首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A financial assessment of forest investments is comprehensive if the analysis includes reliable yield estimates, land expectation value (LEV) and risk calculation. All of these aspects were considered and applied to teak plantations in Colombia, an emergent economy where high forest productivity, low opportunity cost of land, and decreased financial/economic risk have substantially contributed to promote forest investments. The von Bertalanffy non-linear mixed effect model was used to estimate forest yields using data collected from 31 permanent sample plots, measured over a 17 year period. A stochastic version of LEV along with other financial criteria was calculated by using a computer algorithm and Monte Carlo simulation. Finally, probabilities obtained from stochastic financial calculations were used in logistic models to estimate probabilities of success for a forest plantation project, a measure of risk assessment, after changing land prices. Results suggest that the potential forest productivity (i.e., the biological asymptote) ranges from 93 to 372 m3 ha 1. The mean annual increment is 27.8 m3 ha 1 year 1, which is attained 6 years after the forest plantation is established. Profitability analyses for teak plantations in Colombia suggest a LEV of US$7000 ha 1. The risk analyses indicate negligible financial risk for forestlands whose prices are lower than US$2000 ha 1.  相似文献   

2.
We examined tree growth and dynamics of organic matter and soil nutrient pools annually for 7 years under contrasting harvest residue management treatments in south-western Australia. Two second rotation Eucalyptus globulus sites were established on soils of contrasting fertility and productivity. Harvest residues were either (i) burnt, (ii) removed, (iii) retained, or (iv) retained at double the normal quantity. More than 31 and 51 Mg ha−1 of harvest residues resulted from harvesting of 8-year-old first rotation stands at a low fertility Grey Sand site, and a higher fertility Red Earth site, respectively. Harvest residue retention increased tree growth at the lower fertility Grey Sand site, but had no effect on plantation productivity at the Red Earth site up to 7 years. Burning resulted in a direct loss of most of the organic material, and up to 200, and 350 kg ha−1 of N at the Grey Sand and Red Earth sites, respectively. Significant quantities of organic material in harvest residues (>50 Mg ha−1 C in the double residues treatment at the Red Earth site) had a limited effect on soil C pools during the 7 years of this study. Retention of residues limited immediate losses of nutrients, and resulted in higher quantities of soil exchangeable K, Ca and Mg during the 7 years after establishment. However, the content of soil exchangeable cations, especially K, decreased during the first 4 years of establishment in all treatments, including those where residues were retained. After 4 years, cation quantities in soil started to increase again, probably due to the decomposition of leaves and twigs from litterfall.  相似文献   

3.
The objectives of this study were to examine the effects of stand development and soil nutrient supply on processes affecting the productivity of loblolly pine (Pinus taeda L.) over a period approximately equal to a pulpwood rotation (18 years). The experiment consisted of a 2×2 factorial combination of complete and sustained weed control and annual fertilization treatments (C: control treatment, F: fertilization, W: weed control, FW: combined fertilization and weed control), located on a Spodosol in north-central Florida, USA. The reduction of soil nutrient limitations through fertilization or control of competing vegetation resulted in dramatic increases in almost every measure of productivity investigated, including height (19.7 m in the FW treatment versus 12.5 m in the C treatment at age 18 years), basal area (FW=44.2 m2 ha−1, F=39.6 m2 ha−1, W=36.6 m2 ha−1, C=19.9 m2 ha−1 at age 16 years), stemwood biomass accumulation (114 Mg ha−1 in FW versus 42.8 Mg ha−1 in C at age 18 years), foliar nitrogen concentration (1.53% in plots receiving fertilization versus 1.06% in unfertilized plots at age 17 years) and leaf area index (age 16-year peak projected of approximately 3.3 at age 9–10 years in F and FW plots, 2.5 in the W treatment and 1.5 in the C plots). Cultural treatments also decreased the growth ring earlywood/latewood ratio, and accelerated the juvenile wood to mature wood transition. While soil nutrient supply was a major determinant of productivity, production changes that occurred within treatments over the course of stand development were equally dramatic. For example, between age 8 and 15 years, stemwood PAI in the FW treatment declined by 275%; similarly large reductions occurred in the F and W treatments over the same time period. The reductions in PAI in the treated plots were linearly related to stand BA, suggesting the decline in productivity was associated with the onset of inter-tree competition. Responses of stemwood PAI to re-fertilization treatments at age 15 years suggests that the declines in growth and growth efficiency with time were partially attributable to nutrient limitations.  相似文献   

