首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
猪舍纵向通风流场模拟   总被引:2,自引:0,他引:2  
以育肥猪舍为研究对象,以CFD理论为基础,运用CFX软件对风机安装在一边端墙上和风机安装在猪舍四角两种情形的猪舍内纵向通风气流场与温度场进行三维稳态模拟.模拟结果为:两种纵向通风形式气流分布都比较均匀.风机在一边端墙上的纵向通风时,在靠近出口处的大部分区域,空气温度基本为30~31℃;风机在猪舍四角的纵向通风时,整个猪舍的大部分区域空气温度低于30℃.结果说明,对纵向长度较大的猪舍进行纵向通风布置时,宜采用湿帘在中间、风机在四角的气流组织形式.  相似文献   

2.
通过采用试验验证了的计算流体动力学模型开展数值模拟,从热舒适性和室内空气品质两方面,研究在商业厨房环境采用置换通风方式和混合通风方式的性能差异.研究发现,使用置换通风系统能够在不增大空调系统工作负荷的情况下,降低室内温度.在同样室内条件下,混合通风系统气流速度平均约为置换通风速度的2倍左右,并且上升下降气流相互交叉运动,气流相对不均匀.置换通风系统温度分布有明显的分层现象,从下到上逐渐递增,且大概在人呼吸的高度有较合适的温度值.其次,置换通风在呼吸区的空气质量,通常比在一个同样气流速度运行的混合系统要好.且在厨房环境中,呼吸区的平均空气年龄均小于100 s.通过适当的设计,置换通风能保持良好的热舒适环境,空气流速一般低于0.3 m/s,头和脚踝的温差小于2℃,呼吸区不满意百分数小于15,可以在人体所在区域提供更好的空气质量.  相似文献   

3.
为避免畜禽运输车在运输过程中因气流不均导致家禽损失,利用CFD模拟方法对畜禽运输车封闭式厢体内的温度场和速度场进行仿真分析。模拟结果表明,温度、风速较大的区域主要集中在每一层的第3、第4栏中,速度分布模拟值与实测值的相对误差范围为2.7%~5.1%,温度分布模拟值与实测值相对误差为1.2%~4.1%。模拟的气流速度和温度与实测的气流速度和温度值有着相同的变化规律,其中实测值与模拟值的最大误差不超过2℃,但由于气流的不均匀,高温仍集中在每一层的尾部。使用CFD模拟方法能够真实表达畜禽运输车厢体内气流状态,对厢体内温度场和气流场的模拟是一种有效的方法。  相似文献   

4.
增压器蜗壳喷嘴出口的变宽度设计思想和计算   总被引:1,自引:1,他引:1  
为了研究涡轮增压器无叶蜗喷嘴宽度对其出口气流速度场分布的影响,用k-ε双方程模拟模拟蜗壳内的气流运动情况,计算了不同喷嘴宽度对无叶蜗壳喷嘴出口气流角和速度分布的影响。计算出发现固定喷嘴宽度难以解决气流角和速度分布不均匀的问题,因而提出了一种变喷嘴宽度的设计思想。计算结果表明,变喷嘴宽度能明显改善气流角和速度分布的均匀性。  相似文献   

5.
摘 要:种子的好坏,直接影响粮食产量,优良种子的筛选对于国家粮食安全问题具有重大意义。本文针对5XZ-10型比重式种子分选机筛面气流分布不均的问题进行单因素试验。利用 Fluent 软件,采用数值模拟与实验相结合的方法对比重式分选机气室流场进行了求解。为了简化计算量,引入多孔介质模型代替气流孔板。利用数值拟合求解了多孔介质模型参数,建立气室几何模型并验证了模型的可行性。将气流孔板布置高度比例系数α作为单因素变量,得到分选机空气流场以及空气动力场的分布特点。为获得合理的筛面气流,讨论了不同的气流孔板高度对气室出口界面气流稳定性、均匀性的影响,发现当α=0.84时,气室出口界面气流稳定性、均匀性较好。确定气流孔板合理的安装高度为530mm,为比重式种子分选机优化设计提供了试验数据以及理论依据。  相似文献   

