首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
华北冬小麦-夏玉米农田水分动态模拟研究   总被引:2,自引:1,他引:2  
冬小麦-夏玉米连作是华北地区主要的粮食作物种植模式。根据华北季节性冻土区的特点,将全年划分为作物生长期与越冬期,分别建立了作物生长条件下农田水分运移模型、冻融条件下土壤水热运移模型。前一模型主要包括参照腾发量计算、腾发量分配、作物根系吸水、土壤表面蒸发、土壤水分特征参数和土壤水分运动等子模型;后一模型主要包括冻土水热耦舍迁移、地气水热交换等子模型。应用以上模型对冬小麦-夏玉米连作条件下的土壤水分过程进行模拟,根据北京永乐店试验资料对模型进行检验。模拟了不同降水水平年、不同灌溉处理下的农田灌溉制度及土壤水分过程,分析了降水、灌溉对农田蒸散、土壤水利用、深层渗漏等的影响。  相似文献   

2.
The dual crop coefficient approach accounts separately for plant transpiration and soil evaporation by using the basal crop coefficient and the evaporation coefficient, respectively. The SIMDualKc model, which performs the soil water balance simulation with estimation of the actual crop evapotranspiration (ET) with the dual crop coefficient approach, was applied to a drip-irrigated peach orchard under Mediterranean conditions. Orchard ET was obtained with the eddy covariance technique, which was subsequently correlated with tree transpiration estimated from sap flow measurements and soil evaporation determined with microlysimeters, thus providing ET for the whole irrigation season. Two years of field observations were used for model calibration and validation using those ET measurements and taking into account the fraction of ground covered by trees through a density factor which adjusts the basal crop coefficient. Model fitting relative to ET observations during calibration and validation provided indices of agreement averaging 0.90, coefficients of regression close to 1.0, root mean square errors around 0.41 mm and average absolute errors of 0.32 mm. Model fitting relative to transpiration and to soil evaporation produced similar results, so showing the adequateness of modelling.  相似文献   

3.
In this paper, a model that integrates various complex model components for the purposes of water balance modeling throughout crop development in arid inland region under the conventional flood irrigation practiced is presented. These components are modules for calculating dynamic soil water content based Richard's equation, potential and actual evapotranspiration, and crop root water uptake. Soil water content in the active root zone and soil evaporation simulation obtained from the model were test using field data in 2003. The low values of MARE and high values of R2 and PE in the active root zone of soil profile as well as daily soil evaporation indicated that the soil water balance simulation model presented in the paper can be used with reliable accuracy to simulate the components of water balance in cropped sandy soil under the conventional flood irrigation condition in arid inland regions. The model simulation on components of water balance using observed field data in 2004 indicated that large quantities – about 43% of irrigation water (amounting to 840 mm) – were consumed by deep percolation, only small (less than 41%) proportions of irrigation water used by the plants for transpiration. The current irrigation scheme is characterized by the unreasonable agricultural water management with the waste of water in the irrigational system in this region. The impact of irrigation scheduling on water balance presented in this paper showed that the reasonable irrigation scheme with more frequent irrigation and less amounts is more suitable for the irrigation of spring wheat in Heihe River basin, northwest China. Therefore, to establish a decision-making system for agricultural irrigation scheme and to utilize the limited water resources in this region have become an urgent problem that needs to be solved.  相似文献   

4.
Continuous cropping of winter wheat and summer maize is the main cropping pattern in North China Plain lying in a seasonal frost area. Irrigation scheduling of one crop will influence soil water regime and irrigation scheduling of the subsequent crop. Therefore, irrigation scheduling of winter wheat and maize should be studied as a whole. Considering the meteorological and crop characteristics of the area lying in a seasonal frost area, a cropping year is divided into crop growing period and frost period. Model of simultaneous moisture and heat transfer (SMHT) for the frost period and model of soil water transfer (SWT) for the crop growing period were developed, and used jointly for the simulation of soil water dynamics and irrigation scheduling for a whole cropping year. The model was calibrated and validated with field experiment of winter wheat and maize in Beijing, China. Then the model was applied to the simulation of water dynamics and irrigation scheduling with different precipitation and irrigation treatments. From the simulation results, precipitation can meet the crop water requirement of maize to a great extent, and irrigation at the seeding stage may be necessary. Precipitation and irrigation had no significant influence on evaporation and transpiration of maize. On the other hand, irrigation scheduling of winter wheat mainly depends on irrigation standard. Irrigation at the seeding stage and before soil freezing is usually necessary. For high irrigation standard, four times of irrigation are required after greening. While for medium irrigation, only once (rainy year) or twice (medium and dry years) of irrigation is required after greening. Transpiration of winter wheat is very close for high and medium irrigation, but it decreases significantly for low irrigation and will result in a reduction of crop yield. Irrigation with proper time and amount is necessary for winter wheat. Considering irrigation quota and crop transpiration comprehensively, medium irrigation is recommended for the irrigation of winter wheat in the studying area, which can reduce the irrigation quota of over 150 mm with little water stress for crop growth.  相似文献   

