首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
基于离散灰色模型的中国农机总动力预测   总被引:1,自引:0,他引:1  
农机总动力预测对于国家制定相关农机发展政策具有重要意义。为此,运用离散灰色模型,对2004-2011年间的我国农机总动力的数据进行了分析建模、相关检验。其平均相对误差为0.307%,小误差概率为1,后验差比为0.026,关联度为0.999 1,各指标都达到一级判别标准,表明该模型可以用于农机总动力的预测。在此基础上,对其2012-2020年间的发展趋势进行了预测,预测结果显示农机总动力呈逐年递增趋势,平均年增长率为6.204%,发展态势良好。  相似文献   

2.
借助灰色系统理论,利用兵团农机总动力的历史数据,建立了灰色预测GM(1,1)模型,对兵团农业机械总动力进行预测,为以后兵团农业机械化的发展提供一定的参考。  相似文献   

3.
张建勋 《农业工程》2020,10(5):21-23
以1979—2015年吕梁市农机总动力为研究基础,利用指数函数、三次多项式函数及BP神经网络分别建立农机总动力预测模型并进行样本比对。结果表明,BP神经网络和指数函数模型的平均绝对误差分别为1.11%和3.22%,低于三次多项式函数的平均绝对误差(8.05%)。利用BP神经网络模型和指数函数模型对2016—2021年吕梁市农机总动力进行预测,以期为农业机械化水平的发展提供参考。   相似文献   

4.
利用黑龙江省1983-2013年农机总动力数据,运用标准BP神经网络和LM-BP神经网络对黑龙江省未来5年的农机总动力进行预测。预测结果表明:在达到相同的误差目标值(即计算期望精度),LM-BP神经网络与标准PB相比,具有更快的收敛速度。如果需进一步减小误差目标值(即提高计算期望精度)时,标准BP神经网络在16h内都无法满足给定的精度要求;而LM-BP神经网络在20s内即可满足给定的精度要求。此时,LMBP神经网络的收敛速度优势非常明显,而拟合的精度也进一步提高,表明LM-BP神经网络具有较高的预测精度。准确的预测黑龙江省农机总动力,可为黑龙江省农业机械化发展规划的制定和近阶段农业机械化的发展水平提供参考依据。  相似文献   

5.
基于人工神经网络的黑龙江省农机总动力预测   总被引:3,自引:0,他引:3  
黑龙江省农机总动力的建模和预测是制定黑龙江省农机发展计划的重要依据。为此,应用BP人工神经网络技术(BP-ANN)处理1980~1998年农机总动力数据,建立正确的预测模型。利用此模型预测出1999~2003年黑龙江省农机总动力数值,预测结果和实际结果有很好的一致性;同时,预测了2004~2006年黑龙江省农机总动力数值,为今后制定农机发展战略提供参考依据。  相似文献   

6.
基于BP神经网络的农机总动力预测   总被引:1,自引:0,他引:1  
分析了BP神经网络用于预测时存在的不足,进而对基于BP神经网络的时间序列的预测问题进行了探讨.根据BP神经网络结构的特点,依据Z变换理论,提出了这一类预测问题可选用y=x作为传递函数,并分析指出了在BP神经网络中,以y=x作为传递函数与y=a+bx作为传递函数等价的结论,同时指出了网络结构应为两层网络.在此基础上,推导...  相似文献   

7.
农业机械总动力是评价一个国家农业现代化程度的重要指标.本文采用混沌时间序列的一阶局域模型对新疆农业机械总动力进行了预测.误差分析表明,该一阶局域预测模型拟合值的平均绝对误差为0.64%,低于灰色理论GM(1,1)模型的0.90%,得到了较好的预测效果.  相似文献   

8.
基于BP神经网络的辽宁省农机总动力预测   总被引:1,自引:0,他引:1  
为解决农业兼业化、农村空心化和农民老龄化等问题,需要在提高农业机械化水平、农业生产效率、优化农业产业结构和降低农民劳动强度基础上,保证当地农业机械化发展水平符合当地实际需求。因此要求制订农业机械化发展规划所依据的预测数据具有较高的准确性。本文使用遗传算法优化后的BP神经网络以1997~2012年辽宁省农机总动力为时间序列预测模型进行预测。预测结果为:到2014年辽宁农机总动力将达到2.789x107kw,较1994年上涨189.7%,年平均增长5.56%。由预测结果可知,预测值与实际值最大误差2.877%,预测值与历史样本数据之间的绝对值平绝误差为1.124%。预测结果准确性较高,预测精度稳定性较好,为制订农业机械化发展规划提供理论基础和数据依据。  相似文献   

9.
中国农机总动力预测分析   总被引:1,自引:0,他引:1  
农业机械总动力是衡量农机化发展水平的主要指标。通过对我国农业机械总动力统计数据研究分析,建立了农业机械总动力预测分析数学模型,经检验,表明模型预测的准确度很高,模型是合适的、实用的;依模型预测我国农业机械总动力在相当长时间内将呈直线增长态势。  相似文献   

10.
农业机械总动力是衡量农机化发展水平的主要指标。通过对我国农业机械总动力统计数据研究分析,建立了农业机械总动力预测分析数学模型,经检验,表明模型预测的准确度很高,模型是合适的、实用的;依模型预测我国农业机械总动力在相当长时间内将呈直线增长态势。  相似文献   