6.
种子的好坏,直接影响粮食产量,优良种子的筛选对于国家粮食安全问题具有重大意义。针对5XZ-10型比重式种子分选机筛面气流分布不均的问题进行单因素试验。利用Fluent软件,采用数值模拟与试验相结合的方法对比重式分选机气室流场进行了求解。为了简化计算量,引入多孔介质模型代替气流孔板。利用数值拟合求解了多孔介质模型参数,建立气室几何模型并验证了模型的可行性。将气流孔板布置高度比例系数α作为单因素变量,得到分选机空气流场及空气动力场的分布特点。为获得合理的筛面气流,讨论了不同的气流孔板高度对气室出口界面气流稳定性、均匀性的影响,发现当α=0.84时,气室出口界面气流稳定性、均匀性较好。确定气流孔板合理的安装高度530 mm,为比重式种子分选机优化设计提供了试验数据及理论依据。  相似文献   

7.
利用空气动力学原理进行种子分选,空气流场的分布至关重要。针对农业机械装置中气流均匀性问题,本文主要以5XZ-10比重式分选机中离心风机为原型,利用Solidworks软件建立离心风机几何模型,运用Fluent软件对离心风机内部流场及出口流场进行数值模拟计算。通过仿真试验得到离心风机流场分布,对风机出口速度分布云图及矢量图结果进行分析,发现风机内部流场受到机械结构的干扰,气流在风机出口界面分布较不均匀,提出了离心风机流场优化的措施,包括双叶轮双入口单出口离心风机入口增设集流器、对固定盘与叶轮的连接进行密封、风机出口采用钢板网对出口气流进行均匀性改善。在距离风机出口上方130mm处安装钢板网,增设钢板网后风机出口气流均匀性指数由0.88提升至0.90,提升率为2.27%,解决了风机提供的气流流经5XZ-10比重式分选机筛面时的均匀性问题。  相似文献   

8.
本研究选取山西某猪场的育肥舍为研究对象,针对夏季纵向通风模式运用采用CFD中的ANSYS FLUENT软件方法进行模拟与研究,主要针对夏季纵向通风模式,重点,研究舍内压力场与速度场。从舍内压力场与速度场模拟结果反向验证传统通风计算的正确性。  相似文献   

9.
为提高玉米干储一体仓中气流场均匀性,采用计算流体力学和正交试验相结合的方法对玉米干储一体仓内部气流场分布进行数值仿真和参数优化。通过单因素试验,研究水平进风管位置、竖向通风笼直径、单位通风量3个因素对玉米干储一体仓通风均匀性的影响规律,并通过系列数值仿真及正交试验对干储一体仓通风结构及参数进行优化设计。结果表明:干储一体仓内气流的平均速度,受不同水平进风管位置的影响不明显,随着竖向通风笼直径的增加呈逐渐降低趋势,而随着单位通风量的增加持续增长。速度不均匀系数随水平进风管位置从上到下变动、竖向通风笼直径增加和单位通风量增加分别呈现先减小后增大、先急剧后缓慢降低和整体增加的趋势。其中,竖向通风笼直径对干储一体仓内部流场均匀性的影响最为显著,其次是水平进风管位置和单位通风量。优化后的干储一体仓通风结构及参数的组合为水平进风管位置-0.34m、竖向通风笼直径400mm、单位通风量20m3/(h·t),此方案下干储一体仓内部流场速度不均匀系数综合加权评分值与初始方案相比提高了77.4%,表明了优化方案的可行性。  相似文献   

10.
环流风机布置对温室内流场影响的CFD模拟   总被引:1,自引:0,他引:1  
为了解大肩高连栋玻璃温室夏季机械通风时室内流场分布,提高机械通风的降温效果,建立了6m肩高温室机械通风工况下的CFD模型,并对模拟结果进行了试验验证,结果表明:模拟值和试验值的最大相对误差为6. 70%,平均相对误差为2. 87%,显示CFD数值模型有效。在CFD模型基础上,进一步对不同环流风机布置下机械通风的降温效果进行了分析,结果表明:使用环流风机可提高机械通风的降温范围,在湿帘风机方向上实现气流的"接力",温室作物冠层南北温度差减小0. 5℃,32℃以下区域增加了20%;在环流风机安装方向上,不同横向截面上反向布置时室内冷热空气混合更好,室内温度分布更加均匀。  相似文献   

