首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
《Field Crops Research》2005,92(1):61-74
One of the main sources of considerable amounts of chloride to soils is irrigation water. The responses of tobacco (Nicotiana tabacum L.) to chloride are varied and inconsistent depending on the tobacco type, variety and methods of fertilization, cultivation and harvesting used. In this work, the impact of the interaction between four chloride levels (10, 20, 40, 80 mg L−1) in irrigation water and three nitrogen fertilizer forms (NO3–N 100%, NH4–N 100% and NO3–N 50%:NH4–N 50%) on growth, agronomic and chemical characteristics of Virginia tobacco was evaluated over 2 years (1999, 2000) in an outdoor pot experiment. The results showed that the adverse influence of chloride in irrigation water on plant height and number of leaves per plant was already substantial above 40 mg L−1, within 30 days after transplanting. In this period, visual toxicity symptoms of chloride appeared on the lower leaves of plants treated with ammonium nitrogen. In addition, the effect of chloride on flowering time, chlorophyll content of leaves, aboveground fresh weight of plant, total cured product yield and chemical characteristics, depended on the form of nitrogen, with nitrate nitrogen restricting the detrimental effects of chloride in irrigation water up to 40 mg L−1. The reduced yield of cured product at 80 mg L−1 was the result of the adverse effects of chloride on the leaves of the middle and upper stalk position. Leaf chloride concentration was highest in the upper leaves and increased linearly with the increase of chloride level in irrigation water at each leaf position on the stalk and this increase was more rapid as ammonium nitrogen percentage was increased. Chloride increased the concentration of reducing sugars in cured leaves at each leaf position, in all nitrogen forms and nicotine mainly in plants treated with nitrate nitrogen. The changes in total nitrogen and ash content are considered as minimal. We conclude that the optimum chloride level in irrigation water is below 20 mg L−1, whereas the level of 40 mg L−1 in combination with nitrate nitrogen fertilizers can be considered as the upper threshold to avoid adverse effects on Virginia tobacco.  相似文献   

2.
Artemisia annua L. is an aromatic-antibacterial herb that destroys malarial parasites, lowers fevers and checks bleeding, and of which the secondary compound of interest is artemisinin. The objective of the present study was to determine yield, yield components and artemisinin content of A. annua L. grown under four nitrogen applications (0, 40, 80 and 120 kg ha−1) in the Çukurova region of Turkey in 2004 and 2005. Field trials were conducted at Çukurova University, Agricultural Faculty Field Crops Department. In the study, plant height, number of branches, fresh herbage yield, dry herbage yield, fresh leaf yield, dry leaf yield, essential oil content and artemisinin content (by high performance liquid chromatography, HPLC) were examined. By analysis of variance, nitrogen doses had no any statistical effect on the traits investigated except for artemisinin content. Artemisinin content of the dried leaves were significantly affected by nitrogen applications, which varied from 6.32 to 27.50 mg 100 g−1. Contents were from 120 and 80 kg ha−1 nitrogen for the years of 2004 and 2005, respectively.  相似文献   

3.
《Field Crops Research》2005,91(2-3):307-318
A 3-year field experiment examined the effects of non-flooded mulching cultivation and traditional flooding and four fertilizer N application rates (0, 75, 150 and 225 kg ha−1 for rice and 0, 60,120, and 180 kg N ha−1 for wheat) on grain yield, N uptake, residual soil Nmin and the net N balance in a rice–wheat rotation on Chengdu flood plain, southwest China. There were significant grain yield responses to N fertilizer. Nitrogen applications of >150 kg ha−1 for rice and >120 kg ha−1 for wheat gave no increase in crop yield but increased crop N uptake and N balance surplus in both water regimes. Average rice grain yield increased by 14% with plastic film mulching and decreased by 16% with wheat straw mulching at lower N inputs compared with traditional flooding. Rice grain yields under SM were comparable to those under PM and TF at higher N inputs. Plastic film mulching of preceding rice did not affect the yield of succeeding wheat but straw mulching had a residual effect on succeeding wheat. As a result, there was 17–18% higher wheat yield under N0 in SM than those in PM and TF. Combined rice and wheat grain yields under plastic mulching was similar to that of flooding and higher than that of straw mulching across N treatments. Soil mineral N (top 60 cm) after the rice harvest ranged from 50 to 65 kg ha−1 and was unaffected by non-flooded mulching cultivation and N rate. After the wheat harvest, soil Nmin ranged from 66 to 88 kg N ha−1 and increased with increasing fertilizer N rate. High N inputs led to a positive N balance (160–621 kg ha−1), but low N inputs resulted in a negative balance (−85 to −360 kg ha−1). Across N treatments, the net N balances of SM were highest among the three cultivations systems, resulting from additional applied wheat straw (79 kg ha−1) as mulching materials. There was not clear trend found in net N balance between PM and TF. Results from this study indicate non-flooded mulching cultivation may be utilized as an alternative option for saving water, using efficiently straw and maintaining or improving crop yield in rice–wheat rotation systems. There is the need to evaluate the long-term environmental risks of non-flooded mulching cultivation and improve system productivity (especially with straw mulching) by integrated resource management.  相似文献   

