首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Field evaluation of surface irrigation systems play a fundamental role to determine the efficiency of the system as it is being used and to identify management practices and system configurations that can be implemented to improve the irrigation efficiency. This study evaluated the performance of an ‘improved’ traditional small-scale irrigation practice at Adada, a representative small-scale irrigation practice in Dire Dawa Administrative Council, Eastern Ethiopia. In order to determine numerical values of performance measures, certain parameters were measured/observed before, during and after an irrigation event while farmers are performing their normal irrigation practice. These parameters include: irrigated crop, irrigation method, stream size, cutoff time, soil moisture deficiency, and field size, shape and spacing. The results showed that the irrigation water applied to a farmer's plot during an irrigation event/turn was generally higher than the required depth to be applied per event. Since the irrigation method used was end-dyked, the major cause of water loss was due to deep percolation. The deep percolation loss was 32% in sorghum, 57% in maize, and 70% in tomato and potato fields. The type of irrigation system used, the ridged irrigation practice and the poor irrigation scheduling in the study sites were the main problems identified in the management and operations of the schemes. The following corrective measures are recommended to improve the system: (1) farmers should regulate the depth of irrigation water they apply according to the type of crop and its growth stage, change the field irrigation system and/or configuration especially for shallow rooted row crops, to furrow system, (2) guidance and support to farmers in developing and introduction of appropriate irrigation scheduling, and (3) future development interventions towards improvement of traditional irrigation practices should also focus in improving the on farm irrigation systems in addition to improving physical infrastructure of the scheme.  相似文献   

2.
Drip irrigation systems and irrigation strategies like deficit irrigation (DI) and partial root drying (PRD) are potential water saving irrigation systems and strategies. This paper analyses the Serbian farmer's economic incentive to use these water saving systems and strategies instead of the present sprinkler irrigation. The analysis is a partial budgeting analysis, based on irrigation application efficiency from the literature, standard figures for power requirements, pumping efficiency and friction losses for various sources of water and pressure requirements, yields and water use from recent Serbian field experiments, as well as prices and cost structures for potatoes collected in the Belgrade region. The analysis shows that changing the present system and strategy can save a significant amount of water (almost 50%). At the same time, however, irrigation costs are also significantly increased (more than doubled), and the total production costs are increased by 10% (deficit drip irrigation) and 23% (PRD). Increased taxes on water, investment subsidies, increased energy prices, and an increased yield or yield quality may provide incentives for farmers to change to new systems and strategies. The analysis indicates that a 0.80 to 1.97 € m−3 water tax is needed to make deficit drip irrigation and PRD profitable. The socioeconomic cost of providing water for irrigation and the alternative value of saved water are probably not that high. Thus, water taxation may not be a socioeconomic efficient means to improve the irrigation water productivity of Serbian potato production. Drip irrigation and PRD may, however, also increase the yield quality, and a 10-23% quality premium (price increase) is needed to make deficit drip irrigation and PRD profitable.  相似文献   

3.
Evaluating irrigation performance in a Mediterranean environment   总被引:3,自引:0,他引:3  
Assessment of irrigation performance is a prerequisite for improving water use in the agricultural sector to respond to perceived water scarcity. Between 1996 and 2000, we conducted a comprehensive assessment of the performance of the Genil–Cabra irrigation scheme (GCIS) located in Andalusia, southern Spain. The area has about 7,000 ha of irrigated lands distributed in 843 parcels and devoted to a diverse crop mix, with cereals, sunflower, cotton, garlic and olive trees as principal crops. Irrigation is on demand from a pressurized system and hand-moved sprinkler irrigation is the most popular application method. Six performance indicators were used to assess the physical and economic performance of irrigation water use and management in the GCIS, using parcel water-use records and a simulation model. The model simulates the water-balance processes on every field and computes an optimal irrigation schedule, which is then checked against actual schedules. Among the performance indicators, the average irrigation water supply:demand ratio (the ratio of measured irrigation supply to the simulated optimum demand) varied among years from 0.45 to 0.64, indicating that the area is under deficit irrigation. When rainfall was included, the supply:demand ratio increased up to 0.87 in one year, although it was only 0.72 in the driest year, showing that farmers did not fully compensate for the low rainfall with sufficient irrigation water. Nevertheless, farmers in the area made an efficient use of rainfall, as indicated by the relatively high values (0.72–0.83) for the ratio of actual:attainable crop yields. Water productivity (WP) in the GCIS oscillated between 0.72 €/m3 and 1.99 €/m3 during the 4 years and averaged 1.42 €/m3 of water supplied for irrigation, while the irrigation water productivity (IWP) averaged 0.63 €/m3 for the period studied. WP is higher than IWP because WP includes production generated by rainfall, while IWP includes only the production generated by irrigation.Communicated by A. Kassam  相似文献   

