首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intercropping of wheat and cotton is practiced at a large scale in northern China, but the productivity of intercrops, compared to monoculture, and the productivity and growth patterns of different alternative intercropping patterns have not been quantitatively documented. In this study, four typical wheat–cotton intercropping patterns were examined as to their growth and productivity in field experiments over three growing seasons in Anyang, Henan Province, China. The systems varied in the number of wheat and cotton rows in the alternating strips of either crop, and were labeled accordingly as 3:1, 3:2, 4:2 and 6:2. Dry matter accumulation, yield, land equivalence ratio (LER) and lint quality were determined.  相似文献   

2.
为探明玉米花生带状间作模式下植株氮吸收利用和土壤微生物群落特征,设置玉米单作(SM)、花生单作(SP)和玉米花生间作(IMP)三种种植模式,系统分析了不同种植模式下氮素吸收利用规律,并采用16S/ITS测序技术明确玉米花生带状间作系统下根际土壤细菌/真菌群落结构变化。结果表明,间作玉米边行优势明显,地下和地上部干物质积累量和氮积累量显著高于单作玉米和间作玉米中间行。间作玉米和间作交互区根际土壤细菌和真菌多样性和丰富度降低,而间作花生根际真菌多样性和丰富度增加,其中变形菌门、担子菌门、子囊菌门等有益菌最为显著富集。土壤中细菌和真菌存在复杂的相关性,变形菌门与子囊菌门正相关。间作丰富了物种功能多样性,参与氨基酸运输、代谢和碳水化合物代谢的细菌和腐生营养型真菌的显著富集,改善了植物养分吸收,促进了植株生长发育。可见,玉米花生间作可通过优化土壤微生物的群落结构,促进植株对氮素的吸收和利用,本研究为玉米花生带状间作氮营养互促吸收提供了科学依据。  相似文献   

3.
A field experiment was carried out to investigate the effects of alternate irrigation (AI) on the yield, water use and water use efficiency (WUE) of wheat (Triticum aestivum L.)/maize (Zea mays L.) intercropping system in an oasis region of northwest China in 2006-2008. Three planting patterns, i.e., sole wheat, sole maize and wheat/maize intercropping. Three irrigation levels were applied for each treatment during 3 years. Results showed that land use efficiency of wheat and maize was significantly enhanced by intercropping system; land equivalent ratio (LER) of wheat/maize intercropping system in different treatments was all greater than 1.0. Moreover, significant difference in grain yield was observed between intercropping treatment and sole cropping treatment, in which the yield of intercropped wheat was 55.37-74.88% of sole wheat, and intercropped maize was 66.63-78.87% of sole maize. Wheat/maize intercropping treatments increased water use by 1.8-16.4% than half of the total water use of sole-cropping wheat and maize. Compared to sole cropping wheat treatments, wheat/maize intercropping with alternate irrigation significantly improved water use efficiency (WUE) by 30.5-57.7%, 55.5-71.4% and 12.0-19.8%, and increased by 32.7-37.8%, 9.5-15.8% and 4.0-20.8% than sole cropping maize treatments in 2006-2008, respectively. Our results suggest that AI should be a useful water-saving irrigation method on wheat/maize intercropping in arid oasis field where intercropping planting is decreased because of limited water resource.  相似文献   

4.
钼肥对套作大豆干物质积累与分配及产量的影响   总被引:4,自引:0,他引:4  
在"玉/豆"套作模式下,采用完全随机区组设计,研究钼肥干拌种对套作大豆干物质积累、分配及产量的影响。结果表明,五节期(V5)到完熟期(R8)套作大豆干物质积累总量随施钼量的增加呈先升高后降低的趋势,且都以B2(1.0g/kg)处理最高;V5期到盛花期(R2)干物质主要分配在茎秆和叶片中,钼肥处理降低了干物质在茎秆中的分配率,而增加了叶片的分配比例;R8期时干物质向荚果的分配比例最高,且随施钼量增加呈先增加后减少的趋势,而向茎秆和叶片的分配则表现为相反的趋势;施钼肥能够提高茎叶中的干物质向荚果的转移率及其对荚果的贡献率和产量,且均以B2处理最优。  相似文献   