4.
《Field Crops Research》2001,69(3):259-266
Water-use efficiency (WUEDM) is directly related to radiation-use efficiency (RUE) and inversely related to crop conductance (gc). We propose that reduced WUEDM caused by shortage of nitrogen results from a reduction in RUE proportionally greater than the fall in conductance. This hypothesis was tested in irrigated wheat crops grown with contrasting nitrogen supply; treatments were 0, 80 and 120 kg N ha−1 in 1998 and 0, 80, 120 and 160 kg N ha−1 in 1999. We measured shoot dry matter, yield, intercepted solar radiation and soil water balance components. From these measurements, we derived actual evapotranspiration (ET), soil evaporation and transpiration, WUEDM (slope of the regression between dry matter and ET), WUEY (ratio between grain yield and ET), RUE (slope of the regression between dry matter and intercepted radiation), and gc (slope of the regression between transpiration and intercepted radiation). Yield increased from 2.3 in unfertilised to an average 4.7 t ha−1 in fertilised crops, seasonal ET from 311 to 387 mm, WUEDM from 23 to 37 kg ha−1 mm−1, WUEY from 7.6 to 12.4 kg ha−1 mm−1, RUE from 0.85 to 1.07 g MJ−1, while the fraction of ET accounted for soil evaporation decreased from 0.20 to 0.11. In agreement with our hypothesis, RUE accounted for 60% of the variation in WUEDM, whereas crop conductance was largely unaffected by nitrogen supply. A greater fraction of evapotranspiration lost as soil evaporation also contributed to the lower WUEDM of unfertilised crops.  相似文献   

5.
Miscanthus × giganteus is one of the most promising biomass crops for non-food utilisation. Taking into account its area of origin (Far East), its temperature and rainfall requirements are not well satisfied in Mediterranean climate. For this purpose, a research was carried out with the aim of studying the adaptation of the species to the Mediterranean environment, and at analysing its ecophysiological and productive response to different soil water and nitrogen conditions. A split plot experimental design with three levels of irrigation (I1, I2 and I3 at 25%, 50% and 100% of maximum evapotranspiration (ETm), respectively) and three levels of nitrogen fertilisation (0 kg ha−1: N0, 60 kg ha−1: N1 and 120 kg ha−1: N2 of nitrogen) were studied. The crop showed a high yield potential under well-watered conditions (up to 27 t ha−1 of dry matter). M. × giganteus, in Mediterranean environment showed a high yield potential even in very limited water availability conditions (more than 14 t ha−1 with a 25% ETm restoration). A responsiveness to nitrogen supply, with great yield increases when water was not limiting, was exhibited. Water use efficiency (WUE) achieved the highest values in limited soil water availability (between 4.51 and 4.83 g l−1), whilst in non-limiting water conditions it decreased down to 2.56 and 3.49 g l−1 (in the second and third year of experiment, respectively). Nitrogen use efficiency (NUE) decreased with the increase of water distributed (from 190.5 g g−1 of I0 to 173.2 g g−1 of I2); in relation to N fertilisation it did not change between the N fertilised treatments (N1 and N2), being much higher in the unfertilised control (177.1 g g−1). Radiation use efficiency (NUE) progressively declined with the reduction of the N fertiliser level (1.05, 0.96 and 0.86 g d.m. MJ−1, in 1994, and 0.92, 0.91 and 0.69 g d.m. MJ−1, in 1995, for N2, N1 and N0, respectively).  相似文献   