4.
Loblolly pine (Pinus taeda L.) is a highly plastic species with respect to growth responses to forest management. Loblolly pine is the most planted species across the southern United States, a region with the most expansive and intensively managed forest plantations in the world. Management intensity, using tools such as site preparation and fertilization, is increasing greatly in scope over time. To better define to the productive potential of loblolly pine under intensive management, the influence of 6 years of management with weed control (W), weed control plus irrigation (WI), weed control plus irrigation and fertigation (irrigation with a fertilizer solution) (WIF), or weed control plus irrigation, fertigation, and pest control (WIFP) since plantation establishment on stand productivity in loblolly pine was examined. The site is located near Bainbridge, GA (30°48′N latitude and 84°39′W longitude) and is of medium quality (site index=18 m, base age 25). Increasing management intensity greatly accelerated stand development and biomass accumulation. At age 6 total production (above plus belowground) was nearly doubled from 50 to 93 Mg ha−1 in WIFP stands compared to W stands, and standing stem biomass increased from 24 Mg ha−1 in W stands to 48 Mg ha−1 in response to WIFP treatment. Stem current annual increment (CAI) peaked at age 5 in the WIF and WIFP stands at 17–18 Mg ha−1 per year at a basal area between 18 and 21 m2 ha−1. Year to year variation in CAI was better explained by previous-year leaf area index (LAI) than current-year LAI. Maximum stemwood production in loblolly pine was achieved through large increases in LAI and small decreases in allocation to woody roots (tap+coarse roots) versus woody shoots (stem+branches) associated with intensive treatments.  相似文献   

5.
The effects of soil compaction and cultivation on soil mineral N dynamics were investigated through an 18-month, in situ N mineralisation experiment during the inter-rotation and early establishment period of a second rotation (2R) hoop pine (Araucaria cunninghamii Aiton ex A. Cunn) plantation in southeast Queensland, Australia. Treatments were 0, 1 and 16 passes of a fully laden forwarder (gross weight, 40.2 Mg) and cultivation by disc plough (zero cultivation and cultivation). Nitrate N was the dominant form of mineral N throughout the 18-month sampling period in both non-cultivated and cultivated soils, varying between 10 and 40 kg ha−1 whilst ammonium N remained <10 kg ha−1. Compaction had no significant effect on N mineralisation or nitrification. However, the remediation of the effects of compaction on soil through the use of the disc plough had significant impacts on N mineralisation, nitrification and N leaching. On a seasonal basis, the mean net N mineralisation increased from around 30 to 53 kg ha−1, nitrification from 28 to 43 kg ha−1 and nitrate N leaching from around 10 to 73 kg ha−1 following cultivation.  相似文献   

6.
Two levels each of thinning and fertilization were applied to a 7-year-old loblolly pine (Pinus taeda L.) plantation on a nitrogen- and phosphorus-deficient West Gulf Coastal Plain site in Louisiana. Levels of thinning were no thinning, or thinning applied 7 and 14 years after stand initiation. Levels of fertilization were no fertilization or broadcast fertilization with diammonium phosphate at age 7 years plus refertilization with urea, monocalcium phosphate, and potash at age 14 years. Long-term measurements of climate, stand development and productivity, projected leaf area index, and foliar nutrition were initiated at age 11 years. We found that by age 17 years, thinning increased mean live-crown length from 4.2 to 7.8 m, and mean tree diameter from 15.0 to 21.8 cm compared to the unthinned treatment. After rethinning at age 14 years, stand basal area increased 1.2 and 19.2% between ages 15 and 17 years on the unthinned and thinned plots, respectively. Refertilization at age 14 years reestablished foliar N, P and K sufficiency, which increased leaf area index from 4.2 to 6.0 m2 m−2 on the unthinned plots and from 3.2 to 3.8 m2 m−2 on the thinned plots, and subsequently, increased gross stand biomass from 114 to 141 Mg ha−1 on the unthinned plots and from 78 to 95 Mg ha−1 on the thinned plots by age 17 years. Leaf area was an important factor controlling loblolly pine productivity. At our study site, however, competition for light and water and nutrition-limited foliage growth influenced the variability and scope of this relationship. Our results suggest that a positive and linear relationship between leaf area and loblolly pine productivity does not universally occur on loblolly pine sites.  相似文献   

