首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 343 毫秒
1.
为分析叶片安放角对轴流泵马鞍区工况运行特性的影响,以比转速822的轴流泵为研究模型,试验测试了不同叶片安放角下的运行特性。研究表明:随着叶片安放角的增大,模型泵最优工况处的扬程、流量和效率均逐渐增大,-4°到+4°的增幅分别为10.4%,26.7%和0.87%;不同安放角下,泵扬程曲线均存在明显的马鞍区;随着叶片安放角的增大,试验泵马鞍区的绝对位置向右上方偏移,但相对位置仍主要位于0.5QBEP~0.6QBEP(QBEP为最高效率点对应的额定流量),且均在0.55QBEP时扬程达到最小值;随着叶片安放角的减小,马鞍区内相对扬程在逐渐增大,马鞍区驼峰特性有所改善;随着叶片安放角的增大,各个安放角下马鞍区范围内的压力脉动较最优工况下更剧烈;叶轮进口压力脉动主频为叶片通过频率,泵出口处压力脉动主要受导叶影响,随流量减小逐渐向高频移动;随着叶片安放角的增大,叶轮进口和泵出口处主频处的压力脉动幅值均逐渐增大,在叶轮进口处,0.6QBEP和0.55QBEP时压力脉动幅值最大增幅分别达1.78和1.65倍,在泵出口处,正安放角下压力脉动幅值相对负角度有所增大;内流分析表明小流量工况下叶轮进口存在回流现象,叶轮出口靠近轮毂处有明显旋涡,导致小流量下压力脉动幅值增大。  相似文献   

2.
为研究双蜗壳泵内压力脉动情况,该研究以某大型双蜗壳双吸泵为研究对象,通过三维非定常计算对不同隔板起始位置对水力性能、叶轮径向力、蜗壳内各点压力脉动的影响进行研究。研究结果表明,采用双蜗壳结构后,设计点效率下降4%~5%;径向力大小在叶轮旋转过程中呈周期性变化,径向力大小受隔板起始位置影响较大,因此需要合理布置隔板起始位置;隔舌附近各点压力分布均呈现明显的周期性波动变化,隔舌后测点压力峰值、平均值及脉动值要远小于隔舌前测点,仅为隔舌前测点相应值的25%~50%,而且随着隔板起始位置后移,隔舌附近各点压力波动逐渐减弱;综合考虑水力性能及压力脉动影响,隔板起始点应布置于自隔舌点以叶轮中心为圆心向蜗壳出口方向旋转200°位置,该结构下水力效率最高,径向力最小,研究结果可以为大型双蜗壳双吸泵水力性能改进及结构优化提供一定的理论支持。  相似文献   

3.
旋转失速条件下离心泵隔舌区动静干涉效应   总被引:1,自引:2,他引:1  
为研究旋转失速条件下离心泵隔舌区动静干涉效应和流动特性,采用大涡模拟方法对一离心泵进行了数值模拟,得到了水泵内部流场和隔舌区压力脉动特性。对不同旋转时刻的内部流动进行分析,发现当流量小于0.75倍额定流量时,叶轮中发生了旋转失速,并且由于隔舌附近逆压梯度较大,当叶轮流道通过隔舌处时会发生"固定失速"的流动现象。对旋转失速条件下蜗壳上的压力脉动进行分析,发现蜗壳隔舌处的压力脉动幅值最高,沿着流动方向依次减小。当旋转失速发生以后,蜗壳上的压力脉动幅值约为非失速工况下的2~3倍,并随着流量减小,压力脉动主频幅值增大。在旋转失速初始阶段,隔舌区"固定失速"对压力脉动的影响较弱,旋转失速的影响占主导,蜗壳上的压力脉动主频为0.5倍叶频;而当流量进一步减小至0.25倍额定流量时,隔舌区的"固定失速"对压力脉动的影响作用增强,削弱了旋转失速的作用,蜗壳上靠近隔舌区的压力脉动主频为叶频,而远离隔舌区的位置受"固定失速"影响较小,旋转失速的影响占主导,主频仍是0.5倍叶频。该研究结果可为离心泵机组运行稳定性提供参考。  相似文献   