11.
利用山东省1986-2007年农机总动力和综合机械化水平统计数据,建立了基于3次指数平滑时间序列分析的农机总动力和综合机械化水平模型,并将该模型应用到2008-2011年山东省农机总动力和综合机械化水平的预测中,取得了良好的模拟预测效果,为农业机械化发展趋势预测和规划提供了一定的理论参考依据。  相似文献   

12.
农机总动力是反映和评价农业机械化水平的一个重要指标。农机总动力的变化受自然、经济、技术和社会等多种灰色因素影响。为此,借助灰色系统理论,利用浙江省农机总动力的历史数据,建立了GM(1,1)模型预测模型,并据此对浙江省农机总动力进行预测分析,为制定农机动力发展规划提供了依据。  相似文献   

13.
一、前言农业机械总动力是指用于农、林、牧、渔业生产和运输的所有机械动力之和。它反映一个地区的农业机械化发展的总体水平,是农机规划的重要部分,常作为规划的主要指标列出。现根据黑龙江省历年来农机化的实际情况,对黑龙江省农业机械总动力进行预测分析,为今后制订黑龙江垦区农业机械化发展战略提供参考依据。  相似文献   

14.
基于灰色模型的农业机械总动力预测   总被引:1,自引:0,他引:1  
农业机械总动力是评价一个国家农业现代化程度的重要指标.根据2003-2007年我国农业机械总动力的历史数据,采用基于灰预测的指数增长模型对农业机械总动力进行了预测.在模型建立前,进行了级比平滑检验,认为数据具有建立灰预测模型的基础;模型建立后,又进行了相对误差检验、后验差检验和残差检验.检验结果表明,模型具有较高的精度,适合中长期预测.最后,根据该模型给出了2010-2012年我国农业机械总动力的预测结果,认为我国农业机械总动力将于2012年达到103222亿kW.  相似文献   

15.
为提高新疆兵团农机总动力预测的精度,以1989-2014年新疆兵团农机总动力为数据源,采用6种单项模型对其进行预测并根据预测性能指标的高低进行排序,再通过包容性逐步检验各单项模型,利用通过检验的单项模型构建组合模型,并使用所建组合模型对兵团2015-2016年农机总动力进行预测。结果表明:利用以上过程所建立的组合模型对兵团农机总动力预测结果的描述更加准确、可靠。  相似文献   

16.
利用遗传算法强全局随机搜索特点,结合DRNN神经网络对非线性数据具有鲁棒性和自学习能力的优点,通过将历年农机总动力数据作为时间序列进行分析,建立DRNN神经网络预测模型对农机总量进行预测。本文采用遗传算法对DRNN神经网络进行训练,可克服基于梯度算法的神经训练算法的缺点,收敛速度快,可达到全局最优。通过与校验用数据的比较证明本文建立的预测模型具有较高的精度。  相似文献   

17.
基于Shapley值的农机总动力组合预测方法   总被引:4,自引:2,他引:2  
应用合作博弈中的Shapley值方法,通过分配总误差来确定组合预测模型中各预测模型的权重,以此构建组合预测模型并对山西省农机总动力进行组合预测.结果表明,该组合预测模型的预测平均误差为1.81,低于选定的一元线性回归模型、三次指数平滑模型和BP神经网络模型的3.12、2.42和2.23;也低于基于方差倒数法以及基于离异系数法构建的组合预测模型的预测平均误差1.88和1.90.  相似文献   

18.
基于BP神经网络的农机总动力组合预测方法   总被引:4,自引:1,他引:4  
鉴于单一预测模型和线性组合预测模型的局限性,在确定黑龙江省农机总动力单一预测模型的基础上,建立了基于BP神经网络的非线性农机总动力组合预测模型。误差分析表明,该非线性组合预测模型的拟合平均绝对百分误差为3.03%,低于一元线性回归模型、指数函数模型、灰色GM(1,1)模型和三次指数平滑模型的6.26%、4.65%、4.88%和3.72%;稍高于以误差平方和最小为原则构建的线性组合预测模型的2.86%。用2006~2008年黑龙江省农机总动力进行检验预测,结果表明该模型可以有效地提高农机总动力的预测精度,用该模型预测了黑龙江省2009~2015年农机总动力。预测结果表明,在未来几年黑龙江省农机总动力将保持快速增长趋势,到  相似文献   

19.
BP神经网络在人工神经网络中起着至关重要的作用,通过分析标准BP神经网络的基本算法,指出标准BP算法的一些不足,并针对这些不足提出了以一种以相对误差作为误差传递信号的新的改进方法。经试验证明:该方法大大提高了BP神经网络预测结果的精度,同时这种新的改进思想也可以结合其他改进方法一起应用,以更大程度上地提高BP神经网络的运算速度和预测精度。  相似文献   

20.
为了准确了解兵团农机总动力的发展趋势,该文以兵团1989-2008年和2009-2011的农机总动力分别作为训练样本和检测样本,采用串联型灰色神经网络(SGNN)预测兵团农机总动力,并与灰色GM(1,1)模型法和BP神经网络法的预测结果进行比较分析。研究结果表明,SGNN模型对兵团农机总动力的预测精度明显高于灰色GM(1,1)模型法和BP神经网络法,可以作为兵团未来农机总动力发展预测及政策制定的有效方法和工具。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号