首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Short-term effects of nitrogen on methane oxidation in soils   总被引:6,自引:0,他引:6  
 The short-term effects of N addition on CH4 oxidation were studied in two soils. Both sites are unfertilized, one has been under long-term arable rotation, the other is a grassland that has been cut for hay for the past 125 years. The sites showed clear differences in their capacity to oxidise CH4, the arable soil oxidised CH4 at a rate of 0.013 μg CH4 kg–1 h–1 and the grassland soil approximately an order of magnitude quicker. In both sites the addition of (NH4)2SO4 caused an immediate reduction in the rate of atmospheric CH4 oxidation approximately in inverse proportion to the amount of NH4 + added. The addition of KNO3 caused no change in the rate of CH4 oxidation in the arable soil, but in the grassland soil after 9 days the rate of CH4 oxidation had decreased from 0.22 μg CH4 kg–1 h–1 to 0.13 μg CH4 kg–1 h–1 in soil treated with the equivalent of 192 kg N ha–1. A 15N isotopic dilution technique was used to investigate the role of nitrifiers in regulating CH4 oxidation. The arable soil showed a low rate of gross N mineralisation (0.67 mg N kg–1 day–1), but a relatively high proportion of the mineralised N was nitrified. The grassland soil had a high rate of gross N mineralisation (18.28 mg N kg–1 day–1), but negligible nitrification activity. It is hypothesised that since there was virtually no nitrification in the grassland soil then CH4 oxidation at this site must be methanotroph mediated. Received: 31 October 1997  相似文献   

2.
 Generally, grasslands are considered as sinks for atmospheric CH4, and N input as a factor which reduces CH4 uptake by soils. We aimed to assess the short- and long-term effects of a wide range of N inputs, and of grazing versus mowing, on net CH4 emissions of grasslands in the Netherlands. These grasslands are mostly intensively managed with a total N input via fertilisation and atmospheric deposition in the range of 300–500 kg N ha–1 year–1. Net CH4 emissions were measured with vented, closed flux chambers at four contrasting sites, which were chosen to represent a range of N inputs. There were no significant effects of grazing versus mowing, stocking density, and withholding N fertilisation for 3–9 years, on net CH4 emissions. When the ground-water level was close to the soil surface, the injection of cattle slurry resulted in a significant net CH4 production. The highest atmospheric CH4 uptake was found at the site with the lowest N input and the lowest ground-water level, with an annual CH4 uptake of 1.1 kg CH4 ha–1 year–1. This is assumed to be the upper limit of CH4 uptake by grasslands in the Netherlands. We conclude that grasslands in the Netherlands are a net sink of CH4, with an estimated CH4 uptake of 0.5 Gg CH4 year–1. At the current rates of total N input, the overall effect of N fertilisation on net CH4 emissions from grasslands is thought to be small or negligible. Received: 27 January 1998  相似文献   

3.
 Microcosms were used to determine the influence of N additions on active bacterial and fungal biomass, atrazine and dichlorophenoxyacetic acid (2,4-D) mineralization at 5, 10 and 15 weeks in soils from blackwater and redwater wetland forest ecosystems in the northern Florida Panhandle. Active bacterial and fungal biomass was determined by staining techniques combined with direct microscopy. Atrazine and 2,4-D mineralization were measured radiometrically. Treatments were: soil type, (blackwater or redwater forested wetland soils) and N additions (soils amended with the equivalent of 0, 200 or 400 kg N ha–1 as NH4NO3). Redwater soils contained higher concentrations of C, total N, P, K, Ca, Mn, Fe, B and Zn than blackwater soils. After N addition and 15 weeks of incubation, active bacterial biomass in redwater soils was lower when N was added. Active bacterial biomass in blackwater soils was lower when 400 kg N ha–1, but not when 200 kg N ha–1, was added. Active fungal biomass in blackwater soils was higher when 400 kg N ha–1, but not when 200 kg N ha–1, was added. Active fungal biomass in redwater soils was lower when 200 kg N ha–1, but not when 400 kg N ha–1, was added. After 15 weeks of incubation 2,4-D degradation was higher in redwater wetland soils than in blackwater soils. After 10 and 15 weeks of incubation the addition of 200 or 400 kg N ha–1 decreased both atrazine and 2,4-D degradation in redwater soils. The addition of 400 kg N ha–1 decreased 2,4-D degradation but not atrazine degradation in blackwater soils after 10 and 15 weeks of incubation. High concentrations of N in surface runoff and groundwater resulting from agricultural operations may have resulted in the accumulation of N in many wetland soils. Large amounts of N accumulating in wetlands may decrease mineralization of toxic agricultural pesticides. Received: 26 June 1998  相似文献   