6.
Field experiments were conducted to study genotypic variation for potassium uptake and utilization efficiency in sweet potato for 2 years. In 1997, a field experiment was conducted using 84 genotypes under no potassium fertilization. In 1998, two field experiments were carried out. In experiment I, eight good genotypes evaluated from the previous experiment were tested at two K application levels: 0 and 270 kg ha−1 of K2SO4. In experiment II, three special varieties with respect to pigment content were tested at five K levels from 0 to 600 kg ha−1. A split-plot design with three replications was used.Variation existed among genotypes in K concentration, accumulation and potassium efficiency ratio (KER) in the field. Among various plant parts, petiole contained the highest K concentration and storage roots had the highest K accumulation at maturity. These changed considerably with genotype and K level. KER had significant positive correlation with root weight per plant, root:top ratio and harvest index (HI); and significantly negative correlation with K concentration and accumulation in the roots or whole plant at maturity.Based on KER, genotypes were identified as efficient and inefficient in potassium utilization. Yield increased generally in all genotypes with K application. The increase, however, varied among different genotypes. It was also found from this study that the fertilizer level that gave the highest yield was K2 which is 300 kg ha−1 of K2SO4. The yield increase as a result of K application was mainly due to the increase in root:top ratio which led to greater amount of photosynthate translocation to the storage roots causing their increase in size.Most of the quality parameters tested increased with increasing levels of K nutrition. Root dry matter (%), Brix (%), carotene content, anthocyanin content increased with K application. The extent of increase, however, differed with genotypes. Protein content generally tended to reduce with increase in K level. The degree of reduction also varied with genotypes.  相似文献   

7.
The effect of foliar application of cytokinin (benzyl-adenine, 150 mg L−1) and gibberellin (GA4 + GA7, 150 mg L−1) on growth and flower development of 5-year-old plants of two jojoba clones was studied. The plant growth regulators were applied on October 5, 1999 (spring) and the plants were evaluated 120, 240 and 360 days after application. Shoot length, total number of nodes and number of nodes with branching were statistically different between clones but not between the growth regulator treatments.The total number of flowers on both clones was significantly increased by treatment with benzyl-adenine (BA) and significantly reduced by treatment with gibberellin. The seed yields, evaluated 180 days after application, were not statistically different from the control due to an increase in flower abortion. One clone treated with gibberellin showed a significant decrease in number and weight of seeds, the other did not.Histology of axillary buds revealed that BA application on one clone (4.11.32) enlarged the flower meristem, differentiating multiple flower production.  相似文献   

8.
《Field Crops Research》2005,93(1):94-107
Bangladesh is currently self sufficient in rice (Oryza sativa L.), which accounts for approximately 80% of the total cropped area, and 70% of the cost of crop production. However, farmers are increasingly concerned about the perceived decline in productivity, expressed as the return on fertiliser inputs. Agronomic efficiency is a measure of the increase in grain yield achieved per unit of fertiliser input that can provide a way to quantify the observation of farmers. This study indicates that the yields achieved where only P and K fertiliser were applied ranged from 3–5 t ha−1, indicating good soil fertility, particular in terms of soil N supply (37–112 kg N ha−1). However, at recommended rates and at rates used by farmers, the yield response to application of fertiliser N was low. Data shows that grain yields were significantly correlated in both years (R2 = 0.77 and R2 = 0.67) with plant uptake in nitrogen. The internal nitrogen use efficiency seems to confirm that sink formation was limited by factors other than nitrogen. Low agronomic efficiency (5–19 kg grain kg−1 N) was caused by poor internal efficiency (45–73 kg grain kg−1 N), rather than low supply of soil N or loss of fertiliser N. Thus, often the applications of large amounts of N fertiliser (39–175 kg N ha−1) by farmers to increase yields of high yielding variety Boro rice were not justified agronomically and ecologically. A rate of 39 kg N ha−1 is very low, hardly an environmental threat. No one single factor could be identified to explain the low internal efficiency. Therefore, it is concluded that the data presented tend to confirm the indication that yields are limited by a factor other than nitrogen, which could be crop establishment, plant density, water or pest management, micro-nutrients deficiency, poor seed and transplanted seedling quality, varieties and low radiation.  相似文献   

