首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine the existence of rainfall concentration beneath olive trees, throughfall and stemflow was measured in three olive trees during 12 rainfall events, using 36 rain gauges per tree and a stemflow collection system. Data from different rainfall events were aggregated to assess the spatial correlation in throughfall. Only one out of the three trees showed a clear spatial dependency structure.Rainfall concentration under the tree canopy, as a consequence of rainfall redistribution of throughfall, was relatively unimportant with few and sparse locations showing a percentage of throughfall with respect to rainfall in open area >100% and none above 125%. Throughfall showed a consistent storm to storm pattern in spatial distribution among high rainfall events, and non-consistent patterns among low rainfall events. Stemflow was found to be the most important mechanism of canopy induced flux concentration, in events where rainfall depth was large enough to saturate the olive canopy. Stemflow was estimated to infiltrate in a radial area up to 0.5 m from the tree trunk, depending on tree characteristics and rainfall intensity. The area surrounding the tree trunk appears to be the most relevant area for potential research dealing with the influence of concentrated canopy induced water fluxes on the transport of chemicals to deeper layers within the soil.  相似文献   

2.
Water demand for irrigation is increasing in olive orchards due to enhanced yields and profits. Because olive trees are considered moderately tolerant to salinity, irrigation water with salt concentrations that can be harmful for many of fruit tree crops is often used without considering the possible negative effects on olive tree growth and yield. We studied salt effects in mature olive trees in a long term field experiment (1998-2006). Eighteen-year-old olive trees (Olea europaea L.) cv. Picual were cultivated under drip irrigation with saline water composed of a mixture of NaCl and CaCl2. Three irrigation regimes (i. no irrigation; ii. water application considering soil water reserves, short irrigation; iii. water application without considering soil water reserves and adding a 20% more as a leaching fraction, long irrigation) and three salt concentrations (0.5, 5 or 10 dS m−1) were applied. Treatments were the result of the combination of three salt concentrations with two irrigation regimes, plus the non-irrigated treatment. Growth parameters, leaf and fruit nutrition, yield, oil content and fruit characteristics were annually studied. Annual leaf nutrient analyses indicate that all nutrients were within the adequate levels. After 8 years of treatment, salinity did not affect any growth measurement and leaf Na+ and Cl concentration were always below the toxicity threshold of 0.2 and 0.5%, respectively. Annual and accumulated yield, fruit size and pulp:stone ratio were also not affected by salts. However, oil content increased linearly with salinity, in most of the years studied. Soil salinity measurements showed that there was no accumulation of salts in the upper 30 cm of the soil (where most of the roots are present) because of leaching by rainfall at the end of the irrigation period. Results suggest that a proper management of saline water, supplying Ca2+ to the irrigation water, using drip irrigation until winter rest and seasonal rainfall typical of the Mediterranean climate leach the salts from the first 0-60 cm depth, and growing a tolerant cultivar, can allow using high saline irrigation water (up to 10 dS m−1) for a long time without affecting growth and yield in olive trees.  相似文献   

3.
Practically all of the extensive body of research on evapotranspiration (ET) in agricultural systems has been done for open fields. There is a lack of information on how the microclimate variability within silvopasture systems affects water requirements of forages. Small 26 cm diameter, 23 cm deep lysimeters planted with either orchardgrass (Dactylis glomerata L.) or tall fescue (Schedonorus phoenix (Scop.) Holub) were placed in the ground along the north and south edge of two 15 m wide × 50 m deep notches cleared into a mature second growth hardwood forest. One notch opened to pasture on the east receiving more early day solar radiation and one to pasture on the west receiving more wind and late day solar radiation. There was no significant difference in ET between orchardgrass and tall fescue. North edges, receiving more direct beam radiation, had significantly higher ET (39%) than south edges which received a higher percentage of diffuse radiation. The west notch had significantly higher ET (11%) than the east notch. At the sunniest sites, advection provided 20% of the energy used for ET while at the shadiest sites it provided more than half (56%) with the rest provided by incident solar radiation. Dates where photosynthetically active radiation (PAR) was restricted by clouds resulted in decreased ET relative to PAR compared to more sunny days. However, sites where PAR was restricted by tree shade had higher ET relative to PAR than more open sites. These results indicate tree modification of microclimate does not decrease forage ET to the extent that PAR is decreased.  相似文献   

