首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The goal of this study is to give a comprehensive and quantitative estimation of the uncertainty of computed in different scale nitrogen (N) and sulphur (S) critical loads (CL) values for terrestrial ecosystems of the Northern Asia, European part and the North-Western regions of Russia. The CL values are used to set goals for future deposition rates of acidifying compounds so that the environment is protected. In this research CL values for terrestrial ecosystems are determined using the expert-modelling geoinformation system (EM GIS) approach. UNCSAM software package is used as the tool for uncertainty analysis. The analysis presented here focuses on the estimation and effect of the input source uncertainties and sensitivities on the CL values in various regions under study. In spite of the region, nitrogen uptake by vegetation, nitrogen leaching from terrestrial ecosystems and the difference between deposition and uptake by plants of base cations (BC) are the most influential factors for all terrestrial ecosystems of Russia.  相似文献   

2.
Abstract. Terrestrial ecosystem risk assessment remains in its infancy by comparison with the aquatic discipline, yet it is advancing quickly in response to increasing concerns surrounding soil quality and the sustainable use of soil. Several international frameworks have been developed during the last decade to aid decision-makers as the need for scientifically derived tools for determining ecological risk from land contamination has been recognized. From the regulatory viewpoint, the priority is establishing what to protect in order to prevent ecological harm. This is a complex issue requiring clear objectives in a risk assessment context. The most important factor in assessing ecological harm is whether or not ecosystem function is altered as a result of land contamination and, if it is, judging the significance. A consensus is developing that ecological risk assessment should aim to protect populations rather than individuals. This paper critically reviews recent developments in risk assessment for terrestrial ecosystems and land contamination in the UK, with emphasis on deriving a measure of ecological harm to assess ecosystem function. We seek to further justify the use of earthworms as a favoured indicator species for protecting ecological function. Guidance on how to measure harm in relation to ecological function is, however, still lacking.  相似文献   

3.
A review is presented of the recent state of the problem of soil algae productivity in terrestrial ecosystems on the basis of literature data and our own research. It is shown that the organic matter accumulated by soil algae is highly mobile. The following parameters were analyzed: the biological production, the time of the biomass turnover, and the rate of the algal organic matter renewal in the soil. The average monthly production of algae ranged from 0.9 to 765 g/m2, the rate of the organic matter renewal ranged from 0.03 to 25.5 g/m2 per day, and the time of the algal biomass renewal ranged from 0.1 to 7 days.  相似文献   

4.
气候变暖对陆地生态系统的影响   总被引:3,自引:0,他引:3  
人类活动引起的温室效应导致全球气候变暖,气候变暖对全球生态环境的影响越来越受到人们的关注.作为人类赖以生存的环境主体,陆地生态系统对气候变暖将做出何种响应,更是人们关注的重点.植物物候的变化可以直观地反映某些气候变化,尤其是气候变暖.气候变暖影响植物的生长节律,进而引起植物与环境关系的改变及生态系统物质循环(如水和碳的循环)的改变.不同种类植物对气候变化的差异响应,会使植物间和动植物间的竞争与依赖关系发生深刻的变化,如北半球中高纬度地区植被生长季延长、植物提早开花、昆虫提早出现、鸟类提早产蛋以及冰川退缩、永冻土带融化、江河湖泊结冰推迟而融化提早等.本文主要从陆地生态系统的分布和演替两方面着眼,以植物和动物作为考察对象,系统论述了森林、草原、荒漠、湿地及农田等陆地生态系统在气候变暖背景下产生的变化,并从微观和宏观尺度上提出陆地生态系统变化的生态学机制,最后在技术和政策层面给出若干对策.  相似文献   

5.
The theoretical relationship between microclimate, temperature and moisture in decaying branchwood is considered and methods of expressing moisture content discussed. Field measurements were obtained over a 1-yr period. The annual pattern of branch temperature and moisture contents consisted of a cold wet winter period when branch moisture contents are at or above saturation, low temperatures and high rainfall prevent drying. When temperatures rise in spring the trend is for branches to begin gradually to dry. During the summer months moisture contents are not constant and vary considerably from day to day with fairly rapid drying following periods of wetting. Moisture contents only rarely fell below the fibre saturation point. With the approach of autumn and winter the overall trend is for a gradual increase in moisture content but with periods of slow drying occurring whilst temperatures are still high enough to allow this.  相似文献   

6.
Humus forms are the seat of most biological transformations taking place in terrestrial ecosystems, being at the interface between plants, animals and microbes. The diversity of terrestrial humus forms (mor, moder and mull) can be attributed to the existence of different patterns (strategies) for the capture and use of resources by ecosystems, in ascending order of biodiversity and bioavailability. Arguments are found in the parallel development of humus forms and terrestrial ecosystems, in exclusion mechanisms between organisms living in different humus forms, and in palaeontological studies. The diversification of terrestrial life forms in the course of Earth history, concomitant with an improvement in resource availability due to the development of sedimentary layers at the surface of continents, may explain the successive appearance of more active humus forms enabling the co-existence of an increasing number of organisms. Contradictory reports about the relationships between biodiversity and stability of ecosystems can be explained by the existence of different belowground pathways making ecosystems more stable.  相似文献   

7.