9.
The perennial C4 grass Miscanthus has been proposed as a biomass energy crop in Europe. Effects of crop age, irrigation and nitrogen fertilization on biomass and energy yields and N content of Miscanthus were investigated and the energy costs of production determined. After an establishment period of 1 year, cultivation of Miscanthus resulted in a dry matter production of over 37 t ha−1 year−1 over a period of 4 years. Irrigation and nitrogen level greatly affected Miscanthus biomass yield. In absence of N fertilization, irrigation did not modify biomass yield and the effect of irrigation increased with the increase in N level. The average N response ranged from 37 to 50 kg biomass kg−1 N applied. Because the calorific value of Miscanthus biomass (16.5 MJ kg−1) was not affected by irrigation and N fertilization, energy production depended exclusively on biomass yield. Maximum energy yield was 564 GJ ha−1 year−1. Without N supply and irrigation, energy yield was 291 GJ h−1. Net energy yield, calculated as the difference between energy output and input, but without inclusion of drying costs, was 543 GJ ha−1 with N fertilization and irrigation and 284 GJ ha−1 without; the ratios of energy output to input in crop production were 22 and 47, respectively.  相似文献   

10.
《Field Crops Research》2001,70(2):101-109
Field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) were intercropped and sole cropped to compare the effects of crop diversity on productivity and use of N sources on a soil with a high weed pressure. 15N enrichment techniques were used to determine the pea–barley–weed-N dynamics. The pea–barley intercrop yielded 4.6 t grain ha−1, which was significantly greater than the yields of pea and barley in sole cropping. Calculation of land equivalent ratios showed that plant growth factors were used from 25 to 38% more efficiently by the intercrop than by the sole crops. Barley sole crops accumulated 65 kg soil N ha−1 in aboveground plant parts, which was similar to 73 kg soil N ha−1 in the pea–barley intercrop and significantly greater than 15 kg soil N ha−1 in the pea sole crop. The weeds accumulated 57 kg soil N ha−1 in aboveground plant parts during the growing season in the pea sole crops. Intercropped barley accumulated 71 kg N ha−1. Pea relied on N2 fixation with 90–95% of aboveground N accumulation derived from N2 fixation independent of cropping system. Pea grown in intercrop with barley instead of sole crop had greater competitive ability towards weeds and soil inorganic N was consequently used for barley grain production instead of weed biomass. There was no indication of a greater inorganic N content after pea compared to barley or pea–barley. However, 46 days after emergence there was about 30 kg N ha−1 inorganic N more under the pea sole crop than under the other two crops. Such greater inorganic N levels during early growth phases was assumed to induce aggressive weed populations and interspecific competition. Pea–barley intercropping seems to be a promising practice of protein production in cropping systems with high weed pressures and low levels of available N.  相似文献   

11.
《Field Crops Research》1999,61(2):125-145
Yield, input use, productivity and profitability of irrigated rice systems were analyzed based on surveys in Senegal (Thiagar and Guédé), Mali (Office du Niger) and Burkina Faso (Kou Valley). The objective was to determine agronomic factors contributing to farmers' fertilizer-use efficiency and productivity, given current farmer practices. (A second paper addresses profitability and risk issues). Grain yields were highly variable, within and across sites. Minimum grain yield was 0.2 t ha−1 (Thiagar), maximum recorded grain yield was 8.7 t ha−1 (Office du Niger). The yield gap between actual farmers' yield and simulated potential or maximum attainable farmers' yield ranged from 0.6 to 5.7 t ha−1 (Kou), 1.8 to 8.2 t ha−1 (Thiagar), 0.3 to 6.3 t ha−1 (Office du Niger), 0.8 to 5.7 t ha−1 (Guédé), indicating considerable scope for improved yield. Physiological nitrogen efficiency (δ grain yield/δ N uptake) was mostly between 40 and 80 kg grain kg−1 plant N. Apparent recovery of fertilizer N was highly variable (average: 30–40% of applied N). Timing of N fertilizer application by farmers was extremely variable and often did not coincide with critical growth stages of the rice plant. Other agronomic constraints included: use of relatively old (>40 days) seedlings at transplanting (Kou, Office du Niger), P and/or K deficiency (Office du Niger), unreliable irrigation water supply (Kou, dry season), delayed start of the wet growing season resulting in yield losses of up to 20% due to cold-induced spikelet sterility (Kou, Guédé, Office du Niger), weed problems (Thiagar), and late harvesting (Thiagar). Discussions during meetings with farmers at the survey sites revealed that farmers lacked knowledge on (i) optimal timing, dosage and mode of fertilizer application, (ii) optimal sowing dates to avoid yield loss due to cold- or heat-induced sterility, and (iii) the importance of N as the main limiting factor to yield. Possibilities to achieve a sustainable increase in rice productivity and profitability in West African irrigation systems are discussed.  相似文献   