4.
The aim of this work was to evaluate long-term effects of different irrigation regimes on mature olive trees growing under field conditions. A 9-year experiment was carried out. Three irrigation treatments were applied: no irrigation, water application considering soil water content (short irrigation), or irrigation without considering soil water reserves and applying a 20% of extra water as a leaching fraction (long irrigation). Leaf water content, leaf area, vegetative growth, yield and fruit characteristics (fruit size, pulp:stone ratio and oil content) were determined yearly. Results showed that growth parameters did not show significant differences as a consequence of applied water. Yield was increased in irrigated trees compared to non-irrigated ones, but little differences between short and long irrigation were observed, only when accumulated yield from 1998 to 2006 was considered. Irrigation did not cause significant differences in fruit size or pulp:stone ratio either. Irrigation regimes similar to those applied in this experiment, under environmental conditions with relatively high mean annual precipitation, does not increase growth, yield or fruit characteristics when compared to rain-fed treatment, and consequently, the installation of a irrigation system could be not financially profitable.  相似文献   

5.
6.
7.
Measurements of maximum daily trunk shrinkage (MDS) were performed on adult olive (Olea europaea L. cv. Manzanillo) trees in an experimental farm in Seville (Spain). The objective was to study the feasibility of obtaining maximum daily trunk shrinkage baselines or reference values for use in irrigation scheduling. The trees were irrigated daily above their water requirements in order to obtain non-limiting soil water conditions. The results indicated it is possible to obtain baselines for MDS, despite a certain scattering of the data points representing the relations between MDS and the climatic variables (reference evapotranspiration, solar radiation, vapour pressure deficit and temperature). MDS behaviour was best correlated with midday vapour pressure deficit and midday air temperature (r2 = 0.83 and 0.79, respectively).  相似文献   

8.
Plant age and size, seasonal growth patters and crop load, among other factors, have been reported to decrease the usefulness of trunk diameter variation (TDV) derived indices as water stress indicators in olive trees. Our hypothesis, however, is that indices derived from TDV records in old, big olive trees are sensitive enough to detect levels of water stress in trees of orchards under deficit irrigation that, although severe, are below the threshold for fruit shrivelling. This is of importance for the production of good quality oils, since fruit shrivelling may affect oil quality. The aim of this work was to assess different TDV-derived indices as water stress indicators in 40-year-old ‘Manzanilla’ olive trees with heavy crop load. We derived the maximum daily shrinkage (MDS), daily growth (DG) and daily recovery (DR) from TDV records taken during the 2008 dry season both in well-irrigated FAO trees and in deficit-irrigated RI trees. Measurements of volumetric soil water content (θv), leaf water potential (Ψl), stomatal conductance (gs), net CO2 assimilation rate (A), water and oil accumulation in the fruits and yield parameters were made for both treatments. The trunks did not grow during the experimental season, either in the FAO or RI trees, likely because of the heavy crop load. Therefore, DG was useless as water stress indicator. For MDS and DR, which were responsive to the increase of the trees’ water stress, we calculated the variability, quantified by the coefficient of variation (CV), the signal intensity (SI) and the sensitivity (SI/CV) values. In addition, we derived reference equations for irrigation scheduling from the relationships between MDS values in the FAO trees and main meteorological variables. Values both of SI-MDS and SI-DR were steady until September 9, despite of increasing differences in θv between treatments from early in the dry season. The Ψl vs θv values showed an outstanding capacity of the RI trees to take up water from the drying soil, and the Ψl vs gs values showed a near-isohydric behaviour of those deficit-irrigated trees. These results explain, at least in part, the lack of response of MDS and DR on that period. Both SI-MDS and SI-DR peaked for the first time on September 9, 16 days before the appearance of fruit shrivelling. Our results suggest that using TDV-derived indices as water stress indicators for irrigation scheduling in old olive orchards with medium to low plant densities, i.e. with large root zones, may be useless in case the irrigation strategy is aimed at keeping the soil close to field capacity. Nevertheless, the MDS and DR indices may be useful indicators for the avoidance of fruit shrivelling in deficit irrigated olive orchards for the production of good quality oil. Reliable reference equations for scheduling irrigation with the signal intensity approach were obtained from the regression of MDS values vs the daily maximum values of both the air temperature and the vapour pressure deficit of the air.  相似文献   