4.
Cotton (Gossypium hirsutum L.) is the most important industrial and summer cash crop in Syria and many other countries in the arid areas but there are concerns about future production levels, given the high water requirements and the decline in water availability. Most farmers in Syria aim to maximize yield per unit of land regardless of the quantity of water applied. Water losses can be reduced and water productivity (yield per unit of water consumed) improved by applying deficit irrigation, but this requires a better understanding of crop response to various levels of water stress. This paper presents results from a 3-year study (2004-2006) conducted in northern Syria to quantify cotton yield response to different levels of water and fertilizer. The experiment included four irrigation levels and three levels of nitrogen (N) fertilizer under drip irrigation. The overall mean cotton (lint plus seed, or lintseed) yield was 2502 kg ha−1, ranging from 1520 kg ha−1 under 40% irrigation to 3460 kg ha−1 under 100% irrigation. Mean water productivity (WPET) was 0.36 kg lintseed per m3 of crop actual evapotranspiration (ETc), ranging from 0.32 kg m−3 under 40% irrigation to 0.39 kg m−3 under the 100% treatment. Results suggest that deficit irrigation does not improve biological water productivity of drip-irrigated cotton. Water and fertilizer levels (especially the former) have significant effects on yield, crop growth and WPET. Water, but not N level, has a highly significant effect on crop ETc. The study provides production functions relating cotton yield to ETc as well as soil water content at planting. These functions are useful for irrigation optimization and for forecasting the impact of water rationing and drought on regional water budgets and agricultural economies. The WPET values obtained in this study compare well with those reported from the southwestern USA, Argentina and other developed cotton producing regions. Most importantly, these WPET values are double the current values in Syria, suggesting that improved irrigation water and system management can improve WPET, and thus enhance conservation and sustainability in this water-scarce region.  相似文献   

5.
A new decision-making software tool for sprinkler or drip irrigation scheduling and monitoring, was developed at the request of small scale sugarcane (Saccharum spp.) farmers in Reunion Island (France) facing variable climate and soil conditions. Based on a simple water balance simulation model coupled with a comprehensive set of decisions rules, OSIRI was designed to provide farmers with targeted advices on discrete units of irrigation and for simulating scenarios of irrigation systems to optimize their performance. An optional procedure of direct adjustment by farmers and a system of controlled irrigation rationing are proposed. To meet the producer needs, the number of input parameters is adapted to the rather limited data availability, and the recommendation sheet is user-friendly oriented. Field data confirmed that OSIRI simulates very reasonably well actual evapotranspiration and drainage below the sugarcane root zone. Also, OSIRI allowed to save about 30% of irrigation delivery on a 140-day period as compared to the currently used crop water requirement method (respectively, 165 and 240 mm of water), without significant decrease in yield (respectively, 102 and 101 T ha−1).  相似文献   