7.
A thinning levels study was initiated in a 9-year-old loblolly pine (Pinus taeda L.) plantation containing 26.6 m2 ha−1 basal area during the spring of 1984 in southeastern Oklahoma. Thinning treatments consisted of (1) three control plots (BA100), (2) three plots thinned to approximately 50% of the original basal area (BA50) and (3) three plots that were thinned to 25% of the original basal area (BA25). In 1987 the BA50 and BA25 plots were both rethinned to a basal area of 12 m2 ha−1. No other thinnings were done through age 24.The control plots have attained a basal area of 45.3 m2 ha−1 and basal area is now starting to decline. The BA25 and BA50 plots have basal areas between 34 and 35 m2 ha−1. Mortality has averaged about 90 trees ha−1 per year from age 10 to age 24 on the control plot, declining from 2078 trees ha−1 at age 10 to 827 trees ha−1 at age 24. Mortality losses in the BA25 and BA50 plots have been only 3.2–7.7 trees ha−1 per year over the entire study period. Cumulative stem biomass lost to mortality was 10.5, 16.0 and 61 Mg ha−1, respectively, for the BA25, BA50 and BA100 treatments. Cumulative standing live biomass at age 24 in the BA100 treatment is 132 Mg ha−1. Cumulative standing live biomass in the BA25 and BA50 treatments at age 24 is 86 and 79%, respectively, of that observed in the BA100 treatment. These results suggest wide ranges of residual stand densities left after an early thinning will produce a high percentage of the potential total maximum standing stem biomass. Diameter distributions at age 24 show only 33% of the trees in the BA100 treatments have the dimensions to be sawtimber (≥30 cm) but 92 and 95% of the trees in the BA25 and BA50, respectively, are sawtimber dimension or larger. Mean annual stem biomass production (MAI) of the BA100 treatment is 7.5 Mg ha−1 per year at age 24. MAI of the thinned treatments is about 5.1 Mg ha−1 per year and is converging to that of the BA100 treatment. The basis for this convergence is not that the live trees in the BA100 treatment are producing live biomass less rapidly than the thinned plots, but that mortality losses in the BA100 plot are much higher. Current annual stemwood production in all treatments is often limited by the severe summer droughts that occur in this region. The wide variations in weather experienced at this site also result in variations in earlywood:latewood ratio and ring specific gravity.  相似文献   

8.
Forest degradation and savannization are critical environmental issues associated with forest fires in the Gran Sabana, southern Venezuela. Yet little is known about the ecological consequences resulting from the conversion of forest to savanna in this region. In this study we quantified the change in C and nutrients in aboveground biomass along a fire induced gradient consisting of unburned tall primary forest (TF), slightly fire-affected medium forest (MF), strongly fire-affected low forest (LF) and savanna (S). Total aboveground biomass (TAGB) decreased from 411 Mg ha−1 in TF to 313 Mg ha−1 in MF, 13 Mg ha−1 in LF and 5 Mg ha−1 in S. The pools of C and nutrients in TAGB decreased 13–25% from TF to MF, 88–97% from TF to LF and 97–98% from TF to S. In TF and MF, about 40% of C and over 80% of base cations (Ca, K and Mg) was stored in TAGB, whereas the bulk of N and P were stored in the soil (90% of N and 72% of P). This distribution of elements was different in LF and S, where about 50% of base cations were stored in TAGB, and more than 94% of C, 98% of N and 87% of P were stored in the mineral soil. The large amount of elements stored in the biomass of the tall unburned forest demonstrates the high sensitivity of this ecosystem to fire. The change from tall forest to low forest and savanna implies large losses of C and nutrients stored in aboveground biomass and soils (namely 390–399 Mg C ha−1, 11–13 Mg N ha−1, 70–72 kg P ha−1, 783–818 kg K ha−1, 736–889 kg Ca ha−1, and 200–225 kg Mg ha−1). Such drain of C and nutrients in soils extremely low in silicates, which can replenish the lost nutrients by weathering reduces the recuperation chance of these ecosystems and therefore their future capacity to sequester C and accumulate nutrients.  相似文献   