12.
《Field Crops Research》2004,85(2-3):213-236
Three different experiments were designed to study the effects of N fertilizer rate, timing and splitting, and the response to combined application of N and S fertilizer on the bread-making quality of hard red spring wheat (Triticum aestivum L.) over a 3-year period in Vertisols under rainfed Mediterranean conditions. The following parameters were analyzed: grain yield, test weight, grain protein content, gluten index and alveograph parameters (W: alveogram index; P: dough tenacity; L: dough extensibility; P/L: tenacity–extensibility ratio). The N rate experiment included rates of 0, 100, 150 and 200 kg N ha−1 applied on four different sites. The experiment was designed as a randomized complete block with four blocks. For the experiment on N timing and splitting, a single rate of 150 kg N ha−1 was used, different fractions being applied at sowing, tillering and stem elongation, at a single site; again, experimental design was a randomized complete block with four blocks. Finally, for the experiment on the response to combined application of N and S fertilizer, a single fertilizer dose of 150 kg N ha−1 was applied in two forms (urea+ammonium nitrate and urea+ammonium nitrosulfate) with one leaf application at ear emergence (zero, 25 kg S ha−1, 25 kg N ha−1, 25kgSha−1+25 kg N ha−1 and 50 kg N ha−1), also at a single site, using a split-plot design with four replications. Year-on-year variation in rainfall led to marked variations in wheat yield, grain protein content and bread-making quality indices. A close correlation was observed between rainfall over the September–May period and both grain yield and grain protein content (optimum values for both being recorded in the rainfall range 500–550 mm) as well as the alveogram index. A negative correlation was observed between mean maximum temperatures in May and both test weight and alveogram index (W). N fertilizer rate had a more consistent effect on bread-making quality than on grain yield. The highest values for grain yield were recorded at an N rate of 100 kg ha−1, while maximum grain protein content values were recorded at 150 kg ha−1. Application of half or one-third of total fertilizer N at stem elongation improved grain yield and grain protein content with respect to applications at sowing alone or at both sowing and tillering. Increased N rates led to a considerable increase in W values and to a reduction in the P/L ratio, thus improving dough balance, with a negative effect on the gluten index. Leaf application of N at ear emergence only affected grain protein content and the W index. Soil or leaf application of S had no effect on protein quality indices. The response of grain yield and grain protein content to fertilizer N differed from that reported for temperate climates.  相似文献   

13.
《Field Crops Research》2005,92(1):75-84
The effect of irrigation with saline water on quality of Burley tobacco (cv. C 104) was investigated in Southern Italy over four consecutive years. A rainfed control (RC) was compared with treatments irrigated with volumes equal to crop evapotranspiration of saline waters at 0.5 (NW), 2.5 (SW1), 5 (SW2) and 10 (SW3) dS m−1 electrical conductivity (ECw). In 2000 and 2001 an additional salinity treatment (15 dS m−1 ECw) was included (SW4). The amounts of Cl added to the soil by irrigation ranged from 36.3 kg ha−1 (good quality water in 1999) to 16.2 Mg ha−1 (saline water at 15 dS m−1 ECw in 2000). Saline irrigation did not affect yield and yield components of cured leaves. In 1998 and 1999 the filling power of Burley tobacco did not change significantly with increasing salinity of the irrigation water. In 2000 and 2001 the filling power of SW2, SW3 and SW4 treatments was significantly less than that of NW. The Cl content of tobacco grown with SW2 was significantly greater than that grown with NW and there were no differences between SW1 through SW4 treatments. The filling power and the leaf Cl content were inversely related to the amount of Cl applied in the range between 40.3 kg ha−1 and 5.1 Mg ha−1. The filling power decreased and Cl increased up to the SW2 treatment; beyond that level neither Cl nor filling power changed in response to increasing amounts of Cl applied. The leaf alkaloid content was unaffected by salinity. Total N was unaffected by either the growing season or the saline treatments. Cigarettes obtained from saline treatments did not burn during the smoking test in 1998. In 1999 cigarettes made from SW1 and SW2 did burn, but those from SW3 did not. In 2000 and 2001 the smoking test was performed only on commercial blends containing 10 or 30% of cut tobacco from saline treatments and both blends burned similarly to cigarettes made entirely from tobacco grown under non-saline conditions. In conclusion, quality of Burley tobacco was unaffected by irrigation with saline water at 2.5 dS m−1 and the inhibitory effect of salinity on burning properties could be overcome by appropriate mixture in commercial blends.  相似文献   