6.
The response of three water delivery schedules, representing various levels of flexibility, on crop production, water saving, soil salinization, drainage volumes and watertable behavior was examined. A physical-based transient soil water and solute transfer model, Soil–Water–Atmosphere–Plant (SWAP), was used as a tool. The evaluations were made for un-restricted and restricted water supply situations considering three different watertable conditions prevailing in the fourth drainage project (FDP) of the Punjab, Pakistan. From the simulation results it is apparent that on average the effect of irrigation schedule flexibility on crop yields is not very significant. However, compared to a fixed schedule provided un-restricted canal water supplies are available, the productivity of irrigation water supply (Yact/Irr), is up to 30% higher for the on-demand schedule. The on-demand schedule capable of complying with the temporal variations in climate is also more effective in water saving, reducing drainage volumes and controlling rising watertables if farmers follow guidelines and do not over-irrigate. In the present water deficient environment of the Indus basin, the benefits of the on-demand schedule and a fixed schedule are comparable. In the absence of sufficient canal water supplies, infrastructure and a well-designed and effective monitoring and communication system, moving towards the on-demand system will be un-productive. For the long-term sustainability of the irrigation system, improvements in the performance of the present water allocations and on-farm water management practices seems to be more necessary.  相似文献   

7.
With a population of more than 150 million, Pakistan cannot meet its need for food, if adequate water is not available for crop production. Per capita water availability has decreased from 5600 m3 in 1947 to 1000 m3 in 2004. Water table has gone down by more than 7 m in most parts of the country. Present need is to identify and adopt measures, that will reduce water use and increase crop production. This study was conducted in farmers’ fields during 2002–2004 to evaluate the water use efficiency and economic viability of sprinkler irrigation system for growing rice and wheat crops. Yields and water use were also measured on adjacent fields irrigated by basin flooding, which were planted with the same crop varieties. Sprinkler irrigation of rice produced 18% more yield, while reducing consumption of water to 35% of that used in the traditional irrigation system. Sprinkler irrigation of wheat resulted in a water use efficiency of 5.21 kg of grain per cubic meter of water used compared to 1.38 kg/m3 in the adjacent flooded basins. Benefit–cost analysis showed that adoption of rain-gun sprinkler irrigation for rice and wheat is a financially viable option for farmers. While these findings show large potentials for improving water use efficiency in crop production they also indicate that a large portion of the water applied in traditional flooded basin irrigation is going to groundwater recharge, which has high value near large cities which draw their water from the aquifer.  相似文献   

8.
In many countries today, irrigation systems have been transferred to the water user associations (WUAs). Accordingly, it is believed that the performance of the irrigation systems is dependent on the performance of the WUAs.In this study, the performance of participatory irrigation management (PIM) over time is assessed with regard to the Kestel WUA serving a wide area of Turkey's Aegean coast. Data relating to the WUA is obtained from both the State Hydraulic Works and WUAs’ own records. In addition, two surveys have been carried out with the members of the WUA with an 8-year interval between them. Data have been analyzed within the framework of selected irrigation performance criteria and indicators. The non-parametric Mann-Whitney U test was used to compare the perceptions of the farmers on the WUA at different survey periods. A Logit model was estimated to evaluate the relationship between the irrigation problems and the level of satisfaction from the WUA.The performance of the WUA with the indicators of utility, productivity, sustainability and financial efficiency was found to be positive; while the performance of adequacy was identified as poor. The farmers were generally satisfied of the WUA's operation, with their level of satisfaction improving over time. On the other hand, the farmers were not fully convinced that they had input with the system management. The initial design of the channel system and its maintenance were identified to be the key factors affecting user satisfaction.Overall, the Kestel WUA may be considered a successful example, thus supporting a promising future for PIM. Yet improved control and farmer education is needed for a superior performance of all indicators; and further enhanced farmer participation in management should be achieved in order to raise the level of farmer satisfaction.  相似文献   