9.
Aboveground biomass and nutrients and soil chemical characteristics were examined in young plantations of four indigenous tree species: Hieronyma alchorneoides, Vochysia ferruginea, Pithecellobium elegans, and Genipa americana, growing in mixed and pure stands at La Selva Biological Station, Costa Rica. Total tree biomass production rates ranged from about 5.2 Mg ha−1 year−1 for G. americana to 10.3 Mg ha−1 year−1 for H. alchorneoides pure stands, and for the species mixture it was about 8.9 Mg ha−1 year−1. Branches and foliage formed 25–35% of total tree biomass but they represented about 50% of total tree nutrients. H. alchorneoides, the four species mixture, and P. elegans had the greatest accumulations of total aboveground nutrients per hectare. The importance of the plantation floor as a nutrient compartment varied temporally. When forest floor litter biomass was at its peak, plantation floor litter N, Ca, and Mg were roughly equal to, or greater than stem nutrients for all species except for P. elegans. For P. elegans, the plantation floor consistently represented a very low proportion of total aboveground nutrients. G. americana and V. ferruginea trees showed 55–60% less biomass accumulation in mixed than in pure stands while H. alchorneoides and P. elegans trees grew 40–50% more rapidly in mixture. P. elegans foliage had 60% lower Ca but higher P concentrations in mixed than in pure stands, and G. americana had higher foliar Mg in mixed than in pure stands. V. ferruginea stands had the highest concentrations of soil Ca, Mg, and organic matter, particularly in the top layers. Relative to pure plantations, soil nutrient concentrations in mixed plantations were intermediate for N, P, and K, but lower for Ca and Mg. The results of this study can be used in the selection of tree species and harvest designs to favor productivity and nutrient conservation.  相似文献   

10.
We simulated loblolly pine (Pinus taeda L.) net canopy assimilation, using BIOMASS version 13.0, for the southeastern United States (1° latitude by 1° longitude grid cells) using a 44-year historical climate record, estimates of available water-holding capacity from a natural resource conservation soils database, and two contrasting leaf area indices (LAI) (low; peak LAI of 1.5 m2 m−2 projected, and high; 3.5 m2 m−2). Median (50th percentile) available water-holding capacity varied from 100 to 250 mm across the forest type for a normalized 1.25 m soil profile. Climate also varied considerably (growing season precipitation ranged from 200 to 1600 mm while mean growing season temperature ranged from 13° to 26°C). Net canopy assimilation ranged from 9.3 to 19.2 Mg C ha−1 a−1 for high LAI and the 95th percentile of available water-holding capacity simulations.We examined the influence of soil available water-holding capacity, and annual variation in temperature and precipitation, on net canopy assimilation for three cells of similar latitude. An asymptotic, hyperbolic relationship was found between the 44-year average net canopy assimilation and soil available water-holding capacity. Shallow soils had, naturally, low water-holding capacity (<100 mm) and, subsequently, low productivity. However, median available water-holding capacity (125–150 mm) was sufficient to maintain near maximum production potential in these cells.Simulations were also conduced to examine the direct affects of soil available water on photosynthesis (PN) and stomatal conductance (gS) on net canopy assimilation. In the absence of water limitations on PN and gS, net canopy assimilation increased by only 10% or less over most of the loblolly pine region (when compared to simulations for median available water-holding capacity with water influences in place). However, the production differences between high and low LAI, at the median soil available water-holding capacity, ranged from 30% to 60% across the loblolly pine range. Vapor pressure deficit was found to dramatically reduce productivity for stands of similar LAI, incident radiation, rainfall, and available water-holding capacity. Thus, these simulations suggest that, regionally, loblolly pine productivity may be more limited by low LAI than by soil available water-holding capacity (for soils of median available water-holding capacity or greater). In addition, high atmospheric forcing for water vapor will reduce net assimilation for regions of otherwise favorable available water and LAI.  相似文献   