5.
明确套作大豆种腐病菌的种类及其致病性,对于防治大豆种腐病,提高大豆产量和品质具有重要意义.于2016~2018年从四川仁寿、崇州、南充等地收集大豆种腐病的病籽粒,通过组织分离与纯化,基于形态特征、rDNA ITS和EF-1α序列分析以及致病性测定,鉴定四川套作大豆种腐病的病原菌种类.结果表明:分离获得的70株菌株被鉴定...  相似文献   

6.
不同空间配置套作大豆后期农学参数及光谱特征分析   总被引:5,自引:0,他引:5  
本研究以玉米-大豆套作种植模式为研究对象,通过设置不同的大豆行距调整大豆与玉米的空间位置(大豆行距设置为30 cm和70 cm,即距离玉米行分别为60 cm和40 cm),研究套作大豆后期农学参数变化及光谱响应特征。结果表明由于受玉米前期的荫蔽作用,距离玉米行越近,大豆冠层透光率越低,玉米收获后大豆花期(8月10日)生物量、株高、水分含量及叶绿素在不同处理条件下差异明显,到盛荚期(9月9日)和鼓粒期(10月6日)大豆迅速恢复生长,各农学参数存在差异,但不显著。通过大豆冠层反射率分析,绿峰区域(550nm左右)和近红外区域(760-1000nm)能够很好的解析大豆叶绿素和水分变化规律,叶绿素含量越高绿峰幅值越低,水分含量越高近红外区域反射率越高。  相似文献   

7.
对宁夏引黄灌区胡麻套种玉米不同带型的作物产量、生育表现和经济效益进行了研究,结果表明:作物总产与玉米产量呈高度正相关(r=0.99**),玉米产量与其占地面积比例呈正相关(r=0.99**).据此认为在套种条件下,胡麻与玉米的面积比例应以0.60:0.40~0.65:0.35为宜;带宽为2.25m,胡麻1.35m,玉米0.9m的处理B和带宽为2.05m,胡麻1.35m,玉米0.7m的处理A为较佳带型。  相似文献   

8.
《Field Crops Research》2006,96(1):90-97
Low native nitrogen (N) and phosphorus (P) coupled with imbalanced nutrient application is a major constraint limiting productivity of intercropping systems on Vertisols of the semi-arid tropical India. In a 3-year field experiment competition behaviour of component crops for nutrients use in soybean/pigeonpea intercropping system was assessed based on relative yield (RY), relative nitrogen yield (RNY) and relative phosphorus yield (RPY) under three nutrient levels (0 NPK, 100% NPK (N:P:K = 30:26:25 kg ha−1) and 100% NPK + 4 t FYM ha−1). The result showed that before soybean harvest, the RY and RNY of soybean were greater (1.0) than the corresponding values of RY and RNY of pigeon pea (0.6). This implied that competition exists for soil N between the component crops during the first half of the cropping system. It was observed that soybean harvest did not coincide with peak flowering of pigeonpea, the stage when biological nitrogen fixation (BNF) was maximum. Thus, BNF dependency of pigeonpea was low before soybean harvest and the plants suffered from N deficiency more when no fertilizer-N was applied and diminished at a high-N level. Pigeon pea attained its peak flowering after the harvest of soybean and increased its dependency on BNF when soil N was exhausted by soybean. Thus, after the harvest of soybean, RY and RNY of pigeon pea gradually increased and approached 1.0 at maturity at all nutrient levels. The RPY values showed that phosphorus was not the limiting factor to any of the crop in the system even if it was not applied. The study thus suggests that in the soybean/pigeonpea intercropping system, N is a limiting factor for growth of pigeonpea intercrop during the first half of its growth and application of 100% NPK (30 kg N) + 4 t FYM could meet N demand of pigeonpea in N deficient soils as this nutrient management option gave higher yield, root length density and profit under soybean/pigeonpea intercropping system than 100% NPK and control.  相似文献   