5.
A surface energy balance model based on the Shuttleworth and Wallace (Q J R Meteorol Soc 111:839–855, 1985) and Choudhury and Monteith (Q J R Meteorol Soc 114:373–398, 1988) methods was developed to estimate evaporation from soil and crop residue, and transpiration from crop canopies. The model describes the energy balance and flux resistances for vegetated and residue-covered surfaces. The model estimates latent, sensible and soil heat fluxes to provide a method to partition evapotranspiration (ET) into soil/residue evaporation and plant transpiration. This facilitates estimates of the effect of residue on ET and consequently on water balance studies, and allows for simulation of ET during periods of crop dormancy. ET estimated with the model agreed favorably with eddy covariance flux measurements from an irrigated maize field and accurately simulated diurnal variations and hourly amounts of ET during periods with a range of crop canopy covers. For hourly estimations, the root mean square error was 41.4 W m−2, the mean absolute error was 29.9 W m−2, the Nash–Sutcliffe coefficient was 0.92 and the index of agreement was 0.97.  相似文献   

6.
为研究关中冬小麦植株蒸腾和土壤蒸发规律,利用2 a冬小麦小区控水试验实测数据,率定和验证了双作物系数SIMDual_Kc模型在关中地区的适用性.用大型称重式蒸渗仪的实测蒸散量值(或水量平衡法计算值)与模型模拟值进行对比.结果表明:SIMDualKc模型可较准确地模拟关中不同水分条件下冬小麦蒸散量,且模拟精度较高.模型估算的平均绝对误差为0.643 3 mm/d.模型估算的冬小麦初期、中期和后期的基础作物系数分别为0.35,1.30,0.20.另外,模型还可以较准确地估算不同水分供应条件下的土壤水分胁迫系数、土壤蒸发量和植株蒸散量.冬小麦整个生育期,土壤蒸发主要发生在作物生育前期,中期较低,后期略微增大;植株蒸腾主要发生在作物快速生长期和生长中期,整个生育期中呈先增大后减小的趋势.  相似文献   

7.
The salinity condition in the root zone hinders moisture extraction from soil by plants, because of osmotic potential development in soil water due to presence of salts, which ultimately, decreases transpiration of plants and thereby affects crop yield. Therefore, an effort was made in this study to quantify the impact of salinity on soil water availability to plants. The movement of salts under irrigation and evapotranspiration regimes in root zone of soil profile was studied throughout the growing season of wheat crop with adopting exponential pattern of root water uptake. A model was developed to analyze soil water balance to find out moisture deficit because of salinity. A non-linear relationship was formulated between moisture content and salt concentration for simultaneous prediction. The Crank–Nicolson method of Finite Differencing was used to solve the differential equations of soil water and solute transport. The effect of various salt concentrations on transpiration was analyzed to develop a relationship between relative evapotranspiration and relative yield. Relationships among salt concentration, matric potential, moisture deficit and actual transpiration were also established to provide better understanding about impact of salinization and to provide guidelines for obtaining better crop yields in saline soils.  相似文献   