11.
不同通风模式对保育猪舍冬季环境的影响   总被引:3,自引:0,他引:3  
针对猪舍地下风道进风(Ground channel ventilation,GCV)和吊顶进风(Ceiling ventilation,CV)两种不同进风方式对舍内环境的影响,分别开展了GCV与CV通风效果的试验研究。采用现场测试方法,对冬季广西壮族自治区某规模化保育场GCV和CV两种不同通风模式猪舍的热环境和空气质量环境进行测试,结果表明:GCV猪舍热环境优于CV猪舍,虽然测试期间GCV猪舍内平均温度与CV猪舍无明显差异(p0. 05),但GCV猪舍舍内温度波动1. 7℃,小于CV猪舍4. 6℃,GCV猪舍温度分布均匀性优于CV猪舍(p 0. 05); GCV猪舍地下风道对舍外新风有加热或降温的预处理作用,地下风道的温度常年在20℃左右,当舍外新风温度较低时对其加热,舍外新风温度较高时对其降温;尽管GCV猪舍平均通风量低于CV猪舍,但GCV猪舍的NH3、PM2. 5、PM10浓度均低于CV猪舍(p 0. 05),GCV猪舍移除气体污染物效率高于CV猪舍(p 0. 05);两模式猪舍排风口气体污染物浓度相差不大(p0. 05),GCV猪舍污染物的排放率低于CV猪舍(p 0. 05)。结果表明,保育舍在冬季采用GCV通风模式,猪舍内环境优于CV通风模式。  相似文献   

12.
果树喷雾用圆盘风扇三维气流速度场数值模拟与验证   总被引:6,自引:1,他引:6  
为研究用于果树风送喷雾的圆盘风扇气流速度场分布特性,采用k-ε紊流模型和稳态求解方法,设置合适的边界条件,对单、双风扇不同出口风速的气流速度场进行三维稳态数值模拟和试验验证。结果表明,双风扇同时送风时,在离两风扇中心1~3m的范围内,中心区域的风速明显小于两边的风速,在3~5m的范围内中心区域的风速和两边的风速相差不大。模拟值与试验值对比表明变化趋势一致,二者的拟合直线决定系数R2分别为0.8044和0.7957,所建模型可以比较准确地模拟风扇气流速度场的分布。  相似文献   

13.
太阳能干燥室内部气流场分布CFD数值模拟   总被引:2,自引:0,他引:2  
为研究太阳能干燥室内气流场分布和构建气流运动模型,基于计算流体动力学(CFD)技术,运用标准k-ε模型对给定的不同气流速度对干燥室内气流分布的影响进行数值模拟.结果表明,与气流速度2 m/s和10 m/s相比,气流速度为6 m/s时干燥室内的速度分布满足要求,且气流分布更为均匀.  相似文献   

14.
为了研究小型无人机下洗气流场对雾滴运动特性的影响规律,以小型无人机为基础,采用Navier-Stokes(N-S)方程、realizable k-ε模型和Semi-Implicit Method for Pressure-Linked Equations算法,对施药过程中的下洗气流场和雾滴离散运动进行了详细的数值模拟分析。研究分析无人机下洗气流的速度特性、雾滴沉积特性以及作业高度对农药沉积效果的影响。通过试验结果可知,模拟值与试验值的相对误差在20%以内,验证了下洗气流场数值模型的可行性。进一步模拟分析结果表明,在无人机喷药平台的影响下,下洗气流场在距离旋翼1 m处达到速度峰值。随着作业高度的增加,雾滴逐渐分散并扩散。雾滴主要分布在两个“气流引入区”和两个“气流导出区”,该分布特征有助于优化施药效果和提高农药的使用效率。根据分析结果,当无人机飞行作业姿态与地表保持平行,且将作业高度调整至0.8~1.0 m之间时,可显著提高农药沉积量,从而提高植保无人机的施药效果。本研究验证了下洗气流场数值模型的可行性,为小型植保无人机的对靶雾滴漂移及沉积研究提供了参考依据。  相似文献   