4.
为改善筒袋泵水动力性能,基于SST k-ω湍流模型,对立式筒袋泵首级叶轮进行三维非定常数值模拟,采用时-频域数据处理法,对各个监测点的压力脉动进行分析,主要研究了同一叶轮模型下蜗壳不同截面的压力脉动情况及不同交错角对离心泵内压力脉动和径向力的影响。结果表明:在三隔舌三通道蜗壳内,每隔120°压力脉动情况相似;随着交错角度的增加,距离隔舌较近且顺着叶片旋转方向的监测点压力脉动下降最多,压力脉动标准差下降了85%以上;叶轮所受径向力最多下降了60%;叶片交错后液体在轴向方向上会更容易产生流动,导致流动损失但有助于平稳蜗壳内的压力。综上所述,采用交错叶片有助于提高筒袋泵水动力性能。该研究为交错叶片结构在筒袋泵中的应用提供了参考。  相似文献   

5.
S形下卧式轴伸贯流泵装置的振动特性分析   总被引:1,自引:1,他引:0  
为分析S形下卧式轴伸贯流泵装置的振动特性,该文通过物理模型试验,研究了5个叶片安放角时S形下卧式轴伸贯流泵装置的能量性能,在导叶体进口处布置2个振动测点,采用EN900数据采集分析仪和振动速度传感器VS-080对叶片安放角为+4°与4°时各工况的泵装置模型进行振动测试和分析。测试结果表明:在叶片安放角2°时,S形下卧式轴伸贯流泵装置的最高效率达83.55%,此时流量为289.28L/s,装置扬程为4.438m。在相同叶片安放角时,泵装置在径向的振幅峰峰值Ap-p高于铅垂方向。随泵装置扬程的增大,径向振幅峰峰值呈先减小后增大的趋势,泵装置的不平衡振动频率与转频成倍数函数关系。在扬程相同时,在叶片安放角为+4°时泵装置在径向的振幅峰峰值较大,不同叶片安放角时泵装置铅垂方向的振幅峰峰值差异性较小。研究结果可为该泵装置的安全稳定运行及同类型泵装置的振动分析提供参考。  相似文献   

6.
不等间距叶片对离心泵性能及压力脉动影响分析   总被引:1,自引:1,他引:0  
为研究叶片不等间距对离心泵性能及压力脉动影响,以一比转数为132.7的离心泵为研究对象,基于转子自动平衡理论建立了3种叶片不等间距叶轮模型,并对模型泵全流场进行了CFD数值计算,获得了模型泵外特性、叶轮内流分布及蜗壳内压力脉动信息。利用外特性试验验证了计算方法的准确性,并对叶片不等间距与原等间距叶轮模型计算结果进行了对比分析。分析表明:叶片不等间距布置会使泵扬程降低,效率升高,且最小角间距越小,扬程下降越明显,效率上升越明显,但最小角间距为45°、50°、55°时,3个工况下的扬程、效率计算值变化幅度均保持在5%以内,满足设计要求;叶片不等间距布置后叶轮工作面附近的低速区更明显,且主要存在于较宽流道,最小角间距越小,低速区范围越大;叶片不等间距模型在145 Hz及其谐频处产生新的压力脉动峰值,一定程度上改善了压力脉动频谱平稳性,其中最小角间距为45°、50°的2种模型在此处的脉动量整体比叶频处脉动量还大。该研究结果可为离心泵优化设计提供参考。  相似文献   

7.
为提高导叶式离心泵的运行稳定性,探寻径向导叶相对隔舌的最佳安装位置,该文通过数值模拟确定了某型号单级单吸导叶式离心泵的3种典型导叶安装位置,并通过试验对3种安装位置下的外特性、压力脉动和振动特性进行了测试。对比分析了外特性曲线、压力脉动幅值和频域特性、振动幅值和频域特性。研究结果表明,蜗壳隔舌处于导叶出口流道中间位置时,离心泵水力性能最好,效率相对于其他2个位置最多提高2个百分点;测点在3个方向上的振动加速度幅值均处于较低水平,但是会增大蜗壳扩散段在大流量时的压力脉动幅值,最多高出2.25 k Pa。由于径向导叶的存在,2倍轴频和3倍轴频是压力脉动的主要激励频率;2倍轴频与6倍轴频是振动加速度的主要激励频率。蜗壳扩散段压力脉动幅值随着流量增加先减小后增大,在0.6倍工况达到最低值。导叶安装位置对压力脉动频域分布规律和振动加速度频谱特性的影响较小,相同工况下,测点的压力脉动频域分布规律和振动加速度频谱特性基本相同。因此,该研究为径向导叶的合理布置提供了参考。  相似文献   