9.
《Field Crops Research》2006,95(2-3):280-290
Cereal–legume intercropping offers potential benefits in low-input cropping systems, where nutrient inputs, in particular nitrogen (N), are limited. In the present study, winter wheat (Triticum aestivum L.) and white clover (Trifolium repens L.) were intercropped by sowing the wheat into rototilled strips in an established stand of white clover.A field experiment was performed in two fields starting in two different years to explore the effects of width of the wheat rows and clover strips on the competition between the species and on wheat yields. The factors were intercropping (clover sole crop, wheat sole crop and wheat/clover intercropping), rototilled band width, sowing width and wheat density in a factorial experimental design that enabled some of the interactions between the factors to be estimated. The measurements included grain yield, ear density, grain weight, grain N concentration, dry matter and N in above-ground biomass of wheat, clover and weeds and profiles of photosynthetic active radiation (PAR) within the crop canopy.Intercropping of winter wheat and clover resulted in wheat grain yield decreases of 10–25% compared with a wheat sole crop. The yield reductions were likely caused by interspecific competition for light and N during vegetative growth, and for soil water during grain filling. N uptake in the wheat intercrop increased during late season growth, resulting in only small differences in total N uptake between wheat intercrops and sole crops, but increased grain N concentrations in the intercrop. Interspecific competition during vegetative wheat growth was reduced by increasing width of the rototilled strips from 7 to 14 cm, resulting in higher grain yields and increased grain N uptake. Increasing the sowing width of the wheat crop from 3 to 6 cm increased interspecific interactions and reduced wheat intraspecific competition during the entire growing season, leading to improved grain yields and higher grain N uptake.  相似文献   

10.
Intercropping (IC) cereals and legumes could be an option for obtaining forage suitable for ensiling and enabling reduced N fertilization. Two experiments were performed in central Italy with durum wheat (Triticum durum Desf.) and field bean (Vicia faba L. var. minor) grown for forage production in IC and as sole crops (SC) with different N rates (20 and 50 kg ha?1) and row ratios (1:1 and 2:1 cereal/legume). The aims were to assess (i) whether IC is a feasible option to reduce N fertilization; (ii) the best combination of practices to obtain forage suitable for ensiling; and (iii) competition/facilitation effects exerted by field bean on durum wheat. Results showed IC allowed fertilizer‐N reduction and led to improved forage yield with better quality, compared with SC. Land equivalent ratio indicated a high efficiency of the IC, by up to 26% with respect to SC. Field bean was the dominant species of IC, but N fertilization reduced its competitive ability and enhanced that of wheat. In the intercrop fertilized with 50 kg N ha?1, the proportion of the wheat in the herbage (0·34–0·41 of the total dry matter) was sufficient for ensiling of the forage mass. Field bean exerted both competition and facilitation effects on the cereal. N uptake of durum wheat was greater under IC with beans than as wheat SC.  相似文献   

11.
《Field Crops Research》2006,96(1):80-89
Opinions differ on the necessity of deep tillage for sustaining crop productivity in the rainfed Vertisols of the semi-arid tropics of central India. We conducted a field experiment for 3 years (2000–2002) with a factorial combination of three cropping systems (sole soybean, sole pigeonpea and soybean/pigeonpea intercropping in 2:1 row ratio) and three tillage practices (conventional, conventional + subsoiling in alternate years and conventional + subsoiling every year). Objectives were (i) to examine the effect of subsoiling Vertisols on sustaining yield of soybean/pigeon pea intercropping, and (ii) to assess the frequency of subsoiling for realizing maximum yield and profit. Though there was a reduction in growth and yield of intercrops, higher soybean equivalent yield (SEY) and area-time equivalent ratio (ATER) value in soybean/pigeonpea intercropping system as compared to sole soybean had a yield advantage. The average yield advantage in intercropping system was 60% higher than that from sole soybean. The yield advantage of intercropping system in terms of ATER was 7% greater with subsoiling than conventional tillage. The yield response to subsoiling was consistent over the period and on an average, subsoiling increased yield by 20%. The effect was associated with improved water storage and root length density. However, with respect to energy use efficiency and profit, the effect of subsoiling was comparable to conventional tillage. The variation in net return and benefit:cost ratio in subsoiling every year and subsoiling in alternate years in sole soybean and soybean/pigeonpea intercropping was not significant. However, in sole pigeon pea subsoiling every year out-yielded subsoiling in alternate years. The interactive effect of subsoiling and intercropping increased the yield by 21–25%. Thus, under rainfed cropping where drought of unpredictable intensity and duration is a prevailing feature, soybean/pigeon pea intercropping could be a promising option, especially when combined with subsoiling in alternate years.  相似文献   