11.
Reforestation and afforestation have been suggested as an important land use management in mitigating the increase in atmospheric CO2 concentration under Kyoto Protocol of UN Framework Convention on climate change. Forest inventory data (FID) are important resources for understanding the dynamics of forest biomass, net primary productivity (NPP) and carbon cycling at landscape and regional scales. In this study, more than 300 data sets of biomass, volume, NPP and stand age for five planted forest types in China (Larix, Pinus tabulaeformis, Pinus massoniana, Cunninghamia lanceolata, Pouulus) from literatures were synthesized to develop regression equations between biomass and volume, and between NPP and biomass, and stand age. Based on the fourth FID (1989–1993), biomass and NPP of five planted forest types in China were estimated. The results showed that total biomass and total NPP of the five types of forest plantations were 2.81 Pg (1 Pg = 1015 g) and 235.65 Mg ha−1 yr−1 (1 Mg = 106 g), respectively. The area-weighted mean biomass density (biomass) and NPP of different forest types varied from 44.43 (P. massoniana) to 146.05 Mg ha−1 (P. tabulaeformis) and from 4.41 (P. massoniana) to 7.33 Mg ha−1 yr−1 (Populus), respectively. The biomass and NPP of the five planted forest types were not distributed evenly across different regions in China. Larix forests have the greatest variations in biomass and NPP, ranging from 2.7 to 135.37 Mg ha−1 and 0.9 to 10.3 Mg ha−1 yr−1, respectively. However, biomass and NPP of Populus forests in different region varied less and they were approximately 50 Mg ha−1 and 7–8 Mg ha−1 yr−1, respectively. The distribution pattern of biomass and NPP of different forest types closely related with stand ages and regions. The study provided not only with an estimation biomass and NPP of major planted forests in China but also with a useful methodology for estimating forest carbon storage at regional and global levels.  相似文献   

12.
Necromass is an important stock of carbon in tropical forests. We estimated volume, density, and mass of fallen and standing necromass in undisturbed and selectively logged forests at Juruena, Mato Grosso, Brazil (10.48°S, 58.47°W). We also measured standing dead trees at the Tapajos National Forest, Para, Brazil (3.08°S, 54.94°W) complementing our earlier study there on fallen necromass. We compared forest that was selectively logged using reduced-impact logging methods and undisturbed forest. We estimated necromass density accounting for void volume for necromass greater than 10 cm diameter at Juruena for five decay classes that ranged from freshly fallen (class 1) to highly decayed material (class 5). Average necromass density adjusted for void space (±S.E.) was 0.71 (0.02), 0.69 (0.04), 0.60 (0.04), 0.59 (0.06), and 0.33 (0.05) Mg m−3 for classes 1 through 5, respectively. Small (2–5 cm) and medium (5–10 cm) size classes had densities of 0.52 (0.02) and 0.50 (0.04) Mg m−3, respectively. The average dry mass (±S.E.) of fallen necromass at Juruena was 44.9 (0.2) and 67.0 (10.1) Mg ha−1 for duplicate undisturbed and reduced impact logging sites, respectively. Small and medium sized material together accounted for 12–21% of the total fallen necromass at Juruena. At Juruena, the average mass of standing dead was 5.3 (1.0) Mg ha−1 for undisturbed forest and 8.8 (2.3) Mg ha−1 for forest logged with reduced impact methods. At Tapajos, standing dead average mass was 7.7 (2.0) Mg ha−1 for undisturbed forest and 12.9 (4.6) Mg ha−1 for logged forest. The proportion of standing dead to total fallen necromass was 12–17%. Even with reduced impact harvest management, logged forests had approximately 50% more total necromass than undisturbed forests.  相似文献   