Purpose

Denitrification has been extensively studied in soils from temperate zones in industrialized countries. However, few studies quantifying denitrification rates in soils from tropical and subtropical zones have been reported. Denitrification mechanisms in tropical/subtropical soils may be different from other soils due to their unique soil characteristics. The identification of denitrification in the area is crucial to understand the role of denitrification in the global nitrogen (N) cycle in terrestrial ecosystems and in the interaction between global environmental changes and ecosystem responses.

Materials and methods

We review the existing literature on microbially mediated denitrification in tropical/subtropical soils, attempting to provide a better understanding about and new research directions for denitrification in these regions.

Results and discussion

Tropical and subtropical soils might be characterized by generally lower denitrification capacity than temperate soils, with greater variability due to land use and management practices varying temporally and spatially. Factors that influence soil water content and the nature and rate of carbon (C) and N turnover are the landscape-scale and field-scale controls of denitrification. High redox potential in the field, which is mainly attributed to soil oxide enrichment, may be at least one critical edaphic variable responsible for slow denitrification rates in the humid tropical and subtropical soils. However, soil pH is not responsible for these slow denitrification rates. Organic C mineralization is more important than total N content and C/N in determining denitrification capacity in humid subtropical soils. There is increasing evidence that the ecological consequence of denitrification in tropical and subtropical soils may be different from that of temperate zones. Contribution of denitrification in tropical and subtropical regions to the global climate warming should be considered comprehensively since it could affect other greenhouse gases, such as methane (CH4) and carbon dioxide (CO2), and N deposition.

Conclusions

Tropical/subtropical soils have developed several N conservation strategies to prevent N losses via denitrification from the ecosystems. However, the mechanisms involved in the biogeochemical regulation of tropical and subtropical ecosystem responses to environmental changes are largely unknown. These works are important for accurately modeling denitrification and all other simultaneously operating N transformations.  相似文献   

8.
9.
Changes in vegetation are often caused by changes in abiotic site factors, such as pH, nitrogen availability and soil moisture. It has been recognized that abiotic site factors are affected by atmospheric deposition and groundwater-table changes. In order to evaluate the effects of eutrophication, acidification and desiccation on site factors, the model SMART2 has been developed. For the Netherlands combinations of two acidification and two seepage scenarios (1990–2050) were evaluated with SMART2. The results are focused on pH, nitrogen availability and base saturation. Calculations were made for combinations of five vegetation structures on seven soil types and the five groundwater-table classes, using a 1 km2 grid. Results showed that deposition reductions lead to a relatively fast improvement of the site factors, increase in pH and base saturation and decrease in N availability. Whereas a reduction in groundwater abstractions of 25% has little or no effect on the pH and N availability.  相似文献   

10.
 Determination of the C balance is of considerable importance when forecasting climate and environmental changes. Soil respiration and biological productivity of ecosystems (net primary production; NPP) are the basic components of the terrestrial C cycle. In this study, a previously made assessment of the annual CO2 flux from Russian soils was improved upon. CO2 emissions from Russian soils during the growing period were shown to represent, on average, 53–82% of the annual CO2 flux from Russian soils. The total annual CO2 flux from Russian soils was estimated at 4.50 Gt C (C source). The NPP of Russian ecosystems was estimated at 4.81 Gt C year–1 (C sink). Our calculations showed values of CO2 emissions and the C sink to be very close. This shows that, in general, terrestrial ecosystems are under steady state. Received: 1 December 1997  相似文献   

11.
Seasalts are the dominant chemical constituents of precipitation in maritime regions. Dry deposition of these salts is also an important process and consequently, canopy interception by forest ecosystems greatly augments wet deposition. The separation of seasalt from non-seasalt sulphur is usually accomplished by reference to the concentration ratio of other major component ions of seawater, such as sodium-, chloride-, or magnesium-to sulphate. Biogenic sulphur, from the oceans or from terrestrial ecosystems is sometimes of importance in maritime regions. Seasalts, which dominate atmospheric deposition in maritime regions can induce short-term acidification in surface waters as a result of ion-exchange reactions following storm events. The results of one large storm in western Ireland in 1991 and the recovery process in a peat soil were clearly discernible in soil water analysis. The seasalt impact on acid mineral soils can be seen in the exchangeable sodium levels and the degree of base saturation of these soils.  相似文献   