9.
The net volumetric (m3) irrigation water requirements for the main crop categories currently irrigated in England and Wales have been calculated and mapped within a geographic information system (GIS). The procedure developed by Knox et al. (1996, Agric. Water Manage., 31: 1–15) for maincrop potatoes (Solanum tuberosum) was extended to cater for the other crops currently irrigated. The annual irrigation needs (mm) for the eight major irrigated crop categories, grown on three contrasting soil types at 11 representative weather stations, were determined using a daily water balance irrigation scheduling model. The results were correlated with existing national datasets of climate, current land use, soils and irrigation practice, to generate volumetric (m3) irrigation water requirement maps at 2 km resolution.The total net volumetric irrigation water requirements for a UK ‘design’ dry year (defined as the requirement with a 20% probability of exceedance) are estimated to be 140 × 106 m3 for the eight main crop categories currently irrigated and the 1994 cropping pattern. Previous theoretical dry year demand estimates, using scheduling models and large agroclimatic areas, were 109 × 106 m3 and 222 × 106 m3. The irrigation demand for other crops grown in the open would typically add another 4%.The procedure has been validated nationally, by comparing the calculated dry year demand for 1990 against government irrigation survey returns for 1990, for each crop category, and regionally against National Rivers Authority (NRA) abstraction records for 1990, for each NRA Region. The estimates obtained agree well with the reported distribution between crops and between regions.The most recent actual ‘dry’ year for which comparative data are available is 1990. It is estimated that the dry year requirements for the 1990 land use would have been 148 × 106 m3. Although farmer demand, actual abstractions and crop requirements are not necessarily the same, irrigation survey returns to the Government indicated that 134 × 106 m3 were actually applied, and the NRA estimated from meter returns that 138 × 106 m3 were abstracted. It is noted, however, that some abstraction restrictions were in force, the scope of the data is slightly different and all figures contain inaccuracies. Potential applications for improving irrigation demand management and water conservation at regional and catchment levels are discussed with reference to two contrasting regions.  相似文献   

10.
Investigations were made to study the effect of unequal distribution of canal water in land and water productivity of the rice—wheat cropping system in terms of head—tail relationship in Bhakra Canal command, Haryana. Information on water supply, agronomic practices, crop yield, etc.,were collected from 216 farmers comprising 36 farmers each from the head, middle, and tail watercourses of two minors during year 2000–01. The unequal supply of canal water and presence of marginal quality groundwater creates large variations in the cropping pattern, irrigation application, and land and water productivity of the irrigation system. The groundwater of tail reaches, being saline in nature, was about 25% less productive as compared to head reaches. The unavailability of canal water in the tail reaches creates more dependency on groundwater. Due to its poor quality the crop production in the tail reaches was less by 10 to 20% in case of wheat, and 20 to 40% in case of rice, as compared to head reaches. Groundwater transfer from head to tail reaches and cultivation of low water requiring salt tolerant crops/varieties would be helpful in reducing the productivity gap and increasing the profitability of the farms in the region.  相似文献   

11.
In countries facing water scarcity, governmental water agencies try to transfer this constraint to farmers, e.g. by encouraging them to shift from traditional to localized irrigation methods to save water. However, water shortage is often much less a problem for farmers than soil limitations, their objective being mostly to maximize their income per cultivated area (US$ per hectare rather than per cubic meter of water). This discrepancy can only be solved if governments find ways to ‘transfer’ water scarcity, e.g. through economic incentives such as water pricing and/or subsidies. The aim of this study was to address the question of how to match the interest of both water managers and farmers. We aimed particularly at evaluating whether shifting to drip irrigation is a relevant way to save water and increase farmer's income.Our analysis was based on the interactive impacts among economic, environmental, technical and methodological parameters on the net productivity of two crops. We focused on the case study of Turkey considering two crops with contrasted gross productivity, tomato and cotton, characterized by partial vegetation cover during a large part of crop cycle. A 3D crop energy balance model was applied showing that crop transpiration is increased by up to 10% when shifting from furrow to drip irrigation. These results were used to correct the maximal evapotranspiration (ETm), estimated with the simple “crop coefficient” (Kc) method, and then used to enhance net productivity estimation both for furrow and drip irrigation.The results suggest that water managers and farmers share a common interest in adopting drip irrigation of tomato. Inversely, interests divergence may increase with low/medium value crops as cotton; the combination between water pricing and subsidies could be a way of agreement, but it would require subsidies for irrigation equipment of at least 40%, for low water tariffs, to 60%, for high water tariffs, to make the transfer from furrow to drip irrigation acceptable. This approach appeared generic enough to be applied for other economic, technical or environmental conditions, to modernize irrigation by harmonizing constraints faced by water managers and farmers.  相似文献   