9.
Olive is one of the fruit tree species for which measurements of the trunk diameter variation (TDV) has shown a lower potential both for monitoring water stress and for scheduling irrigation. This is particularly true in the case of old, big olive trees with heavy fruit load. Fernández et al. (2011, J. Environ. Exp. Bot. 72, 330-338) observed that the daily difference for maximum trunk diameter between deficit irrigated ‘Manzanilla’ olive trees and control trees growing under non-limiting soil water conditions, termed DMXTD, is more sensitive and reliable for detecting the water stress of the trees than other widely used TDV-derived indices. However, they considered their results as preliminary because of the lack of replications. The aim of this work was to evaluate the usefulness of the DMXTD index for detecting plant water stress in an orchard with 12-year-old ‘Arbequina’ olive trees with heavy fruit load. The performance of DMXTD for detecting water stress of the trees was compared to that of the signal intensity for the maximum daily shrinkage (SI-MDS) derived from the same TDV records. Results showed that SI-MDS was not useful for indicating the water stress of the trees. On the other hand, the dynamics of DMXTD mimicked those of the soil and plant water status. Four instrumented trees per treatment (replicates) were enough to reduce the uncertainty of the TDV measurements to a reasonable level. Our results show that DMXTD is a useful index to detect the onset, and severity, of water stress in mature ‘Arbequina’ olive trees with heavy fruit load. They also suggest a potential of DMXTD for scheduling low frequency deficit irrigation strategies.  相似文献   

10.
We address a need for a rapid technique to estimate the leaf area index (LAI) of pre-existing natural vegetation. This is required to determine the effects of agroforestry plantings on deep drainage from agricultural land. Previous work shows: (1) a relationship between the hydrologic ‘footprint’ of tree belts and their lineal leaf area (leaf area per metre of belt, LLA, m2 m−1), relative to the LAI of natural vegetation and (2) that the LAI of natural vegetation is related to plant-available soil moisture and climate. We evaluated relationships between LAI measured at 37 sites across southern Australia and (1) annual average rainfall, P; (2) annual average pan evaporation, E0; (3) ‘available rainfall’—annual average rainfall, P, minus annual average pan evaporation, E0; (4) a climate wetness index P/E0; (5) Specht's soil evaporative index, k = 0.0045 + 71.57/E0. P was the best indicator for the data set used, i.e. LAI = 0.003P + 0.41 (r2 = 0.80).  相似文献   

11.
The evapotranspiration of hedge-pruned olive orchards (Olea europaea L. cv. Arbequina) was measured under the semiarid conditions of the middle Ebro River Valley in a commercial olive orchard (57 ha) during 2004 and 2005. No measured ETc values for this type of olive orchards have previously been reported. An eddy covariance system (krypton hygrometer KH20 and 3D sonic anemometer CSAT3, Campbell Scientific) was used. The eddy covariance measurements showed a lack of the energy balance closure (average imbalance of 26%). Then sensible and latent heat (LE) flux values were corrected using the approach proposed by Twine et al. (2000) in order to get daily measured olive evapotranspiration (ETc) and crop coefficient (Kc) values. The highest measured monthly ETc averages were about 3.1-3.3 mm day−1, while the total seasonal ETc during the irrigation period (March-October) was about 585 mm (in 2004) and 597 mm (in 2005). Monthly Kc values varied from about 1.0 (Winter) to 0.4-0.5 (Spring and Summer). These Kc values were similar to Kc values reported for round-shape canopy olive orchards, adjusted for ground cover, particularly during late Spring and Summer months when differences among measured and published Kc values were about less than 0.1.  相似文献   

12.
我国北方雨水集蓄与节水灌溉技术   总被引:10,自引:0,他引:10  
水资源紧缺制约着我国北方旱作农业地区的农业发展,而兴建骨干水利工程不但投资大,工期长,施工难度大,生态环境问题多,且难以全面解决灌溉问题,而充分利用当地降雨资源,发展节水灌溉,提高作物产量,促使农牧民脱贫致富,则是切实可行的途径,本文就雨水资源的高效利用途径和适宜的节水灌溉技术作了简要介绍。  相似文献   