12.
Vital wheat gluten and lecithin (GL) (50:50, w/w) were dry blended in a coffee grinder and a 9.5% (w/v) aqueous slurry was jet-cooked (steam pressures of 65 psi/g inlet and 40 psi/g outlet) to disaggregate wheat gluten and facilitate better dispersion of the two components. The jet-cooked material was freeze-dried and stored at 0 °C for future use. The GL blend was added to pure food grade common maize and rice starch at concentrations of 0 (control), 6, 11, 16, and 21%. Starch gelatinization and retrogradation temperature transitions were determined using Differential Scanning Calorimetry (DSC). From the DSC profiles, the change in the ΔH value was used as an indication of starch retrogradation, where a higher ΔH value indicated higher retrogradation. The ΔH values of the blends at 4 °C had higher values than the −20 °C and the ambient (25 °C) storage temperatures. Overall, the 21% GL/starch blends reduced retrogradation by 50%. The lower amylose content of rice starch relative to maize starch was reflected in Rapid Visco Amylograph (RVA) measurements of peak viscosity, and similarly, Texture Analyzer (TA) measurements indicated that maize starch gel is firmer than rice starch gel. Retrogradation was also evaluated by observing G′, the shear storage modulus, as a function of time after running a standard pasting curve. Using this method, it appears that GL has a significant effect on maize starch retrogradation, since low concentrations (<0.4%, w/w) reduced G′ up to 40%. The opposite behavior was seen in rice starch, where G′ increased directly with added GL. It appears that the amylose level in the rice starch is too low to be affected by the GL, and the increase seen in G′ is most likely due to added solids.  相似文献   

13.
The effects of applying nitrogen (30 or 40 kg N/ha) to wheat crops at and after anthesis, after 200 kg N/ha had already been applied to the soil during stem extension, were studied in field experiments comprising complete factorial combinations of different cultivars, fungicide applications and nitrogen treatments. Actual recoveries of late-season fertilizer nitrogen (LSFN), as indicated by 15N studies, interacted with cultivar and fungicide treatment, and depended on nitrogen source (urea applied as a solution to the foliage, or as ammonium nitrate applied to the soil) and year. These interactions, however, were not reflected in apparent fertilizer recoveries ((N in grain with LSFN − N in grain without LSFN)/N applied as LSFN), or in the crude protein concentration. Apparent fertilizer recovery was always lower than actual recoveries, and declined during grain filling. Fertilizer treatments with higher actual fertilizer recoveries were associated with lower net remobilisation of non-LSFN (net remobilised N = N in above ground crop at anthesis − N in non-grain, above ground crop at harvest). LSFN also increased mineral nitrogen in the soil at harvest even when applied as a solution to the foliage. These effects are discussed in relation to potential grain N demand.  相似文献   

14.
A panel of anti-peptide antibodies specific for each of the different N-terminal sequence types of B- and C-low molecular mass glutenin subunits (L MrGS) were utilised in immunoblotting studies to identify the chromosomal location of genes encoding different sequences and to characterise the allelic variation of the encoding loci. The MET-type sequences were predominantly found among the B- subunits, while the α- and γ- sequences predominated in the C- subunits. The quantitatively major SHIPGLERPS sequence was found in both the B- and C- mobility regions. Using either biotypes in the cultivar, Aroona or genetic lines containing double rye chromosome 1 substitutions and thus expressing only single LMr GS alleles, the sequences were determined for most of the major polypeptides expressed by each LMr GS allele. The L MrGS from different genomes encoded different numbers of each sequence type. Furthermore, different polypeptides within a particular «block» of subunits encoded by a given allele often had differing N-terminal sequences. However, subunits of similar electrophoretic mobilities encoded by different alleles at each locus usually had identical N-terminal sequences, suggesting that they may instead differ in the number of repeats. In Chinese Spring, genes encoding the SHIPGLERPS and METSHIPGL sequence types were predominantly present on chromosomes 1B and 1D, while the related METSRVPGL sequence was only encoded on 1D. In contrast, the METSCIPGL, α- and γ-sequences were encoded on each of chromosomes 1A, 1B and 1D. Several different electrophoretic and immunoblotting approaches using null lines suggested that some of the α-type L MrGS may also be encoded by group 6 chromosomes, particularly 6D. The anti- SHIPGLERPS antibody also recognised chromosome 1B encoded β-, γ- and ω-gliadins, while the anti-METSRVPGL antibody recognised 1D encoded α- and β-gliadins. The absence of sequences within the major gliadin families that are highly homologous to the latter two N-terminal L MrGS sequences may suggest that some monomeric L MrGS could exist within the electrophoretically-resolved gliadins. These antibodies will provide valuable reagents for the study of the roles of particular L MrGS families in the structure and function of the glutenin macropolymer, the role of different LMr GS types in determining the influence of allelic variation of L MrGS composition on dough properties, and potentially in the development of diagnostics for these flour components.  相似文献   