4.
 Nitrous oxide (N2O) emissions and methane (CH4) consumption were quantified following cultivation of two contrasting 4-year-old pastures. A clover sward was ploughed (to 150–200 mm depth) while a mixed herb ley sward was either ploughed (to 150–200 mm depth) or rotovated (to 50 mm depth). Cumulative N2O emissions were significantly greater following ploughing of the clover sward, with 4.01 kg N2O-N ha–1 being emitted in a 48-day period. Emissions following ploughing and rotovating of the ley sward were much less and were not statistically different from each other, with 0.26 and 0.17 kg N2O-N ha–1 being measured, respectively, over a 55-day period. The large difference in cumulative N2O between the clover and ley sites is presumably due to the initially higher soil NO3 content, greater water filled pore space and lower soil pH at the clover site. Results from a denitrification enzyme assay conducted on soils from both sites showed a strong negative relationship (r=–0.82) between soil pH and the N2O:(N2O+N2) ratio. It is suggested that further research is required to determine if control of soil pH may provide a relatively cheap mitigation option for N2O emissions from these soils. There were no significant differences in CH4 oxidation rates due to sward type or form of cultivation. Received: 1 November 1998  相似文献   

5.
 Microcosms were used to determine the influence of N additions on active bacterial and active fungal biomass, cellulose degradation and lignin degradation at 5, 10 and 15 weeks in soils from blackwater and redwater wetlands in the northern Florida panhandle. Blackwater streams contain a high dissolved organic C concentration which imparts a dark color to the water and contain low concentrations of nutrients. Redwater streams contain high concentrations of suspended clays and inorganic nutrients, such as N and P, compared to blackwater streams. Active bacterial and fungal biomass was determined by direct microscopy; cellulose and lignin degradation were measured radiometrically. The experimental design was a randomized block. Treatments were: soil type (blackwater or redwater forested wetlands) and N additions (soils amended with the equivalent of 0, 200 or 400 kg N ha–1 as NH4NO3). Redwater soils contained higher concentrations of C, total N, P, K, Ca, Mn, Fe, B and Zn than blackwater soils. After N addition and 15 weeks of incubation, the active bacterial biomass in redwater soils was lower than in blackwater soils; the active bacterial biomass in blackwater soils was lower when 400 kg N ha–1, but not when 200 kg N ha–1, was added. The active fungal biomass in blackwater soils was higher when 400 kg N ha–1, but not when 200 kg N ha–1, was added. The active fungal biomass in redwater wetland soils was lower when 200 kg N ha–1, but not when 400 kg N ha–1, was added. Cellulose and lignin degradation was higher in redwater than in blackwater soils. After 10 and 15 weeks of incubation, the addition of 200 or 400 kg N as NH4NO3 ha–1 decreased cellulose and lignin degradation in both wetland soils to similar levels. This study indicated that the addition of N may slow organic matter degradation and nutrient mineralization, thereby creating deficiencies of other plant-essential nutrients in wetland forest soils. Received: 7 April 1999  相似文献   

6.
 Rates of methane uptake were measured in incubation studies with intact cores from adjacent fenland peats that have been under arable management and woodland management for at least the past 30 years. On two separate occasions the woodland peat showed greater rates of uptake than the arable peat. These rates ranged from 23.1 to 223.3 μg CH4 m–2 day–1 for the woodland peat and from 29.6 to 157.6 μg CH4 m–2 day–1 for the arable peat. When the peats were artificially flooded there was a decrease in the rate of methane oxidation, but neither site showed any net efflux of methane. 15N isotopic dilution was used to characterise nitrogen cycling within the two peats. Both showed similar rates of gross nitrogen mineralisation (3.58 mg N kg–1 day–1, arable peat; 3.54 N kg–1 day–1, woodland peat) and ammonium consumption (4.19 arable peat and 4.70 mg N kg–1 day–1 woodland peat). There were significant differences in their inorganic ammonium and nitrate pool sizes, and the rate of gross nitrification was significantly higher in the woodland peat (4.90 mg N kg–1 day–1) compared to the arable peat (1.90 mg N kg–1 day–1). These results are discussed in the light of high atmospheric nitrogen deposition. Received: 1 December 1997  相似文献   

7.
 At two field sites representing northeastern German minerotrophic fens (Rhin-Havelluch, a shallow peat site; Gumnitz, a partially drained peat site) the influence of different factors (N fertilization, groundwater table, temperature) on N2O and CH4 emissions was investigated. The degraded fens were sources or sinks of the radiatively active trace gases investigated. The gas fluxes measured were much higher than those found in other terrestrical ecosystems such as forests. Lowering the groundwater table increased the release of N2O and the oxidation of CH4. High CH4 emission rates occurred when the groundwater tables and soil temperatures were high (>12  °C). N fertilization stimulated the release of N2O only when application rates were very high (480 kg N ha–1). A moderate N supply (60 or 120 kg N ha–1) hardly increased the release of N2O in spite of high soluble soil NO3 contents. Received: 31 October 1997  相似文献   