13.
The need for sophisticated irrigation strategies in fruit tree orchards has led to an increasing interest in reliable and robust sensor technology that allows automatic and continuous recording of the water stress of trees under field conditions. In this work we have evaluated the potential of the leaf patch clamp pressure (LPCP) probe for monitoring water stress in a 4-year-old ‘Arbequina’ hedgerow olive orchard with 1667 trees ha−1. The leaf patch output pressure (Pp) measured by the LPCP probe is inversely correlated with the leaf turgor pressure (>50 kPa). Measurements of Pp were made over the entire irrigation season of 2010 (April to November) on control trees, irrigated up to 100% of the crop water needs (ETc), and on trees under two regulated deficit irrigation (RDI) strategies. The 60RDI trees received 59.2% of ETc and the 30RDI trees received 29.4% of ETc. In the case of the RDI trees the irrigation amounts were particularly low during July and August, when the trees are less sensitive to water stress. At severe water stress levels (values of stem water potential dropped below ca. −1.70 MPa; turgor pressure < 50 kPa) half-inversed or completely inversed diurnal Pp curves were observed. Reason for these phenomena is the accumulation of air in the leaves. These phenomena were reversible. Normal diurnal Pp profiles were recorded within a few days after rewatering, the number depending on the level of water stress previously reached. This indicates re-establishment of turgescence of the leaf cells. Crucial information about severe water stress was derived from the inversed diurnal Pp curves. In addition Pp values measured on representative trees of all treatments were compared with balancing pressure (Pb) values recorded with a pressure chamber on leaves taken from the same trees or neighbored trees exposed to the same irrigation strategies. Concomitant diurnal Pb measurements were performed in June and September, i.e. before and after the period of great water stress subjected to RDI trees. Results showed close relationships between Pp and Pb, suggesting that the pressure chamber measures relative turgor pressure changes as the LPCP probe. Therefore the probe seems to be an advantageous alternative to the pressure chamber for monitoring tree water status in hedgerow olive tree orchards.  相似文献   

14.
Four strategies of deficit irrigation based on a different water-stress ratio (WSR) applied in each phenological stage, and a control treatment were implemented in 11-year-old citrus trees (Citrus sinensis L. Osb. Cv. Navelina) grafted onto carrizo citrange (C. sinensis L. Osb. × Poncirus Trifoliata L. Osb.). The midday stem-water potential and stomatal conductance were measured during the periods considered, and these parameters were used to estimate the plant-water status. Integrated stem-water potential (ΨInt) and integrated stomatal conductance (gInt) were calculated for all treatments and used as a water-stress indicator for the crop. Reference equations were formulated to quantify the relations between water-stress indicators (WSR, ΨInt, gInt) and the crop response, expressed as yield, yield components, and fruit-quality parameters under limited seasonal water availability. Significant differences in yield were found in the second year of experiment between the stressed treatments and control, although these differences were evident during the first year. The main effects were detected in treatments with a water-sever stress applied during the flowering and fruit-growth phases. When this degree of stress was applied during the maturity phase, it was reflected mainly in fruit-quality parameters (total soluble solids, and titrable acidity). These results lead to the conclusion that, in mature orange trees, deficit irrigation affects yield and fruit quality, while enabling water savings of up to 1000 m3 ha−1. Therefore, yield declined on average 10-12% but boosted water productivity 24% with respect to the fully irrigated treatment. Regarding the water-stress indicators used, ΨInt and gInt showed highly significant correlations with the yield and fruit-quality parameters.  相似文献   

15.
16.
Maximum daily shrinkage (MDS) is the parameter of daily cycle of trunk diameter most widely suggested in irrigation scheduling for several fruit trees. However, as in other plant-measured approaches, the irrigation decision may be difficult due to the influence of the environment on the values obtained. Reference equations of MDS have been established in order to avoid the effects of environmental conditions. Such equations are usually related to simple meteorological data, in order to easily estimate MDS values in full-irrigated conditions. This paper studies the influence of fruit load and the inter-annual variations on the reference equation of MDS in olive trees. These reference equations were calculated during 4 seasons in a full-irrigated orchard and the equations were validated with the data from a different season. The MDS values were related to vapour pressure deficit (VPD) and temperature taken near the experimental orchard. In addition, meteorological data were considered as mean daily or as midday values; only for temperature was the maximum daily value also used. The validation of the equations was made using the fits with all the meteorological data considered (midday and mean daily of VPD and temperature). In addition, two different fits were used in each meteorological data—one according to fruit load and other with the complete pool of data. The equations fit were significantly different each season in all the meteorological data considered. However, seasons with similar fruit load were more similar to each other. In both meteorological data considered (VPD and temperature) the midday values improved the fit in respect to mean daily values. The equations obtained with maximum daily temperature were similar in accuracy to the one of midday. The reference equations in which temperature was used obtained a better fit that the ones calculated with VPD. No significant differences were found in the validation when equations according to fruit load or the complete pool data were compared. The limitations and usefulness of these reference equations are also discussed.  相似文献   