8.
叶片数对离心泵振动噪声性能的影响   总被引:1,自引:1,他引:0  
叶片数是离心泵的主要几何参数之一。为研究叶片数对离心泵振动噪声性能的影响,以比转速为97的离心泵为例,对比了不同叶片数下的水力和振动噪声性能,并采用FEM\BEM声振耦合计算方法对流动激励下的振动及其声辐射噪声进行了数值模拟,同时与试验数据进行对比分析。结果表明:提出的数值模拟方法可用于预测泵的流动诱导振动和声辐射性能,且在模拟中考虑口环泄漏的影响能够提高计算精度,有口环方案预测得到的振幅较无口环方案的预测精度提高了13.5%。随着叶片数的增加,扬程和轴功率均逐渐增大,最大增幅分别为15.9%和14.1%;效率随叶片数的增加呈先增大后减小再增大的趋势。离心泵蜗壳的压力脉动幅值随叶片数的减小而增大。由于叶轮蜗壳动静干涉的作用,蜗壳隔舌处、第1到第2断面间和扩压管壁面等3个区域的压力脉动幅值相对较高。随着叶片数的减少,蜗壳壁面的振动位移有所增大,最大位移主要发生蜗壳第8断面处。振动速度随着叶片数的增大后减小,与振动位移的规律有一定的差异,振动高速区主要集中在隔舌、蜗壳的第4与第6断面之间和靠近扩压管的第8断面处。设计工况下,泵在叶频对应的声压级和声强随着叶片数的增加先增大后减小,高声压级区域主要出现在泵出口附近的高振动速度引起的垂直方向。综合考虑水力和振动噪声性能,确定该模型泵的最佳叶片数为6。  相似文献   

9.
多能互补系统中新能源发电的不稳定性使得作为调能机组的水电机组频繁在水力效率低、振动剧烈的低负荷区运行,严重影响机组的寿命。该研究以多能互补系统中的混流式水轮机为研究对象,在前期考虑工况权重系数的转轮多工况优化设计结果基础上,对比分析了优化前后转轮叶片的几何参数变化,不同负荷区的水轮机内部流动状态及压力脉动特征差异。研究结果表明:优化后叶片包角、安放角以及叶片长度均有所增加,叶片表面压力分布及转轮进出水边速度矩分布更加均匀,有助于改善水轮机低负荷区的空化性能、提高能量转换能力。转轮进出口安放角的增加很好地抑制了转轮进口背面脱流涡及出水边的脱流涡区,改善了尾水管的入流条件,使得尾水管涡带的强度和影响范围明显减小。叶片优化后,转轮内各频率的压力脉动幅值均有不同程度的降低,尾水管内压力脉动改善明显。尾水管内0.2fn(fn为转频)和14fn压力脉动在低负荷工况(OP1)幅值降幅分别为45%和40%,额定工况(OP4)尾水管内0.2fn压力脉动基本消除,14fn压力脉动幅值降幅为31%。本文所得研究结果对多能互补系统中水轮机转轮的设计优化及运行具有参考意义。  相似文献   