14.
《Field Crops Research》2005,91(2-3):251-261
Winter rainfall in a Mediterranean region varies from year to year. Both release of inorganic N from soil organic matter (SOM) or a legume cover crop (LCC) and subsequent nitrate movement in the soil profile are strongly affected by winter rainfall, through its effects on soil water status and on vertical flux. N accumulation of a LCC also varies over years due to weather effects on growth. Thus, these two factors need to be taken into account for efficient use of SOM-N and LCC-N in a wheat (Triticum aestivum L.) rotation. To determine how winter weather might affect the performance of wheat-fallow rotations that include an LCC grown and incorporated during the fallow year, we used the CERES-wheat model and a 46-season weather record to simulate N dynamics of 2-year unfertilized and irrigated winter-LCC wheat systems with high LCC (236 kg N ha−1) or low LCC (118 kg N ha−1) inputs. Unfertilized and fertilized fallow-wheat controls were also simulated. Within a given LCC input value, coefficients of variation for total seasonal N supply (the sum of predicted wheat N uptake, N leaching and inorganic soil N at wheat maturity) over years were <15%, despite the fluctuating winter rainfall (CV 48%). Average N leaching was predicted to be highest in the high LCC input system (108 kg N ha−1), followed by the low LCC input system (86 kg N ha−1) and midseason-intensive and planting-intensive fertilized wheat-fallow systems (82 and 72 kg N ha−1, respectively), and least in the unfertilized wheat-fallow system (54 kg N ha−1). N leaching exceeded 100 kg N ha−1 in 4, 20, 16, 18, and 29 seasons out of 46 seasons, respectively, in the unfertilized and planting-intensive and midseason-intensive fertilized wheat-fallow rotations and in wheat rotations with low and high LCC inputs. There was no difference in predicted wheat yield among the four systems with N inputs from fertilizer or LCC, but yield was lower in the unfertilized wheat-fallow rotation. If the goal of use of LCC was to attain the same yield level as high LCC input or fertilized wheat system while diminishing the risk of N leaching, the low LCC input case met this goal in the short term. However, a simple balance sheet using the model showed that the N balance of the low LCC input system was −147 kg N ha−1 season−1, if we assumed 50% of LCC-N was derived from atmospheric fixation. The low-LCC-input system could therefore fail to maintain inherent soil N fertility in the long term unless nearly 100% LCC-N was derived from fixation.  相似文献   

15.
《Field Crops Research》2006,96(1):125-132
The late-season foliar application of urea may increase yield and grain quality of wheat (Triticum aestivum L.). Limited information is available regarding the effect of late urea spraying on the performance of wheat cultivars under various basal N fertilization rates. Field experiments were conducted during 2000 through 2002 to evaluate the responses of six winter wheat cultivars to foliar urea (30 kg N ha−1) treatment around flowering at low (67 kg N ha−1) and high (194 kg N ha−1) basal N fertilization rates. Following urea spraying at low N rate, all cultivars increased grain yields to a similar extent (by an average of 7.8% or 509 kg ha−1) primarily due to an increase in the 1000-kernel weight. No yield response to the late-season urea treatment occurred at high basal N rate where grain yields averaged 24.9% (1680 kg ha−1) higher than those at low N rate. In contrast, late foliar urea application similarly improved grain quality at both low and high N rates by an average of 5 g kg−1 (4.5%) for protein content, 3.2 cm3 (11.9%) for Zeleny sedimentation, and 20 g kg−1 (8.6%) for wet gluten. These quality increments were consistent in all growing seasons regardless of significant variations in grain yields and protein concentrations across years. However, most cultivars failed to achieve breadmaking standards at low N rate as quality increments associated with the urea treatment were relatively small when compared to those achieved by high basal N rate. Late urea spraying had no effect on the falling number, whereas some cultivars showed small, but significant reduction in the gluten index at both N rates. Cultivars improved the hectolitre weight with the late-season urea treatment only at low N rate. Significant cultivar × urea interactions existed for most quality traits, which were due to the cultivar differences in the magnitude of responses. Thus, late-season urea spraying consistently produced larger yields at low basal N rate, and resulted in cultivar-dependent increases in protein content, Zeleny sedimentation, and wet gluten at both low and high N rates.  相似文献   