12.
Use of low quality water for irrigation of food crops is an important option to secure crop productivity in dry regions, alleviate water scarcity and recycle nutrients, but it requires assessment of adverse effects on health and environment. In the EU-project “SAFIR1” a model system was developed that combines irrigation management with risk evaluation, building on research findings from the different research groups in the SAFIR project. The system applies to field scale irrigation management and aims at assisting users in identifying safe modes of irrigation when applying low quality water. The cornerstone in the model system is the deterministic “Plant-Soil-Atmosphere” model DAISY, which simulates crop growth, water and nitrogen dynamics and if required heavy metals and pathogen fate in the soil. The irrigation and fertigation module calculates irrigation and fertigation requirements based on DAISY's water and nitrogen demands. A Water Source Administration module keeps track of water sources available and their water quality, as well as water treatments, storage, and criteria for selection between different sources. At harvest, the soil concentrations of heavy metals and pathogens are evaluated and the risk to consumers and farmers assessed. Crop profits are calculated, considering fixed and variable costs of input and output. The user can run multiple “what-if” scenarios that include access to different water sources (including wastewater), water treatments, irrigation methods and irrigation and fertilization strategies and evaluate model results in terms of crop yield, water use, fertilizer use, heavy metal accumulation, pathogen exposure and expected profit. The management model system can be used for analysis prior to investments or when preparing a strategy for the season.  相似文献   

13.
In much of the world, fresh water isscarce and getting scarcer. Growing populations, increasing industrialisation, and environmentalconcerns have all put pressure on the water consumedby agriculture. This paper addresses the economicconsequences of a permanent reduction in canal waterfor irrigation. Using detailed cost-of-cultivationdata from the Gediz Basin, Turkey, the key questionsare: How can farmers best respond to reduced surfacewater supplies? How can the canal managementauthorities best distribute this limited water? And,can the demand for water be reduced through input andoutput price policy? These questions are answered withscenario comparisons under several water availability,crop pattern, price and investment assumptions, forthe short and medium time horizons. Keeping productivity high and water use low requirescoordination between farmers and the water managementauthorities. The analysis shows that, in this region,farmers should keep all their land irrigated at loweryield levels, rather than reduce their cropped areas.The canal managers should opt for a short irrigationseason, rather than an extended season with long dryintervals. Sensitivity analysis on a range of pricesindicates that crop, rather than water prices, affectthe efficiency of water use. The scenarios areevaluated using AGWAT, a spreadsheet-based farm-budgetprogram which is simple and widely applicable. Therange of policy choices considered establishes aframework of analysis for other, potentiallywater-short basins, beyond the Gediz or Turkey.  相似文献   