12.
The concentration of ammonium and nitrate in precipitation has increased during this century. The deposition of N compounds (wet + dry) is reaching 30 to 40 kg ha?1yr?1 in many areas in Central Europe and above 20 kg in the southern parts of Scandinavia. In extreme situations throughfall data indicate depositions above 60 kg ha?1yr?1 in Central Europe and above 40 kg ha?1yr?1 in south Sweden. Very high depositions are observed on slopes at forest edges and adjacent to areas with animal farms and manure spreading. In areas with low N deposition almost all deposited N (>95%) will be absorbed in the tree canopies or in the soil. In areas with high deposition an increased outflow is observed which in some cases reach 10 to 15 kg ha-lyr-1. The increased output is an indication of N saturation of the ecosystem and it leads to acidification effects in soils, soilwater, groundwater and surface waters.  相似文献   

13.
用对比试验的方法,研究农林复合中杨树+留兰香、杨树+小麦、杨树+红薯和杨树纯林4种林地的杨树生长量、林地土壤物理性状和土壤养分以及杨树和间作物养分的根际效应。结果表明:1)杨树+留兰香林地的杨树生长量明显小于对照,显著小于杨树+小麦和红薯林地;2)间作林地的土壤物理性状、土壤pH值、非根际土壤养分不是影响杨树生长的关键因素,而根际土壤养分及根际效应的变化对杨树生长有直接影响;3)在杨树根际土壤中,杨树+小麦和红薯林地杨树根际土壤养分质量分数均高于对照;杨树+留兰香林地的杨树根际土壤有机质和速效磷质量分数高于对照,速效钾和速效氮质量分数则低于对照,而留兰香的根际养分质量分数除速效氮外均高于小麦和红薯;4)从养分的根际效应来看,杨树+留兰香林地杨树的养分根际效应值除有机质外小于对照并小于留兰香,杨树+小麦林地杨树的养分根际效应值除速效磷外均大于对照并大于小麦,杨树+红薯林地杨树的养分根际效应值除速效磷外均小于对照,除速效氮外均大于红薯。  相似文献   

14.
Antarctic terrestrial ecosystems are noted for their relative simplicity and limited trophic structure. In this context, knowledge of biotic interactions in structuring terrestrial soil communities would seem beneficial from a theoretical perspective as well as from a conservation perspective. Unfortunately, although biotic interactions are generally seen as being insignificant in these unique ecosystems, this view is based upon few explicit studies and very little is known of the role that biotic interactions may play. Accordingly, we review our current understanding of these interactions, including analogues from other appropriate ecosystems. On the basis of this review, we conclude that: (1) Antarctic terrestrial systems are predominantly abiotically-driven systems; and (2) a network of manipulative field and laboratory experiments are needed for establishing any role for biotic interactions in structuring Antarctic soil environments.  相似文献   

15.
Large predators potentially can help shape the structure and functioning of terrestrial ecosystems, yet strong evidence of top-down herbivore limitation has not been widely reported in the scientific literature. Herein we synthesize outcomes of recent tri-trophic cascades studies involving the presence and absence of large predators for five national parks in the western United States, including Olympic, Yosemite, Yellowstone, Zion, and Wind Cave. Historical observations by park biologists regarding woody browse species and recently compiled age structure data for deciduous trees indicate major impacts to woody plant communities by ungulates following the extirpation or displacement of large predators. Declines in long-term tree recruitment indexed additional effects to plant communities and ecological processes, as well as shifts towards alternative ecosystem states. The magnitude and consistency of vegetation impacts found within these five parks, in conjunction with other recent North American studies, indicate that broad changes to ecosystem processes and the lower trophic level may have occurred in other parts of the western United States where large predators have been extirpated or displaced. Thus, where ungulates have significantly altered native plant communities in the absence of large predators, restoration of native flora is urgently needed to recover former ecosystem services. Following the reintroduction of previously extirpated gray wolves Canis lupus into Yellowstone National Park, a spatially patchy recovery of woody browse species (e.g., aspen Populus tremuloides, willow Salix spp., cottonwood Populus spp.) has begun, indicating that large predator recovery may represent an important restoration strategy for ecosystems degraded by wild ungulates.  相似文献   

16.
A refined imitational model of the seasonal dynamics of radiocesium in soils of forest ecosystems is suggested. This model has been used to predict the dynamics of biologically available and unavailable forms of radiocesium in an artificially contaminated sandy soddy-podzolic soil of an oak ecosystem for a period of 50 years.  相似文献   