16.
《Field Crops Research》2006,95(2-3):383-397
Genetic gains in grain yield and related phenotypic attributes have been extensively documented in maize (Zea mays L.), but the effect of breeding on the physiological determinants of grain yield is yet poorly understood. We determined genetic gains in grain yield and related physiological traits for seven maize hybrids developed for the central region of Argentina between 1965 and 1997. Gains were expressed as a function of the year of release (YOR). Hybrids were cropped in the field at five stand densities (from almost isolated plants to supra-optimal levels) during two contrasting growing seasons (E1 and E2). Water and nutrient stress were prevented and pests controlled. Genetic gains in grain yield (≥13.2 g m−2 YOR−1) were mainly associated with improved kernel number, enhanced postsilking biomass production, and enhanced biomass allocation to reproductive sinks, but computed gains were affected by the environment. Differences among hybrids arose at the start of the critical period, and were evident as improved mean radiation use efficiency (≥0.026 g MJ−1 YOR−1), enhanced plant growth rate at near optimum stand density (≥0.04 g pl−1 YOR−1), and improved biomass partitioning to the ear around silking (0.0034 YOR−1, only for E1). Improved biomass production after silking was related to an increased light interception (≥4.7 MJ m−2 YOR−1), and allowed for an almost constant source–sink ratio during grain filling. This trend determined no trade-off between kernel number and kernel weight. In contrast to previous studies, genetic gains were detected for potential productivity (e.g., maximum grain yield) on a per plant basis (i.e., under no resource competition), a promising aspect for the improvement of crop grain yield potential.  相似文献   

17.
A large number of spelt wheat genotypes (ranging from 373 to 772) were evaluated for grain concentrations of protein and mineral nutrients under 6 different environments. There was a substantial genotypic variation for the concentration of mineral nutrients in grain and also for the total amount of nutrients per grain (e.g., content). Zinc (Zn) showed the largest genotypic variation both in concentration (ranging from 19 to 145 mg kg−1) and content (ranging from 0.4 to 4.1 μg per grain). The environment effect was the most important source of variation for grain protein concentration (GPC) and for many mineral nutrients, explaining between 37 and 69% of the total sums of squares. Genotype by environment (G × E) interaction accounted for between 17 and 58% of the total variation across the minerals. GPC and sulfur correlated very significantly with iron (Fe) and Zn. Various spelt genotypes have been identified containing very high grain concentrations of Zn (up to 70 mg kg−1), Fe (up to 60 mg kg−1) and protein (up to 30%) and showing high stability across various environments. The results indicated that spelt is a highly promising source of genetic diversity for grain protein and mineral nutrients, particularly for Zn and Fe.  相似文献   

18.
《Field Crops Research》2006,99(1):24-34
Quantitative information regarding nitrogen (N) accumulation and its distribution to leaves, stems and grains under varying environmental and growth conditions are limited for chickpea (Cicer arietinum L.). The information is required for the development of crop growth models and also for assessment of the contribution of chickpea to N balances in cropping systems. Accordingly, these processes were quantified in chickpea under different environmental and growth conditions (still without water or N deficit) using four field experiments and 1325 N measurements. N concentration ([N]) in green leaves was 50 mg g−1 up to beginning of seed growth, and then it declined linearly to 30 mg g−1 at the end of seed growth phase. [N] in senesced leaves was 12 mg g−1. Stem [N] decreased from 30 mg g−1 early in the season to 8 mg g−1 in senesced stems at maturity. Pod [N] was constant (35 mg g−1), but grain [N] decreased from 60 mg g−1 early in seed growth to 43 mg g−1 at maturity. Total N accumulation ranged between 9 and 30 g m−2. N accumulation was closely linked to biomass accumulation until maturity. N accumulation efficiency (N accumulation relative to biomass accumulation) was 0.033 g g−1 where total biomass was <218 g m−2 and during early growth period, but it decreased to 0.0176 g g−1 during the later growth period when total biomass was >218 g m−2. During vegetative growth (up to first-pod), 58% of N was partitioned to leaves and 42% to stems. Depending on growth conditions, 37–72% of leaf N and 12–56% of stem N was remobilized to the grains. The parameter estimates and functions obtained in this study can be used in chickpea simulation models to simulate N accumulation and distribution.  相似文献   