17.
叶片吸收雾滴过程中雾滴覆盖面积的变化规律   总被引:1,自引:0,他引:1  
为了给气雾培、叶面施肥以及植保机械的研究提供进一步的理论依据,研究了作物组织吸收雾滴的过程.建立了一个相对湿度为100%,温度为20 ℃的环境控制室,以蒸馏水为载体,利用Matlab图像处理技术研究了雾滴在活体植物猩猩木叶片表面不同位置其覆盖面积随时间变化的规律.首先,为了消除雾滴蒸发对试验的影响,分别用直径为23877,22992,21260 μm的雾滴来验证其蒸发率:在600 s内的蒸发率分别为14%,28%,31%.因此假设雾滴在前600 s内几乎无蒸发.之后,选取直径分别为540,340 μm的雾滴进行雾滴覆盖面积变化的研究.利用雾滴发生器将不同直径的雾滴喷射到叶面不同的位置,利用图像采集系统获得雾滴的照片,观察雾滴覆盖面积的变化情况.叶片吸收雾滴的试验表明:叶片表面不同位置覆盖面积的变化是不同的,雾滴在叶片表面的覆盖面积前期变化缓慢,到后期变化迅速,而且越往后期变化越明显;雾滴的覆盖面积越大,雾滴吸收速度越快.  相似文献   

18.
《Agricultural Systems》2003,76(2):589-599
Tiller density on commercial sugarcane fields is a dynamic variable and part of the canopy that interacts with the environment. Three internal processes influence tiller density in well-watered crops. Those are (1) primary tiller germination, (2) underground branching (tillering) and (3) tiller senescence. Current sugarcane models depend on light interception, partly determined by tiller density, to simulate photosynthesis and evapotranspiration. In this paper a model is described that takes mechanistic canopy processes, like tillering and light competition into consideration. Five phases of canopy development are described. The model was calibrated on one cultivar and has mean errors close to half those of the CANEGRO model in tiller numbers per ha (RMSE=78,577 cf. RMSE=149,084) and%PAR light interception (RMSE=8.5 cf. RMSE=13.8), respectively. The model's mechanistic nature enables its application in more sensitive tiller and canopy dependent processes, such as high tiller densities, extensive ratooning and stool damage.  相似文献   

19.
[目的]免耕覆盖中补灌量和秸秆覆盖量耦合变化下春小麦叶面积指数对产量有较大影响。[方法]本研究以甘肃省定西市安定区1979—2019年历史气象数据为基础,运用APSIM模型对补灌量与覆盖量耦合变化时旱地春小麦的叶面积指数和产量及其构成因素进行模拟,并采用DPS软件进行分析实验,研究补灌量和覆盖量耦合下旱地春小麦叶面积指数对产量的影响机制。[结果]结果表明:在试验设计范围内, 不同春小麦叶面积指数对春小麦千粒质量的影响效应在开花-灌浆期为向上的二次抛物线变化。其他时期,不同春小麦叶面积指数对春小麦产量和千粒质量的影响效应为向下的二次抛物线变化, 不同春小麦叶面积指数对春小麦籽粒数的影响效应为向上的二次抛物线变化。试验变化范围内,各个时期春小麦千粒质量均未出现阈值,分蘖—拔节期,春小麦产量未出现阈值,春小麦籽粒数出现阈值,春小麦叶面积指数为1.72时春小麦籽粒数出现最小值为8716.59/m2 。其他时期,春小麦产量和籽粒数出现阈值,在春小麦叶面积指数为0.94,2.31,1.67,1.18,1.24,0.79时春小麦产量出现最大值为3818.71kg/hm2,3827.06kg/hm2,3851.41kg/hm2,3904.35kg/hm2,3819.03kg/hm2,3853.72kg/hm2。春小麦叶面积指数为0.77,2.01,1.44,1.07,1.00,0.70时春小麦籽粒数出现最小值为9579.34/m2,8745.26/m2,9638.01/m2,9050.71/m2,8554.04/m2,9038.38/m2。春小麦叶面积指数对产量和千粒质量呈正效应,对籽粒数呈负效应。[结论]合理调节春小麦叶面积指数,可以促进透光性速率的提高、光合产物的产生,对春小麦产量的提高具有积极的意义。  相似文献   

20.
<正> 本文用实测统计资料计算分析了惠北试区降水对地下水资源的补给。求出了雨前不同地下水埋深条件下,次降水与地下水位上升的关系式,并提出了能引起地下水位上升的最小次降雨量,对本区30多年降水对地下水资源的补给进行了统计计算,导出了相关性很好的年降水量与入渗补给量的关系式,求出了本区年降水入渗补给系数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号