8.
Using the Shuttleworth and Wallace (S–W) model, evapotranspiration (ET); transpiration ratio (T/ET), which is the ratio of transpiration (T) to ET; and water-use efficiency (WUE) were estimated for a sparsely planted sorghum canopy that was well irrigated. That model is designed to estimate separately the evaporation from soil and transpiration from crops.The evapotranspiration estimates for both short- and long-term measurement periods coincided closely with the Bowen ratio energy balance (BREB) measurements. The transpiration ratios were affected by the canopy resistances and the soil surface resistances during the day. The regression curve between leaf area index (LAI) and transpiration ratio suggests that LAI, less than 1.6, determined the transpiration ratio in the absence of water stresses by soil water drought and extreme weather condition. The WUEs for transpiration (WUEt) and evapotranspiration (WUEet), which are the total dry matter (TDM) production for 1 kg T and ET, reached the peaks of 9.0 and 4.5 g kg−1 H2O, respectively, in the end of July when the total dry matter increasing rate was greatest. These two WUEs degraded to less than zero in the end of August when the plant biomass decreased due to drying and death. The WUEs are largely affected by the TDM seasonal increment rate.Thus, in a sparse crop, the crop growth properties (i.e. LAI and TDM increment) mainly determine the crop water uses (i.e. the transpiration ratio and water-use efficiency) in the absence of water stresses.  相似文献   

9.
以肥调水提高水分利用效率的生物学机制研究   总被引:6,自引:0,他引:6  
为揭示以肥调水作用的内在实质,充分发挥水肥的协同作用,我们于1995~1996年进行了大田和深桶栽培冬小麦氮、磷二因素五水平二次通用旋转组合设计施肥试验。采用中子法和石膏块法监测土壤水分,于灌浆初期用美国产LI—6200型便携式光合作用系统测定光合、蒸腾速率,同时挖取土柱测定根系。研究表明合理施肥可显著增加冬小麦根量,提高根系活力,扩大作物吸收水分和养分的空间和动力;提高光合、蒸腾速率和蒸腾蒸散比(T/ET),降低土壤水分无效蒸发损失;增加有效穗数和经济产量。从而使冬小麦的水分利用效率得以大幅度地提高。  相似文献   

10.
An accurate estimation of crop evapotranspiration (ET c) is very useful for appropriate water management; hence, an accurate and user-friendly model is needed to support related irrigation decisions. In this view, a study was developed aimed at estimating the ET c of winter wheat–summer maize crop sequence in the North China through eddy covariance measurements, to calibrate and validate the SIMDualKc model, to estimate the basal crop coefficients (K cb) for both crops and to partition ET c into soil evaporation and crop transpiration. Two years of field experimentation of that crop sequence were used to calibrate and validate the SIMDualKc model and to derive K cb using eddy covariance measurements. Various indicators have shown the goodness of fit of the model, with estimated values very close to the observed ones and estimate errors close to 0.5 mm d?1. The initial, mid-season and end basal crop coefficients for wheat were 0.25, 1.15 and 0.30, respectively, and those for maize were 0.15, 1.15 and 0.45, thus close to those proposed in FAO56 guidelines. The soil evaporation represented near 80 % of ET c for the initial stages of winter wheat and summer maize and decreased to only 5–6 % during the mid-season period. Evaporation during the full crop season averaged 28 % for winter wheat and 40 % for summer maize. The importance of wetting frequency and crop ground coverage in controlling soil evaporation was evidenced.  相似文献   

11.
Quantifying the soil water deficit (SWD) and its relation to canopy or leaf conductance is essential for application of the Penman–Monteith equation to water-stressed plants. As the water uptake of a single root depends on the water content of the soil in its immediate vicinity, the non-uniform distribution of water and roots in the soil profile does not allow simple quantification of SWD from soil-based measurements. Using measurements of stem sap flux (with a heat pulse technique), soil evaporation (with micro-lysimeters) and meteorological parameters the canopy conductance was obtained through inversion of the Penman–Monteith equation. SWD was evaluated by averaging the soil water content profile of the root zone (monitored by layers with the TDR sensors) weighted by root distribution of the layers. The average canopy conductance at midday (11:00–15:00, Israel Summer Time), denoted as Gnoon, was computed for each day of the experimental period. Stable summer weather, typical of the Mediterranean region, and the fully developed crop canopy, made water stress the only plausible cause of a Gnoon decline. However, the daily decline of Gnoon did not occur at the same weighted average soil water content during the successive drying cycles. For the cycle with less irrigation, the decline in Gnoon occurred at higher soil moisture levels. Alternatively, when SWD was determined from the water balance, i.e., by defining water deficit as irrigation minus accumulated evapotranspiration, the Gnoon decline occurred at the same value of water deficit for all irrigation cycles. We conclude that a climate-based soil water balance model is a better means of quantifying SWD than a solely soil-based measurement.  相似文献   

