops, the estimation of water stress from is not recommended. For all applications of one must account for variations in irrigation uniformity, field root zone water holding capacity, meteorological conditions and spatial resolution of T c data. These sensitivities limit the operational application of for irrigation scheduling. On the other hand, was most sensitive to water stress in the range in which most irrigation decisions are made, thus, with some consideration of daily meteorological conditions, could provide a relative measure of temporal variations in root zone water availability. For large irrigation districts, this may be an economical option for minimizing water use and maximizing crop yield.
M. P. González-DugoEmail: Phone: +34-957-016030Fax: +34-957-016043
  相似文献   

15.
16.
17.
Agricultural activities are frequently associated with water contamination. The spreading and storage of fertilizers, for instance, may result in groundwater contamination due to pollutants leaching into an aquifer. Nitrates and fecal bacteria are two important contaminants associated with agriculture. Thus, the development of efficient strategies for groundwater protection in agricultural areas requires an assessment of these two contaminants. Given this perspective, groundwater quality monitoring was carried out over the whole capture zone of a municipal well located in an agricultural area in the St.-Lawrence Lowlands in Québec. Thirty-eight piezometers were installed within the roughly 2 km2 capture area of the well to measure physico-chemical parameters such as major ions, field measured parameters (pH, electrical conductivity, dissolved oxygen, water level, temperature), and isotopic ratios, bacteriological parameters (Heterotrophic Plate Count—HPC, enterococci, total coliforms, Escherichia coli) and their variations in space and time. Groundwater was sampled from the pumping well and the piezometers during 25 field campaigns in 2005, 2006 and 2007. The results demonstrate the impact of agricultural activities on nitrate contamination. They indicate high spatial and temporal variations in nitrate concentrations, from 6 to 125 mgNO3/L within the capture area, with 40% of the samples exceeding the Québec drinking water limit of 45 mgNO3/L. Nitrate pollution in the municipal well exceeded 45 mgNO3/L during 2005, but no bacteriological contamination was observed. The results also show a high variability of nitrate concentration with depth within the capture zone. Electrical conductivity appears as a good indicator of the presence of nitrate and calcium ions in this capture zone. Correlations between nitrate, calcium and chloride suggest that these ions come from the same source of fertilizer. Nitrate isotopic composition suggests that nitrate in groundwater originates from both chemical and organic fertilizers. The bacteriological results show that the extracted volume of water during sampling of a piezometer has a significant impact on the bacteria count. The variability of bacteriological pollution is important in space and time, showing a higher contamination during summer. Only 2% of the raw water samples exhibit contamination exceeding the drinking water standard for treated water. Total coliforms seem to be a good precursor of E. coli or enterococci contamination. Globally, the physico-chemical and bacteriological groundwater quality within the studied capture area and the pumping well shows contamination by nitrates, but low contamination levels by fecal bacteria.  相似文献   

18.
Real-time information on salinity levels and transport of fertilizers are generally missing from soil profile knowledge bases. A dual-frequency multisensor capacitance probe (MCP) is now commercially available, for sandy soils, to simultaneously monitor volumetric soil water content (VWC) measured as a percentage and salinity as a unitless volumetric ion content (VIC). The objectives of this research were to assess the relationship of salinity and water content with these dual-frequency MCPs under laboratory conditions, and assess its potential for field use in sandy soils of the mid-Atlantic region of the US. Water and salinity studies were conducted in two sand-filled PVC columns, 1.2 m long by 0.25 m ID. Each column was instrumented with ten dual-frequency capacitance sensors and two thermocouple temperature sensors. Four salinity levels were studied in the two columns using 0.5, 1, 2, and 4 dSm−1 NH4NO3 solutions. Water, salinity, and temperature readings were continuously recorded at 1-min intervals. The VIC values were found to be primarily qualitative, but combined with real-time VWC measures the probe could still be an important fertigation management tool to provide near-continuous real-time information on fertilizer penetration, spread and subsequent changes during crop growth.
J. L. StarrEmail:
  相似文献   

19.
This study was conducted to assess crop water stress index (CWSI) of bermudagrass used widely on the recreational sites of the Mediterranean Region and to study the possibilities of utilization of infrared thermometry to schedule irrigation of bermudagrass. Four different irrigation treatments were examined: 100% (I1), 75% (I2), 50% (I3), and 25% (I4) of the evaporation measured in a Class A pan. In addition, a non-irrigated treatment was set up to determine CWSI values. The status of soil water content and pressure was monitored using a neutron probe and tensiometers. Meanwhile the canopy temperature of bermudagrass was measured with the infrared thermometry. The empirical method was used to compute the CWSI values. In this study, the visual quality of bermudagrass was monitored seasonally using a color scale. The best visual quality was obtained from I1 and I2 treatments. Average seasonal CWSI values were determined as 0.086, 0.102, 0.165, and 0.394 for I1, I2, I3, and I4 irrigation treatments, respectively, and 0.899 for non-irrigated plot. An empirical non-linear equation, Qave=1+⌊6[1+(4.853 CWSIave)2.27]−0.559Qave=1+6[1+(4.853 CWSIave)2.27]0.559, was deduced by fitting to measured data to find a relation between quality and average seasonal CWSI values. It was concluded that the CWSI could be used as a criterion for irrigation timing of bermudagrass. An acceptable color quality could be sustained seasonally if the CWSI value can be kept about 0.10.  相似文献   

20.
The activities associated with raw milk production on dairy farms require an effective evaluation of their environmental impact. The present study evaluates the global environmental impacts associated with milk production on dairy farms in Portugal and identifies the processes that have the greatest environmental impact by using life cycle assessment (LCA) methodology. The main factors involved in milk production were included, namely: the dairy farm, maize silage, ryegrass silage, straw, concentrates, diesel and electricity. The results suggest that the major source of air and water emissions in the life cycle of milk is the production of concentrates. The activities carried out on dairy farms were the major source of nitrous oxides (from fuel combustion), ammonia, and methane (from manure management and enteric fermentation). Nevertheless, dairy farm activities, which include manure management, enteric fermentation and diesel consumption, make the greatest contributions to the categories of impact considered, with the exception of the abiotic depletion category, contributing to over 70% of the total global warming potential (1021.3 kg CO2 eq. per tonne of milk), 84% of the total photochemical oxidation potential (0.2 kg C2H4 eq. per tonne of milk), 70% of the total acidification potential (20.4 kg SO2 eq. per tonne of milk), and 41% of the total eutrophication potential (7.1 kg eq. per tonne of milk). The production of concentrates and maize silage are the major contributors to the abiotic depletion category, accounting for 35% and 28%, respectively, of the overall abiotic depletion potential (1.4 Sb eq. per tonne of milk). Based on this LCA case study, we recommend further work to evaluate some possible opportunities to improve the environmental performance of Portuguese milk production, namely: (i) implementing integrated solutions for manure recovery/treatment (e.g. anaerobic digestion) before its application to the soil as organic fertiliser during maize and ryegrass production; (ii) improving manure nutrient use efficiency in order to decrease the importation of nutrients; (iii) diversifying feeding crops, as the dependence on two annual forage crops is expected to lead to excessive soil mobilisation (and related impacts) and to insignificant carbon dioxide sequestration from the atmosphere; and (iv) changing the concentrate mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号