17.
There is still no consensus on the impact of cloud on terrestrial carbon sequestration. Nevertheless, the fraction of sky irradiance which is diffuse (fDIF) is close to half as a global annual average, owing mainly to the presence of clouds. Furthermore, as a consequence of human-induced perturbations, the occurrence and opacity of cloud is changing both regionally (due to deforestation and drainage) and globally (shortwave “solar” dimming). In this study, we quantify the impact of cloud on carbon assimilation at an unprecedented number of FLUXNET sites (38) and for six plant functional types (PFTs). We compare results from previously established empirical and statistical methods with novel land-surface and three-dimensional (3D) radiative-transfer (RT) simulations that take explicit account of diffuse sunlight. We record a much lower enhancement in canopy light-use efficiency (LUE) under diffuse sunlight relative to direct sunlight (factor 1.12–1.80) compared to previous authors (factors 2–3). Increased radiation-sharing, due to varied leaf orientation within the canopy, is the primary cause of LUE-enhancement rather than beam penetration within an open crown structure. Under cloud, we consistently record a decrease in primary productivity (≥10–40%) and an unequivocal decline in daily carbon sequestration (60–80%), owing to the dramatic reduction in total (direct plus diffuse) irradiance that occurs when clouds obscure the solar disk (≥60% attenuation). A cooling-induced reduction in ecosystem respiration offsets the decline in primary productivity by about one third.  相似文献   

18.
A general model of ecosystem biogeochemistry was used to examine the responses of arctic tundra and temperate hardwood forests to a doubling of CO2 concentration and to a 5°C increase in average growing season temperature. The amount of C stored in both ecosystems increased with both increased CO2 and temperature. Under increased CO2, the increase in C storage was due to increases in the C∶N ratio of both vegetation and soils. Under increased temperature, the increased C storage in the forest was due to a shift in N from soils (with low C∶N ratios) to vegetation (with high C∶N ratios). In the tundra, both a shift in N from soils to vegetation and an increase in C∶N ratios contributed to increased C storage under higher temperatures. Neither ecosystem sequestered N from external sources because the supply rate was low.  相似文献   

19.
Both acid deposition and changes in the global atmosphere and climate affect terrestrial and aquatic ecosystems. In the atmosphere sulphate aerosols tend to increase haze, altering the global radiation balance. Increased nitrogen deposition to N-limited systems such as boreal forests results in increased growth and increased sequestration of atmospheric CO2, slowing the increase in CO2 levels in the atmosphere. Future reduction in S and N emissions may result in a trade-off -- better with respect to some effects of acid deposition and greenhouse warming, but worse with respect to others. Global warming may cause the incidence and severity of drought to increase. Mineralisation of N and oxidation of organic S compounds release pulses of SO4, acid and Al to surface waters. Effects in lakes may include reduced deep water refugia for cold stenotherms, lower nutrient concentrations, and greater penetration of harmful UV radiation. Longer water renewal times cause declines in SO4 and NO3, due to increased in situ removal, but increases in base cations. The net result is increased internal alkalinity production. In areas characterised by cold winters, global warming may result in a major shift in hydrologic cycle, with snowmelt episodes occurring during the winter rather than the typical pattern of accumulation in the winter and melting in the spring. Increased storm frequency predicted for the future will cause increased frequency and severity of sea salt episodes in coastal regions. Predicting the interactions of regional and global environmental factors in the coming decades poses new challenges to scientists, managers and policy-makers.  相似文献   

20.
More accurate projections of future carbon dioxide concentrations in the atmosphere and associated climate change depend on improved scientific understanding of the terrestrial carbon cycle. Despite the consensus that U.S. terrestrial ecosystems provide a carbon sink, the size, distribution, and interannual variability of this sink remain uncertain. Here we report a terrestrial carbon sink in the conterminous U.S. at 0.63 pg C yr−1 with the majority of the sink in regions dominated by evergreen and deciduous forests and savannas. This estimate is based on our continuous estimates of net ecosystem carbon exchange (NEE) with high spatial (1 km) and temporal (8-day) resolutions derived from NEE measurements from eddy covariance flux towers and wall-to-wall satellite observations from Moderate Resolution Imaging Spectroradiometer (MODIS). We find that the U.S. terrestrial ecosystems could offset a maximum of 40% of the fossil-fuel carbon emissions. Our results show that the U.S. terrestrial carbon sink varied between 0.51 and 0.70  pg C yr−1 over the period 2001-2006. The dominant sources of interannual variation of the carbon sink included extreme climate events and disturbances. Droughts in 2002 and 2006 reduced the U.S. carbon sink by ∼20% relative to a normal year. Disturbances including wildfires and hurricanes reduced carbon uptake or resulted in carbon release at regional scales. Our results provide an alternative, independent, and novel constraint to the U.S. terrestrial carbon sink.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号