10.
基于滑移网格研究双流道泵内非定常流动特性   总被引:8,自引:6,他引:2  
为研究双流道泵内由叶轮/蜗壳相互作用引起的非定常流动特性,基于滑移网格和RNG湍流模型计算双流道泵内的非定常流动。计算结果表明:在一个周期内,随叶轮流道相对于隔舌位置不同,其内相对速度、静压及总压分布呈周期性变化;当叶轮流道靠近蜗壳出口侧时,相对速度、静压及总压分布规律性较强;喉部为蜗壳内循环流体与叶轮排出流体的混合区域,流动最为复杂;蜗壳内各监测点的静压呈周期性变化,远离蜗壳出口的监测点的静压脉动明显大于靠近蜗壳出口的监测点的静压脉动,且越靠近喉部的监测点的静压变化越大,非定常流动特性越强烈;与定常计算相比,非定常计算所得有效扬程更符合实际情况,大于实测扬程且相对偏差仅为10%。  相似文献   

11.
离心泵中存在各种间隙,其间隙流动极其复杂,易出现泄漏流、间隙涡等复杂湍流,影响离心泵的水力性能及运行稳定性.该文结合数值模拟与试验方法,采用SSTk–ω湍流模型,研究半高导叶端面间隙对离心泵水力性能及内部流场的影响规律,重点探讨半高导叶端面间隙对离心泵水力性能的影响机理.结果表明,适当的半高导叶端面间隙能有效改善离心泵水力性能,拓宽其高效区,导叶叶高为1.0时,最高效率点流量37.5m3/h处,而导叶叶高为0~0.8时,其最高效率点流量42.5m3/h处;导叶端面间隙为0.4~0.6导叶叶高时,离心泵的效率与扬程最优,且最大效率为57.5%;在0.6倍设计工况、0.8倍设计工况和1.0倍设计工况时,带半高导叶端面间隙的离心泵中叶轮做功和导叶内总压损失均高于普通导叶式离心泵,在0.6倍设计工况,导叶叶高为1.0时叶轮做功比导叶叶高为0~0.8时叶轮做功低将近7m水头,且在0.6倍设计工况和0.8倍设计工况下,导叶叶高为0时导叶内总压损失平均值比导叶叶高为1.0时分别高6.66m、4.62m水头;在1.2倍设计工况和1.4倍设计工况时,其叶轮做功和导叶内总压损失均低于普通导叶式离心泵;在各流量工况下,带导叶端面间隙的离心泵中蜗壳内总压损失均小于普通导叶式离心泵;随着流量增加,带半高导叶端面间隙的离心泵中叶轮-导叶动静干涉作用在逐渐减弱,叶轮-蜗壳动静干涉作用逐渐凸显.研究结果为离心泵导叶优化设计提供参考.  相似文献   

12.
为了研究导叶时序效应对离心泵性能的影响,采用CFD方法对设计流量工况下导叶不同时序位置时离心泵内部流动进行了数值计算,定义导叶叶片尾缘与隔舌夹角为0时为时序位置0,每增加10°增加一个时序位置。得到了泵内外特性随时序位置不同的变化规律,并分析了不同时序位置对隔舌处压力脉动及叶轮径向力非定常特性的影响。结果表明:随着导叶时序位置的增加,泵扬程和效率呈先上升后下降的趋势,导叶与隔舌相对位置在20°时达到最大值,扬程较最低值提高0.6 m;时序效应对隔舌处1倍和2倍叶片通过频率影响最大,且随时序位置的增加,主频和压力脉动幅值呈先减小后增加的趋势,时序位置1时幅值为4时的70%;导叶时序位置的改变主要影响泵底座-出口方向叶轮径向力分量。研究结果为离心泵径向导叶设计提供参考。  相似文献   

13.
诱导轮时序位置对离心泵水力性能的影响   总被引:1,自引:1,他引:1  
对带有诱导轮的离心泵而言,诱导轮相对叶轮的时序位置非常关键。为探讨时序位置对整台离心泵性能的影响,该文以某单级离心泵为研究对象,采用三维黏性非定常数值方法,对诱导轮相对叶轮的3种不同时序位置下离心泵的内部流动进行了模拟,并分析了其外特性、振动特性、空化特性随时序位置的变化。结果表明:随诱导轮时序位置的变化,离心泵的扬程和效率都是先增大后减小,扬程变化达1.3%,效率变化达1.32%;诱导轮叶片尾部压力面的漩涡逐渐消失。时序效应对叶轮与径向导叶间的动静干涉有影响,从而影响叶轮所受径向力的分布及叶轮内部和径向导叶头部的压力脉动特性;合理的时序位置可以改善离心泵的空化性能。  相似文献   