13.
Nitrate in the soil water below the root zone is a pre-condition for nitrate leaching, and it indicates loss of nutrients from the forest ecosystem. Nitrate leaching may potentially cause eutrophication of surface water and contamination of ground water. In order to evaluate the extent of nitrate leaching in relation to land-use, a national monitoring programme has established sampling routines in a 7×7 km grid including 111 points in forests. During winters of 1986–1993, soil samples were obtained from a depth of 0–25, 25–50, 50–75 and 75–100 cm. Nitrate concentrations in soil solutions were determined by means of a 1 M KCl extraction. The influence of forest size, forest-type, soil-type, tree species and sampling time on the nitrate concentrations was analysed in a statistical model. The analysis focused on data from depth 75–100 cm, as nitrate is considered potentially lost from the ecosystem at this depth. The range of nitrate concentrations was 0–141 mg NO3–N dm−3 and the estimated mean value was 1.51 mg NO3–N dm−3. The concentration was influenced by (1) forest size (concentrations in forests <10 ha were higher than concentrations in forests >50 ha), (2) forest-type (afforested arable land had higher concentrations than forest-type `other woodland'), (3) soil-type (humus soils showed above average concentrations, and fine textured soils had higher concentrations than coarse textured soils), and (4) sampling time. Unlike other investigations, there was no significant effect of tree species. A few sites deviated radically from the general pattern of low concentrations. The elevated concentrations recorded there were probably caused by high levels of N deposition due to emission from local sources or temporal disruptions of the N cycle. The nitrate concentration in the soil solution below the root zone was mostly rather low, indicating that, generally, N saturation has not yet occurred in Danish forest ecosystems. However, median concentrations exceeding drinking water standards (11.3 mg NO3–N dm−3) were found at 7% of the sites. Furthermore, 30% of the sites had median concentrations above 2 mg NO3–N dm−3, suggested as an elevated level for Danish forest ecosystems, equalling annual N losses of more than 2–6 kg ha−1 year−1.  相似文献   

14.
This paper examines carbon (C) pools, fluxes, and net ecosystem balance for a high-elevation red spruce–Fraser fir forest [Picea rubens Sarg./Abies fraseri (Pursh.) Poir.] in the Great Smoky Mountains National Park (GSMNP), based on measurements in fifty-four 20 m × 20 m permanent plots located between 1525 and 1970 m elevation. Forest floor and mineral soil C was determined from destructive sampling of the O horizon and incremental soil cores (to a depth of 50 cm) in each plot. Overstory C pools and net C sequestration in live trees was estimated from periodic inventories between 1993 and 2003. The CO2 release from standing and downed wood was based on biomass and C concentration estimates and published decomposition constants by decay class and species. Soil respiration was measured in situ between 2002 and 2004 in a subset of eight plots along an elevation gradient. Litterfall was collected from a total of 16 plots over a 2–5-year period.The forest contained on average 403 Mg C ha−1, almost half of which stored belowground. Live trees, predominantly spruce, represented a large but highly variable C pool (mean: 126 Mg C ha−1, CV = 39%); while dead wood (61 Mg C ha−1), mostly fir, accounted for as much as 15% of total ecosystem C. The 10-year mean C sequestration in living trees was 2700 kg C ha−1 year−1, but increased from 2180 kg C ha−1 year−1 in 1993–1998 to 3110 kg C ha−1 year−1 in 1998–2003, especially at higher elevations. Dead wood also increased during that period, releasing on average 1600 kg C ha−1 year−1. Estimated net soil C efflux ranged between 1000 and 1450 kg C ha−1 year−1, depending on the calculation of total belowground C allocation. Based on current flux estimates, this old-growth system was close to C neutral.  相似文献   

15.
Uneven-aged silviculture in loblolly pine (Pinus taeda L.) stands has many economic and ecological benefits. Here, the consequences of various uneven-aged management regimes are predicted with the SouthPro simulator. Results indicate that target distributions for pines with residual merchantable basal areas of ≈12.5 m2 ha−1, maximum diameters of ca. 40 cm, and q-ratios of 1.2–1.25 for 2.5 cm DBH classes are likely to provide high economic returns on good sites when combined with hardwood control. Increasing this maximum diameter would enhance tree-size diversity, but reduce sawtimber production and profits. Retaining a hardwood component with 1.15–2.3 m2 ha−1 of basal area could enhance tree-species diversity, but this too would result in moderate reductions in income. Insisting on maximizing tree-size diversity or tree-species diversity among softwoods, soft hardwood, and hard hardwoods would be quite costly in terms of lost income and production. Results also illustrate how short-term economic incentives can lead to high-grading practices, despite substantial reductions in stand productivity and net returns in the long term.  相似文献   