12.
Application of a new method to evaluate crop water stress index   总被引:1,自引:0,他引:1  
Optimum water management and irrigation require timely detection of crop water condition. Usually crop water condition can be indicated by crop water stress index (CWSI), which can be estimated based on the measurements of either soil water or plant status. Estimation of CWSI by canopy temperature is one of them and has the potential to be widely applied because of its quick response and remotely measurable features. To calculate CWSI, the conventional canopy-temperature-based model (Jackson’s model) requires the measurement or estimation of the canopy temperature, the maximum canopy temperature (T cu), and the minimum canopy temperature (T cl). Because extensive measurements are necessary to estimate T cu and T cl, its application is limited. In this study, by introducing the temperature of an imitation leaf (a leaf without transpiration, T p) and based on the principles of energy balance, we studied the possibility to replace T cu by T p and reduce the included parameters for CWSI calculation. Field experiments were carried out in a winter wheat (Triticum aestivum L.) field in Luancheng area, Hebei Province, the main production area of winter wheat in China. Six irrigation treatments were established and soil water content, leaf water potential, soil evaporation rate, plant transpiration rate, biomass, yield, and regular meteorological variables of each treatment were measured. Results indicate that the values of T cu agree with the values of T p with a regression coefficient r=0.988. While the values of CWSI estimated by the use of T p are in agreement with CWSI by Jackson’s method, with a regression coefficient r=0.999. Furthermore, CWSI estimated by the use of T p has good relations with soil water content and leaf water potential, showing that the estimated CWSI by T p is a good indicator of soil water and plant status. Therefore, it is concluded that T cu can be replaced by T p and the included parameters for CWSI calculation can be significantly reduced by this replacement.  相似文献   

13.
基于浑善达克沙地2005-2006两个不同水文年对羊草、拂子茅、冰草构成的羊草群落生育期生境中气象因子及生理因子野外观测试验数据,用联合国粮农组织FAO-56分册中介绍的方法计算了羊草群落生育期基本作物系数和土壤蒸发系数,并对基本作物系数进行了地区气象因素和牧草单叶气孔阻力校正。用校正后的作物系数模拟计算的蒸腾、蒸发量与实际观测值间进行了拟合相关图、拟合优度参数法的有效性检验。结果表明:计算的蒸发、蒸腾量与实测结果基本接近。考虑水分胁迫时,有条件的地区应该对作物系数进行地区气象因素和单叶气孔阻力校正。  相似文献   

14.
15.
河西绿洲灌区主要作物需水量及作物系数试验研究   总被引:2,自引:0,他引:2  
利用Penman-Monteith公式计算了甘肃张掖绿洲主要作物各生育期参考作物蒸散量,利用农田水量平衡方程及土壤水分胁迫系数计算了作物实际蒸发蒸腾量,并计算比较了充分灌溉和非充分灌溉条件下不同生育期作物需水特征,确定了非充分灌溉条件下主要作物的作物系数。结果表明,非充分灌溉条件下,主要作物各生育期需水规律和充分灌溉具有一致变化趋势。非充分灌溉条件下,小麦、玉米、马铃薯全生育期作物系数平均值分别为0.81、0.7和0.73。在全生育期当中,随生育期的延续,主要作物叶面蒸腾比例逐渐增大,棵间蒸发逐渐减少。  相似文献   

16.
Maize (Zea mays L.) is an important food crop for irrigated regions in the world. Its growth and production may be estimated by different crop models in which various relationships between growth and environmental parameters are used. For simulation of maize growth and grain yield, a simulation model was developed (Maize Simulation Model, MSM). Dynamic flow of water, nitrogen (N) movement, and heat flow through the soil were simulated in unsteady state conditions by numerical analysis in soil depth of 0–1.8 m. Hourly potential evapotranspiration [ETp(t)] for maize field was estimated directly by Penman–Monteith method. Hourly potential evaporation [Ep(t)] was estimated based on ETp(t) and canopy shadow projection. Actual evaporation of soil surface was estimated based on its potential value, relative humidity of air, water pressure head and temperature at soil surface layer. Actual transpiration (Ta(t)) was estimated based on soil water content and root distribution at each soil layer. Hourly N uptake by plant was simulated by N mass flow and diffusion processes. Hourly top dry matter production (HDMAj + 1, where j is number of hours after planting) was estimated by hourly corrected intercepted radiation (RSLTj + 1) by plant leaves [determined from leaf area index (LAIj + 1)] with air temperature, the maximum and minimum plant top N concentration and the amounts of nitrogen uptake. The value of LAIj + 1 at each hour was estimated by the accumulated top dry matter production at previous hour using an empirical equation. Maize grain yield was estimated by a relationship between harvest index and seasonal plant top dry matter production. The model was calibrated using data obtained under field conditions by a line source sprinkler irrigation. When the values of water and nitrogen application were optimum, grain yield (moisture content of 15.5%) was 16.2 Mg ha−1. Model was validated using two independent experimental data obtained from other experiments in the Badjgah (Fars province). The experimental results validated the proposed simulation model fairly well.  相似文献   