14.
混流泵压力脉动特性及其对流动诱导噪声的影响   总被引:1,自引:3,他引:1  
为了研究不同工况下混流泵内部压力脉动特性及其对流动诱导噪声的影响,基于RANS方程和SST k-ω湍流模型,对混流泵进行非定常数值计算,在此基础上取叶片表面非定常压力脉动作为声源,采用间接边界元法对由叶片旋转偶极子源所引起的外场噪声进行数值计算。结果表明:混流泵叶轮进出口处的压力脉动幅值均是沿着轮缘到轮毂逐渐减小,叶轮进口处压力系数的最大值是出口处的2倍;沿着蜗壳周向,隔舌部位处压力脉动最为剧烈,随着监测点的位置远离隔舌,其压力脉动情况逐步改善;不同工况下,混流泵内各处的压力脉动主频均保持叶片通过频率不变;混流泵叶轮和蜗壳之间的动静干涉作用是引发流动诱导噪声的主要原因;流动诱导噪声的主频是由压力脉动主频以及泵体结构的固有频率综合决定的;不同工况下,混流泵内部压力脉动程度越强,该工况对应的流动诱导噪声辐射水平越强。该文对混流泵机组的稳定运行以及流动诱导噪声的控制提供了参考。  相似文献   

15.
为了找到引起管道泵振动的原因,该文研究了一比转速为59的管道泵叶轮-蜗壳的动静干涉所引起的压力脉动现象,及其对泵振动特性的影响。该文通过对比数值计算方法与试验方法获得的能量特性曲线,验证了计算模型的有效性;在此基础上分析管道泵蜗壳内的脉动压力场,通过数值计算有效研究了蜗壳周向不同位置处43个监测点在不同流量下的压力脉动幅值,特别在叶片通过频率下,蜗壳内的压力脉动特征与流量及蜗壳内监测点位置的关系。同时,通过振动试验,获取泵4个监测区域内25个监测点在不同流量下的振动幅值,通过快速傅里叶变换对振动信号进行频谱分析。计算和试验结果共同表明,隔舌区域的压力脉动幅值最大,叶片通过频率210Hz是压力脉动的主导频率;压力脉动及泵振动均在叶片通过频率下达到最大峰值,进一步论证了叶片通过频率是管道泵产生振动的主要频率值,由该频率引起的压力脉动冲力是管道泵产生振动的主要作用力;泵的压力脉动幅值和振动幅值均高于设计工况;4个监测区域内的振动幅值从大到小依次为:管道支撑,电机,泵体,底座。研究结果可为管道泵低振动的设计提供参考。  相似文献   

16.
离心泵进水管路通常布置阀门供检修时切断水流,这会导致离心泵入流畸变。该研究旨在分析泵前检修阀所诱发的非定常尾迹特征及其对大流量工况离心泵运行特性的影响机理。试验对比了均匀来流和畸变来流条件下离心泵的外特性,数值模拟研究了阀板尾迹涡的流动特征及其对离心泵非稳态内流场的影响,分析了阀板尾迹涡诱发的叶轮径向力。结果表明:两种来流条件下数值模拟与试验得到的离心泵外特性误差在5%以内;对离心泵性能产生主要影响的尾迹涡主要来自阀门阀板一侧的边界层分离与卷吸,入流畸变导致大流量工况下离心泵效率相较于均匀入流下降9.15%,扬程降低1.2 m;阀板尾迹在离心泵入口产生1.9倍转频的脉动频率;尾迹涡的周期性入流导致两个叶片前缘的最大相对液流角由30°分别增大至43°和39°,这两个叶片的压力面脱流加剧,产生逐渐向下游耗散的失速团,叶片承受2倍转频的非稳态激振力;尾迹涡的周期性吸入导致叶轮上的时均径向力增大至均匀入流的4.5倍左右,最大径向力达到均匀入流的7倍左右,径向力矢量发生偏移,离心泵断轴风险加剧。研究结果可为工业现场中离心泵运行稳定性的改善提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号