15.
《Field Crops Research》1998,56(3):257-264
Maize kernel weight (KW) results from kernel growth during two stages of grain filling, the lag phase (formative period) and the effective grain-filling phase. Environmental conditions may affect kernel biomass accumulation in each phase. This work analyzed: (1) changes in duration and rate of kernel growth on a thermal time (°C day) basis; and (2) KW response to postsilking biomass production kernel−1 (source:sink ratio). Sowing date, plant population, and nitrogen fertilization experiments were conducted in France and Argentina to induce changes in assimilate availability per kernel. Hybrids of different KW were tested. Hybrids differed in the duration of the lag phase, which determined kernel growth rate during the effective grain-filling period for hybrids with similar grain-filling duration (ca. 745°C day). Environments with low air temperature (<19°C) and less incident solar radiation led to a smaller final KW due to reductions in photoassimilate production and its partition to the grains. A value of 240 to 270 mg kernel−1 during grain filling was determined as a threshold to have mobilization or storage of reserves. Small-kernel hybrids (KW<300 mg), with large kernel number (3500 to 5500 kernels m−2), depended more on reserve mobilization than large-kernel hybrids (KW>300 mg) with reduced kernel number (2800 to 4000 kernels m−2). For the former, grain yield increments should not be based on increased kernel number but on increased biomass production.  相似文献   

16.
17.
小麦Mlo基因的克隆及白粉病菌诱导下的表达模式分析   总被引:1,自引:0,他引:1  
为了研究Mlo基因在感、抗小麦品种中的表达情况,根据小麦基因芯片的Mlo探针序列,利用电子克隆与RT-PCR方法在感病小麦品种豫麦13和抗病品种红蚰麦中分别克隆到Mlo基因的同源序列。两条核苷酸序列全长均为1 605 bp,都含有一个完整的ORF(Open reading frame)。核苷酸序列分析显示二者的DNA序列只有一个核苷酸的差异,与大麦Mlo的相似性均为90%。编码的氨基酸序列包含有7个跨膜结构域,前18个氨基酸是信号肽序列,第414~435位是编码蛋白的活性中心,第451、459、462、475、483位点上有糖基化位点,细胞定位分析将其定位在膜上。从头建模分析构建的二者三维结构有明显差异。利用定量PCR对该基因在白粉菌诱导早期的表达模式进行分析,结果两基因的表达都受白粉菌的诱导,但在红蚰麦中的表达高峰出现在18 h,豫麦13中的表达高峰出现在72 h,表达时间的差异可能决定了两者对白粉菌的不同抗性反应。  相似文献   