16.
During the period 1976–1991, a combined experiment of acidification, liming and nitrogen addition in a mature spruce stand was conducted at Farabol in south-east Sweden. The aim of this study was to investigate the effects of these treatments on the ground vegetation 0, 1, 5 and 15 years after experimental establishment. The treatment regimes were nitrogen (200 kg N ha−1, repeated three times at 4–5-year intervals, totally 600 kg N ha−1), sulphur powder (50 and 100 kg S ha−1 a−1, totally 600 and 1200 kg ha−1), sulphur plus nitrogen (600+600 kg ha−1) and limestone (500 kg ha−1 a−1, i.e. totally 6000 kg ha−1). The results showed that nitrogen addition and liming promoted the abundance of the grass Deschampsia flexuosa, while acidification had a negative effect on D. flexuosa and herbs in the field layer. There was a negative reaction giving immediate damage to the bryophytes in connection with additions of nitrogen, sulphur powder and lime. The magnitude of damage and the capacity to recover varied among species as well as among treatments. The recovery from immediate damage after liming was much faster than after the treatments with sulphur powder and/or nitrogen. A negative interaction between sulphur powder and nitrogen was found for herbs and mosses where the combined effects were stronger than the effects of a single treatment alone. Acidification also had a negative effect on the total number of species. The results of this study showed that acidification and nitrogen deposition could negatively influence forest vegetation by changing the nutrient availability in the soils. Liming led to an improved growth of the forest ground vegetation and the flora changed towards a more nitrophilic species composition.  相似文献   

17.
In 1984, a liming experiment with a surface application of 4 t ha−1 of dolomitic limestone was started at the acidic N-saturated Norway spruce forest “Höglwald” in southern Germany and monitored until 2004. The decay of surface humus due to the accelerated mineralisation accounted for 18.5 ± 2.7 t ha−1 C or 50% of the initial pool and 721.6 ± 115.0 kg ha−1 N or 46% for N. Due to some translocation of organic material to the mineral soil the values to 40 cm depth are slightly lower (13.5 ± 4.4 t ha−1 C or 15% of the initial pool and 631.6 ± 192.8 kg ha−1 N or 13% for N). In the control plot NO3 concentrations at 40 cm depth were above the European level of drinking water (0.8 mmolc l−1 or 50 mg NO3 l−1) for nearly the whole investigation period. Liming increased NO3 concentrations in seepage water for approximately 15 years, and accelerated leaching losses by 396.2 NO3–N kg ha−1 from 1984 to 2003. The increase in pH of the soil matrix was more or less restricted to the humus layer and the upper 5 cm of the mineral soil during the whole time span, while the base cations Ca and Mg reached deeper horizons with seepage water. From 1984 to 2003, an amount that nearly equalled the applied Mg, was leached out of the main rooting zone, while most of the applied Ca was retained. The time series of the elemental concentrations in needles showed minor changes. Ca concentrations in needles increased with liming, while Mg remained nearly unchanged, and P decreased in older needles.  相似文献   

18.
Two field experiments, located in Central and Northern Sweden, were used to study the influence of standing volume on volume increment and ingrowth in uneven-aged Norway spruce (Picea abies (L.) Karst.) stands subjected to different thinnings. Each experiment had a 3 × 2 factorial block design with two replications. Treatments were thinning grade, removing about 45, 65, and 85% of pre-thinning basal area, and thinning type, removing the larger or the smaller trees, respectively. Each site also had two untreated control plots. Plot size was 0.25 ha. Volume increment was 0.5–6.8 m3 ha−1 year−1 for the plots, and significantly positively (p < 0.01) correlated with standing volume. Within treatment pairs, plots thinned from Above had consistently higher volume increment than plots thinned from Below. Ingrowth ranged from 3 to 33 stems ha−1 year−1, with an average of 14 and 21 stems ha−1 year−1 at the northern and southern site, respectively. At the southern site ingrowth was significantly negatively (p < 0.01) correlated with standing volume, but not at the northern site. Mean annual mortality after thinning was 2 and 7 stems ha−1 year−1at the northern and southern site, respectively.  相似文献   