19.
《Field Crops Research》2006,95(2-3):103-114
The Apulia region in Southern Italy is an important area for sugar beet cultivation. It is characterised by clay soils and a hot-arid and winter-temperate climate. The capability of sugar beet to exploit solar radiation, water use and irrigation supply in root yield, total dry matter and sucrose production was studied and analysed in relation to two experimental factors: sowing date – autumn (October–December) and spring (March) – and irrigation regime – optimal and reduced (respectively with 100 and 60% of actual evapotranspiration). Data sets from three experiments of spring sowing and three of autumn sowing were used to calculate: (1) water use efficiency in the conversion in dry matter (WUEdm, plant dry matter at harvest versus seasonal water use ratio), in sucrose (WUEsuc, sucrose yield versus seasonal water use ratio); (2) irrigation water use efficiency in the conversion in dry matter (IRRWUEdm), in sucrose (IRRWUEsuc) and fresh root yield (IRRWUEfr); and (3) radiation use efficiency (RUE, plant dry matter during the crop cycle and at harvest versus intercepted solar radiation ratio).Autumnal beet was more productive than spring for fresh root, plant total dry matter, sucrose yield and concentration; also WUEsuc and IRRWUEs were higher in the autumnal sugar beet, but no difference was observed in WUEdm (on average, 2.83 g of dry matter kg−1 of water used). An average saving of about 26% of seasonal irrigation supply (equivalent to about 100 mm) was measured in the three years with the earliest sowing time. The optimal irrigation regime produced higher root yield, plant total dry matter and sucrose yield than the reduced one; on the contrary the IRRWUEfr and IRRWUEdm were higher in the reduced irrigation strategy. WUEs and IRRUWEs correlated positively with the length of crop cycle, expressed in growth degree days and, in particular, to the length of the period from full soil cover canopy to crop harvest, the period when plant photosynthetic activity and sucrose accumulation are at maximum rates. Seasonal RUE was higher in the spring than in the autumn sowing (1.14 μg J−1 versus 1.00 μg J−1). The RUE values during the crop cycle reached the maximum in the period around complete canopy soil cover. The results showed the importance for better use of water and radiation resources of autumnal sowing time and of reduced irrigation regime in sugar beet cropped in a Mediterranean environment.  相似文献   

20.
《Field Crops Research》1998,58(1):55-67
The current nitrogen (N) use in silage maize production can lead to considerable N losses to the environment. Maize growers fear that a reduction of N inputs needed to minimize N losses might depress yields. The objective of this study was therefore to quantify: (1) the response of silage maize dry matter (DM) yields to N, (2) the economically optimal N reserve, and (3) the trade-off between silage maize DM yield and N losses. The indicators of N losses used in this study were the difference between N input and N uptake and the post-harvest residual soil mineral N. Regression models were used to fit DM yields and N uptakes of silage maize measured in 25 experiments on sandy soils in the Netherlands to the sum (SUMN) of the soil mineral N reserve (SMNearly) in March–April, plus mineral N in fertilizer, plus ammonium N in spring-applied slurry. The values obtained for the economically optimal SUMN in the upper 30 and 60 cm of soil were, respectively, 173 and 195 kg N ha−1, when we assumed that the value of 1 kg fertilizer N equals the value of 5 kg silage DM. The economically optimal SUMN was not significantly related to the attainable DM yield. The apparent N recovery (ANR) of maize averaged 53% at the economically optimal SUMN. The ANR rose considerably, however, when N was applied at lower rates, indicating that N losses may be considerably smaller in less intensive maize cropping. When maize was fertilized at 100 kg N ha−1 below the economic optimum, the ANR was 73%, the difference between the mineral N input and the N crop uptake decreased by 57 kg N ha−1 and the soil mineral N residue at the end of the growing season (0–60 cm) decreased by 24 kg N ha−1. The associated reduction in DM yield averaged 16%. Fertilizer prices would have to be as much as four times higher to make maize growers spontaneously reduce the application rates by a 100 kg N ha−1, however. It is concluded that adjusting the N input to a level below the economically optimal rate can reduce the risks for N losses to the environment associated with conventional maize production, with a limited effect on silage yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号