18.
A group of low Mr wheat proteins with characteristic extractability behavior was isolated using two different isolation procedures. The proteins were extractable with water, salt solution and 70% (v/v) ethanol. After water extraction of flour and separation of gluten, a substantial proportion of these proteins was still extractable from gluten using 70% (v/v) ethanol. Based in their amino acid compositions, Mrs and IEF patterns, the isolated proteins resemble closely most of the alpha -amylase/protease inhibitors described in the literature. This was confirmed by enzyme inhibition studies in which it was shown that they inhibited mammalian, but not wheat, bacterial and fungal alpha-amylases. All proteases tested were inhibited by the low Mr proteins. Their Mrs and their high cysteine contents (6·5-8·1 mol%) indicated that the proteins contain four to five disulphide bonds. Free thiol groups were not detected in the proteins. Upon reduction, the Mr increased from 7-8000 to 14-19000. Furthermore, the disulphide bonds were highly reactive as determined by their reaction with the thiol-specific label monobromobimane. This suggests that the low Mr wheat proteins may play a role in thiol group/disulphide bond exchange in wheat proteins.  相似文献   

19.
Appropriate benchmarks for water productivity (WP), defined here as the amount of grain yield produced per unit of water supply, are needed to help identify and diagnose inefficiencies in crop production and water management in irrigated systems. Such analysis is lacking for maize in the Western U.S. Corn Belt where irrigated production represents 58% of total maize output. The objective of this paper was to quantify WP and identify opportunities to increase it in irrigated maize systems of central Nebraska. In the present study, a benchmark for maize WP was (i) developed from relationships between simulated yield and seasonal water supply (stored soil water and sowing-to-maturity rainfall plus irrigation) documented in a previous study; (ii) validated against actual data from crops grown with good management over a wide range of environments and water supply regimes (n = 123); and (iii) used to evaluate WP of farmer's fields in central Nebraska using a 3-y database (2005–2007) that included field-specific values for yield and applied irrigation (n = 777). The database was also used to quantify applied irrigation, irrigation water-use efficiency (IWUE; amount of yield produced per unit of applied irrigation), and the impact of agronomic practices on both parameters. Opportunities to improve irrigation management were evaluated using a maize simulation model in combination with actual weather records and detailed data on soil properties and crop management collected from a subset of fields (n = 123). The linear function derived from the relationship between simulated grain yield and seasonal water supply, namely the mean WP function (slope = 19.3 kg ha−1 mm−1; x-intercept = 100 mm), proved to be a robust benchmark for maize WP when compared with actual yield and water supply data. Average farmer's WP in central Nebraska was ∼73% of the WP derived from the slope of the mean WP function. A substantial number of fields (55% of total) had water supply in excess of that required to achieve yield potential (900 mm). Pivot irrigation (instead of surface irrigation) and conservation tillage in fields under soybean–maize rotation had the greatest IWUE and yield. Applied irrigation was 41 and 20% less under pivot and conservation tillage than under surface irrigation and conventional tillage, respectively. Simulation analysis showed that up to 32% of the annual water volume allocated to irrigated maize in the region could be saved with little yield penalty, by switching current surface systems to pivot, improving irrigation schedules to be more synchronous with crop water requirements and, as a fine-tune option, adopting limited irrigation.  相似文献   

20.
Leaf senescence in a recent maize (Zea mays L.) hybrid is delayed relative to that in an older maize hybrid and the trait is associated with an improvement of the ratio of assimilate supply (i.e., source) and demand (i.e., sink) during grain filling. This study examined whether effects of source : sink ratio of leaf longevity in an old and more recent hybrid are associated with changes in leaf nitrogen (N) concentration and N uptake during grain filling. A 3-year field study was conducted with maize hybrids Pride 5 (old) and Pioneer 3902 (recent) grown at two soil-N levels: 150 kg−1 N ha−1 was broadcast in the high N treatment while none was added to the low N treatment. Four imposed source : sink treatments ranged from partial defoliation to no grain. Leaf N of the control treatments did not differ between the two hybrids, but the decline in leaf N from the control to the no-sink treatment was larger for Pioneer 3902 than for Pride 5. Total N uptake in above-ground portions was 10 and 18% greater in the new than in the old hybrid under low and high soil-N conditions, respectively. The difference in the total N uptake between the two hybrids could be attributed to post-silking N uptake. The proportion of N in the grain derived from post-silking N uptake was 60% for Pioneer 3902 and 40% for Pride 5 and this proportion was positively associated with the source : sink ratio. Higher rates of N uptake in Pioneer 3902 vs. Pride 5 appear to be, in part, the result of higher rates of dry matter accumulation of the newer hybrid during grain filling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号