19.
Tree growth, biomass productivity, litterfall mass and nutrient content, changes in soil chemical properties and understory forest succession were evaluated over a 8.5-year period in single- and mixed-species (50 : 50) plantations of two N2-fixing species, Casuarina equisetifolia and Leucaena leucocephala, and a non-fixing species, Eucalyptus robusta. At the optimal harvest age for maximum biomass production (4 years), total aboveground biomass ranged from 63 Mg ha−1 in the Eucalyptus monoculture to 124 Mg ha−1 in the Casuarina/Leucaena mixture, and was generally greater in the mixed-species than in single-species treatments due to increased productivity of the N-fixing species in the mixed stands. Total litterfall varied from 5.3 to 10.0 Mg ha−1 year−1 among treatments, or between 5.9% and 13.2% of net primary production. Litterfall production and rates of nutrient return for N, P, K, Ca and Mg were generally highest for Leucaena, intermediate for Casuarina and lowest for Eucalyptus. These rates were usually higher in the mixed-species than in monospecific stands due to differences in biomass productivity, but varied considerably depending on their species composition. Total system carbon and nutrient pools (in biomass plus soils to 40-cm depth) for N, P, K, Ca, Mg, Mn at four years were consistently greater in the plantation treatments than in the unplanted control plots. Relative to the single-species plantations, these system pools were generally larger in the mixed-species plantations for C (−10% to +10%), N (+17% to +50%), P (−1% to +63%), K (−19% to +46%), Ca (−10% to +48%), Mg (+5% to +57%) and Mn (+19% to +86%). Whole-tree harvests at four years would result in substantial system carbon and nutrient losses, although these estimated losses would not exceed the estimated gains realized during the four-year period of tree growth at this site. At 7.5 years, soil organic matter and effective cation exchange capacity were reduced in all plantation treatments relative to the control. Changes in soil nutrient content from 0 to 7.5 years were highly variable and not significantly different among treatments, although stands containing Leucaena generally showed higher rates of nitrogen and phosphorus accretion in soils than those with Eucalyptus and/or Casuarina. Natural regeneration of secondary forest tree and shrub species increased over time in all plantation treatments. A total of 24 native or naturalized forest species were recorded in the plantations at 8.5 years. Woody species abundance at this age was significantly greater beneath Casuarina than either Eucalyptus or the Eucalyptus/Leucaena mixed stands. Species richness and diversity, however, were greatest beneath stands containing Eucalyptus and/or Leucaena than in stands with Casuarina.  相似文献   

20.
Human induced changes in global environmental conditions are expected to influence or, as it is hypothesised in this study, have already influenced the biomass and growth of forest ecosystems. In this study, we reconstruct the history of tree growth and quantify the standing biomass along a chronosequence of six Norway spruce stands (Picea abies [L.] Karst; 16–142 years old) on acid soils in a mountainous region with high nitrogen deposition. The inventories of the study sites, as well as the historical stem growth of the sample trees were compared with common yield tables, representing growing conditions before 1960, to find out if and when significant changes in growth of trees had occurred. The growth at tree level (0.003–0.030 m3 yr−1) was about 150–350% higher than predicted by the yield tables, independent of tree age. Because of low stand densities due to early thinning, the increase of stem growth at stand level (90% higher than yield table predictions) and the stand volume (35% higher than yield table predictions) were not as high as the increase of growth at tree level. Total biomass at stand level (including stems, branches, twigs, needles and roots) ranged between 35 and 180 t C ha−1. Net primary productivity varied between 6 and 13 t C ha−1 yr−1. Intensive tree thinning activities probably stimulated growth of remaining trees, but the observed growth rates were beyond what would be expected from these activities exclusively. Thus it is assumed that the fertilisation effects of increased nitrogen deposition and CO2 concentration, and improved climatic conditions due to ongoing climate change, have contributed to the observed changes in stem growth and that the thinning activities were synergetic with changing environmental conditions. The implications for carbon sinks as accountable under the Kyoto Protocol are probably small, because changes in environmental conditions are not accountable under the Kyoto Protocol and most of the observed changes in growth took place before 1990, the baseline for the Kyoto Protocol. Additionally, it is assumed that impacts on the carbon balance of forest stands due to changes in the thinning regime after 1990, which would be accountable according to article 3.4 of the Kyoto Protocol, are very small without any synergetic changes in environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号