17.
针对盐渍化地区作物受土壤水分和盐分联合胁迫影响的复杂机理,以内蒙古河套灌区主要经济作物油料向日葵为研究对象,采用田间试验的方法对北方盐渍化地区作物根系吸水模型进行了研究。通过田间和实验室分别测定了土壤水分运动特征参数,并对田间实测土壤基质势进行了标定,建立了土壤基质势和饱和度之间的数学模型。此研究为盐渍化地区土壤水分运动的研究提供了依据,可作为盐渍化地区SPAC系统研究的参考。  相似文献   

18.
Water use of spring wheat to raise water productivity   总被引:1,自引:0,他引:1  
In semi-arid environments with a shortage of water resources and a risk of overexplotation of water supplies, spring wheat (Triticum aestivum L.) is a crop that can reduce water use and increase water productivity, because it takes advantage of spring rainfall and is harvested before the evaporative demands of summer. We carried out an experiment in 2003 at “Las Tiesas” farm, located between Barrax and Albacete (Central Spain), to improve accuracy in the estimation of wheat evapotranspiration (ETc) by using a weighing lysimeter. The measured seasonal ETc averages (5.63 mm day−1) measured in the lysimeter was 417 mm compared to the calculated ETc values (5.31 mm day−1) calculated with the standard FAO methodology of 393 mm. The evapotranspiration crop coefficient (Kc) derived from lysimetric measurements was Kc-mid: 1.20 and Kc-end: 0.15. The daily lysimeter Kc values were fit to the evolution linearly related to the green cover fraction (fc), which follows the crop development pattern. Seasonal soil evaporation was estimated as 135 mm and the basal crop coefficient approach was calculated in this study, Kcb which separates crop transpiration from soil evaporation (evaporation coefficient, Ke) was calculated and related to the green cover fraction (fc) and the Normalized Difference Vegetation Index (NDVI) obtained by field radiometry in case of wheat. The results obtained by this research will permit the reduction of water use and improvement of water productivity for wheat, which is of vital importance in areas of limited water resources.  相似文献   

19.
A soil-water balance simulation model developed for the Cerrado soils of central Brazil is presented. The model calculates daily soil water evaporation, plant transpiration and soil-water balance for fourteen soil layers of 15 mm each. The model includes a subroutine to calculate capillary water movement. Computer simulations of daily soil water levels at five soil depths (15, 30, 45, 60 and 90 cm) for a field of maize are compared with actual field measurements over an 80-day period. Results indicated that the developed model can, in general, estimate the soil-water balance of the various depths within ± 10% of actual measurements.  相似文献   

20.
金丝小枣蒸散和作物系数变化规律研究   总被引:1,自引:1,他引:0  
采用Probe12植物茎液流计和小型蒸发器分别测定了金丝小枣生长期间的日蒸腾和棵间蒸发。蒸腾存在日变化和季节性变化,果实膨大期蒸腾的日变化呈双峰曲线,萌芽展叶期、开花坐果期、果实成熟期和落叶期的日变化呈单峰曲线;萌芽展叶期、开花坐果期、果实膨大期、果实成熟期和落叶期的蒸腾量分别占生长季总耗水量的12.2%、16.5%、48.1%、13.2%、10.1%,金丝小枣生育期总蒸腾量346.8 mm,棵间蒸发231.7 mm,总蒸散578.5mm;棵间蒸发占总蒸散量的40.1%。枣树的作物系数随生育期变化从前期的0.27,到中期0.92,后期0.71,作物系数与冠层覆盖度呈显著正相关关系,决定系数为R2=0.758 6(P<0.01)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号