14.
In the semi-arid region of Tigray, Northen Ethiopia a two season experiment was conducted to measure evapotranspiration, estimate yield response to water stress and derive the crop coefficient of teff using the single crop coefficient approach with simple, locally made lysimeters and field plots. During the experiment we also estimated the water productivity of teff taking into account long-term rainfall probability scenarios and different levels of farmers’ skills. During the experimental seasons (2008 and 2009), the average potential evapotranspiration of teff ranged from 260 to 317 mm. The total seasonal water requirement of teff was found to lower in contrast to the assumptions of regional agronomists that teff water requirement is comparable to that of wheat and barley (375 mm). The average single crop coefficient values (kc) for the initial, mid and late season stages of teff were 0.8-1, 0.95-1.1 and 0.4-0.5, respectively. The seasonal yield response to water stress was 1.04, which indicates that teff exhibits a moderately sensitive and linear response to water stress. The results suggest that teff is likely to give significantly higher grain yield when a nearly optimal water supply is provided. The study showed that, in locations where standard equipment is not affordably available, indicative (rough) crop evapotranspiration values can be obtained by using field plots and employing locally made lysimeters. The difference in economic water productivity (EWP) and the crop water productivity (CWP) for teff were assessed under very wet, wet, normal, dry and very dry scenarios. In addition two groups of farmers were evaluated, a moderately (I) and a highly skilled (II) group. The results showed that higher EWP and CWP were obtained under very wet scenario than very dry scenario. There was also a 22% increase in EWP and CWP under group II compared to group I farmers. The increase was due to a 22% reduction in unwanted water losses achieved through use of improved technology and better irrigation skills. Both EWP and CWP can be used to evaluate the pond irrigation water productivity (IWP) for a given climate, crop and soil type, and skill and technology level of the farmer. For special crops like teff extra criteria may be needed in order to properly evaluate the pond irrigation water productivity. During the experimental seasons, a high IWP for teff was attained when about 90% of the optimal water need of the crop was met. IWP can be used as an indicator as how much supplementary irrigation has to be applied in relation to the rainfall and other sources of water supply in order to assure greatest yield from a total area. However, the supplemental irrigation requirement of the crops may vary with season due to seasonal rainfall variability.  相似文献   

15.
The aim of this research was to assess the irrigation performance of the Salihli Right Bank, Salihli Left Bank, Ahmetli, Gokkaya, Turgutlu, Mesir, Sarikiz, Gediz, Menemen Right Bank and Menemen Left Bank Water User Associations (WUAs) in the Lower Gediz Basin in western Turkey, using remote sensing techniques. To reach this aim the performance of the irrigation system for the 2004 irrigation season was determined according to five indicators, namely overall consumed ratio (ep), relative water supply (RWS), depleted fraction (DF), crop water deficit (CWD) and relative evapotranspiration (RET). Potential and actual evapotranspiration parameters used in determining these indicators were estimated according to the Surface Energy Balance Algorithm for Land (SEBAL) method using NOAA-16 satellite images.Seasonal averages of these indicators ranged from 0.59 to 2.26 for ep, 0.47-1.66 for RWS, 0.43-1.31 for DF, 180.5-269.5 mm month−1 for CWD, and 0.61-0.74 for RET. According to the seasonal average values of all the performance indicators, the irrigation performance of all WUAs was usually poor. The performance indicators showed that less irrigation water was supplied to WUAs than was needed. It was concluded that proximity to the source could be an advantage in obtaining water, and that when water was insufficient, groundwater in the crop root area could be used.  相似文献   

16.
Agriculture consumes about 70% of water available in the Occupied Palestinian Territories. Domestic and industrial users utilize 30% of the water supply. Water resource managers are considering the policy of reallocating a portion of the water supply from agriculture to other uses. It is believed that increasing irrigation water prices could influence water consumption and thus make water available for non-agricultural (more economic) uses. This paper examines the impacts of water pricing on agricultural water consumption and farming profitability and provides some guidelines for policy makers regarding water pricing as a tool to manage scarce water resources. We estimate a regression model describing agricultural water consumption as a function of water prices, irrigated land area, farm income, and irrigation frequency, using data collected in a survey of about 150 farmers in the Tulkarm district. We conclude that irrigation water prices are perceived as high and comprise a large portion of total farming expenses. Therefore, attempts to increase irrigation water prices in the Tulkarm district might jeopardize farming feasibility and might have substantial impacts on agricultural water consumption. Nevertheless, many farmers would continue farming even if the water prices were increased beyond their willingness to pay threshold.  相似文献   