15.
研究干燥箱内苜蓿草捆的不同放置方式对其温度场和气流场的影响,建立干燥箱的三维仿真模型,运用流体动力学软件对干燥箱体内苜蓿干燥过程中的温度场和气流场进行数值模拟,分析了在有效干燥时间内长宽高均为10cm的苜蓿草捆竖放、横放、斜放45°与斜放135°情况下干燥箱内气流场变化情况。结果表明,苜蓿横放时,速度分布最均匀,入口风速可以被充分利用,干燥效果最好。通过实验数据与数值模拟结果的比较,证明苜蓿草的数值模拟对深入研究干燥箱内部的热空气流动具有重要意义,为干燥滚筒的设计及热效率的提高提供指导。  相似文献   

16.
为研究果园喷雾机的气流和雾滴沉积分布情况,通过数值分析与试验相结合的方法,研究了一种适用于果园植保的多风道风送喷雾系统气流场和气液两相流场分布规律。研究结果显示,该多风道风送喷雾系统的外部气流场分布较为均匀,喷射出风口出口处的气流速度试验值与仿真值相对误差<13.7%,随着测量距离增大,气流速度逐渐衰减,其绝对误差基本在0~2 m/s。雾滴场在-0.6~0.6 m喷雾区域内雾滴沉积量(百分比)的仿真值和试验值相对误差<14%,数值分析结果较为准确地反映风送喷雾系统的气流分布和雾滴沉积特征。   相似文献   

17.
圆盘雾化器风力性能数值模拟与试验   总被引:4,自引:0,他引:4  
采用试验与计算机模拟相结合方法,研究了圆盘雾化器最佳工作转速,不同转速下圆盘雾化器的气流速度场,并进行试验验证。结果显示,圆盘雾化器在选定的叶轮下,最佳工作转速为1 400 r/min;圆盘雾化器气流速度场基本呈轴对称形状,气流速度以一定的扩散角在中心平面内扩散,而且气流速度沿中心线逐步衰减;模拟值与试验值相关性较好。  相似文献   

18.
为了解华南地区大型连栋玻璃温室在湿帘-风机通风条件下温度场与速度场的变化情况,探究该通风方式下,温室内的通风降温性能,以广州市农业技术推广总站示范基地的连栋玻璃温室为研究对象分别进行了稳态和瞬态计算,将稳态模型的计算结果与温室内监测点得到的数据进行对照,验证了计算模型的可靠性,并对湿帘-风机通风工况进行瞬态计算,得到温室内直观的温度和速度的分布情况及变化规律.结果表明:开启湿帘-风机系统后,湿帘侧最初风速可达1.6 m/s,通风过程中逐渐发展为从湿帘入口贯通风机出口的高速气流场,气流速度最终稳定在0.8 m/s;温室内温度场从湿帘侧到风机侧表现出梯度降温的变化特征,同时伴随着温室全局性的微小幅度降温;将风机流量增加1倍后,温室内气流的湍动程度增加,降温速度明显提高.得到的结果将为华南地区连栋玻璃温室的正常运行和精准调控温室内的小气候环境提供参考.  相似文献   

19.
选取山西某猪场的育肥舍为研究对象,针对夏季纵向通风模式采用CFD方法进行模拟,从舍内压力场与速度场模拟结果反向验证传统通风计算的正确性。  相似文献   

20.
针对中国南方丘陵山区油菜收割的现状,设计一种小型吹禾式油菜收割机,对该割台的吹禾气流管道进行结构优化设计,提高各分风管吹出气流的均匀性,从而达到减小油菜收获损失的目的。利用流体动力学软件Fluent对吹禾管道进行结构优化,对管道进行三种优化设计,并根据优化方案制造实物进行验证。数值模拟表明:按照初始模型仿真,分风管道气流速度在38.5~51.1 m/s之间,出口风速偏差S的最大值为17.66%,风速不均匀性C为9.59%;总风管锥形设计、分风管非均匀布置、调整分管孔径,有效提高分风管出口速度的均匀性,出口速度在45~47.5 m/s之间,出口风速偏差S的最大值和风速不均匀性C分别为3.50%、2.95%。验证试验表明:模拟结果与试验结果趋势一致,最大均差为6.49%,优化前后试验值对比:风速偏差S减少14.13%,风速不均匀性减少7.03%,优化方法可行,为进一步研究小型油菜收割机提供重要参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号