17.
Four different levels of drip fertigated irrigation equivalent to 100, 75, 50 and 25% of crop evapotranspiration (ETc), based on Penman–Monteith (PM) method, were tested for their effect on crop growth, crop yield, and water productivity. Tomato (Lycopersicon esculentum, Troy 489 variety) plants were grown in a poly-net greenhouse. Results were compared with the open cultivation system as a control. Two modes of irrigation application namely continuous and intermittent were used. The distribution uniformity, emitter flow rate and pressure head were used to evaluate the performance of drip irrigation system with emitters of 2, 4, 6, and 8 l/h discharge. The results revealed that the optimum water requirement for the Troy 489 variety of tomato is around 75% of the ETc. Based on this, the actual irrigation water for tomato crop in tropical greenhouse could be recommended between 4.1 and 5.6 mm day−1 or equivalent to 0.3–0.4 l plant−1 day−1. Statistically, the effect of depth of water application on the crop growth, yield and irrigation water productivity was significant, while the irrigation mode did not show any effect on the crop performance. Drip irrigation at 75% of ETc provided the maximum crop yields and irrigation water productivity. Based on the observed climatic data inside the greenhouse, the calculated ETc matched the 75–80% of the ETc computed with the climatic parameters observed in the open environment. The distribution uniformity dropped from 93.4 to 90.6%. The emitter flow rate was also dropped by about 5–10% over the experimental period. This is due to clogging caused by minerals of fertilizer and algae in the emitters. It was recommended that the cleaning of irrigation equipments (pipe and emitter) should be done at least once during the entire cultivation period.  相似文献   

18.
Determination of temporal and spatial distribution of water use (WU) within agricultural land is critical for irrigation management and could be achieved by remotely sensed data. The aim of this study was to estimate WU of dwarf green beans under excessive and limited irrigation water application conditions through indicators based on remotely sensed data. For this purpose, field experiments were conducted comprising of six different irrigation water levels. Soil water content, climatic parameters, canopy temperature and spectral reflectance were all monitored. Reference evapotranspiration (ET0), crop coefficient Kc and potential crop evapotraspiration (ETc) were calculated by means of methods described in FAO-56. In addition, WU values were determined by using soil water balance residual and various indexes were calculated. Water use fraction (WUF), which represents both excessive and limited irrigation applications, was defined through WU, ET0 and Kc. Based on the relationships between WUF and remotely sensed indexes, WU of each irrigation treatments were then estimated. According to comparisons between estimated and measured WU, in general crop water stress index (CWSI) can be offered for monitoring of irrigated land. At the same time, under water stress, correlation between measured WU and estimated WU based on CWSI was the highest too. However, canopy-air temperature difference (Tc − Ta) is more reliable than others for excessive water use conditions. Where there is no data related to canopy temperature, some of spectral vegetation indexes could be preferable in the estimation of WU.  相似文献   

19.
Water resource professionals have many opportunities to contribute to policy discussions regarding agricultural productivity. Often those discussions are focused on increasing the output generated with limited water supplies, such as maximizing the “crop per drop” or improving irrigation efficiencies, either at the field level or throughout a river basin. Policy discussions involving water resources in developing countries can be enhanced by placing greater emphasis on the roles of non-water inputs and resource constraints in farm-level production and marketing decisions. Three categories of policies that lie outside the water resource realm, but have substantial impacts on water use and agricultural productivity, are examined: (1) policies that modify farm-level input and output prices directly; (2) international trade policies; and (3) policies that modify key institutions, such as land tenure and the sources of investment funds.  相似文献   

20.
The rural sustainability index is a scientifically based tool to quantify the performance of agriculture. The sustainability of crop production is quantified from three perspectives; people, planet and profit. Within each perspective, one condition was selected that must be met to warrant agriculture. These are: No hazardous work should be used within the crop production chain; agricultural crops should not be grown on land allocated to nature by national law or regulations and, when a GM-crop is present or is introduced in a region, it should not harm development opportunities of other farmers. If these excluding conditions are met, the sustainability of agriculture is assessed through five performance indicators on school attendance, water use and consumption, fertilizer use, pesticide use, and farm income. For each of the five indicators, critical values and target values have been given that limit the transition range between non-sustainable and sustainable production. The five indicators are combined into a sustainability index. The index aims at improving the socio-economic position of farmers while protecting the environment.
M. G. BosEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号