8.
Methane uptake to soil was examined in individual chambers at three small forest catchments with different treatments, Control, Limed and Nitrex sites, where N-deposition was experimentally increased. The catchments consisted of both well-drained forest and wet sphagnum areas, and showed uptake of CH4 from the ambient air. The lowest CH4 uptakes were observed in the wet areas, where the different treatments did not influence the uptake rate. In the well-drained areas the CH4 uptakes were 1.6, 1.4 and 0.6 kg ha–1 year–1 for the Limed, Control and Nitrex sites, respectively. The uptake of methane at the well-drained Nitrex site was statistically smaller than at the other well-drained catchments. Both acidification and increase in nitrogen in the soil, caused by the air-borne deposition, are the probable cause for the reduction in the methane uptake potential. Uptake of methane was correlated to soil water content or temperature for individual chambers at the well-drained sites. The uptake rate of methane in soil cores was largest in the 0- to 10-cm upper soil layer. The concentration of CH4 in the soil was lower than the atmospheric concentration up to 30 cm depth, where methane production occurred. Besides acting as a sink for atmospheric methane, the oxidizing process in soil prevents the release of produced methane from deeper soil layers reaching the atmosphere. Received: 27 September 1996  相似文献   

9.
 Under normal conditions, CH4, one of the most important greenhouse gases, is subject to biological oxidation in forest soils. However, this process can be negatively affected by N amendment. The reported experiment was conducted in order to study the short- and long-term effects of N amendment on CH4 oxidation in pine (Pinus sylvestris L.) forest soils. Soil samples were taken from three experimental sites, two of which had been amended with N once, over 20 years earlier, while the third had been amended 3 weeks earlier. The soil samples were incubated fresh at 15  °C at ambient CH4 concentrations (ca. 1.8 ppmv CH4). The variation in CH4-turnover rates was high within the treatments: CH4 was produced [up to 22.6 pmol CH4 g dry wt. soil–1 h–1] in samples from the recently amended site, whereas it was consumed at high rates (up to 431 pmol CH4 g dry wt. soil–1 h–1) in samples from the plot that had received the highest N amendment 27 years before sampling. Although no significant differences were found between N treatments, in the oldest plots there was a correlation between consumption of atmospheric CH4 and the total C content at a depth of 7.5–15 cm in the mineral soil (r 2=0.74). This indicates that in the long-term, increased C retention in forest soils following N amendment could lead to increased CH4 oxidation. Received: 3 September 1997  相似文献   

10.
 The short-term (24 h) and medium-term (30 day) influence of N salts (NH4Cl, NaNO3 and NaNO2) and a non-N salt (NaCl) on first-order rate constants, k (h–1) and thresholds (CTh) for atmospheric CH4 oxidation by homogenized composites of upland boreal forest and tundra soils was assessed at salt additions ranging to 20 μmol g–1 dry weight (dw) soil. Additions of NH4Cl, NaNO3 and NaCl to 0.5 μmol g–1 dw soil did not significantly decrease k relative to watered controls in the short term. Higher concentrations significantly reduced k, with the degree of inhibition increasing with increasing dose. Similar doses of NH4Cl and NaCl gave comparable decreases in k relative to controls and both soils showed low native concentrations of NH4 +-N (≤1 μmol g–1dw soil), suggesting that the reduction in k was due primarily to a salt influence rather than competitive inhibition of CH4 oxidation by exogenous NH4 +-N or NH4 +-N released through cation exchange. The decrease in k was consistently less for NaNO3 than for NH4Cl and NaCl at similar doses, pointing to a strong inhibitory effect of the Cl counter-anion. Thresholds for CH4 oxidation were less sensitive to salt addition than k for these three salts, as significant increases in CTh relative to controls were only observed at concentrations ≥1.0 μmol g–1 dw soil. Both soils were more sensitive to NaNO2 than to other salts in the short term, showing a significant decrease in k at an addition of 0.25 μmol NaNO2 g–1 dw soil that was clearly attributable to NO2 . Soils showed no recovery from NaCl, NH4 +-N or NaNO3 addition with respect to atmospheric CH4 oxidation after 30 days. However, soils amended with NaNO2 to 1.0 μmol NaNO2 g–1 dw showed values of k that were not significantly different from controls. Recovery of CH4-oxidizing ability was due to complete oxidation of NO2 -N to NO3 -N. Analysis of soil concentrations of N salts necessary to inhibit atmospheric CH4 oxidation and regional rates of N deposition suggest that N deposition will not decrease the future sink strength of upland high-latitude soils in the atmospheric CH4 budget. Received: 30 April 1999  相似文献   

11.
Awareness of global warming has stimulated research on environmental controls of soil methane (CH4) consumption and the effects of increasing atmospheric carbon dioxide (CO2) on the terrestrial CH4 sink. In this study, factors impacting soil CH4 consumption were investigated using laboratory incubations of soils collected at the Free Air Carbon Transfer and Storage I site in the Duke Forest, NC, where plots have been exposed to ambient (370 μL L−1) or elevated (ambient + 200 μL L−1) CO2 since August 1996. Over 1 year, nearly 90% of the 360 incubations showed net CH4 consumption, confirming that CH4-oxidizing (methanotrophic) bacteria were active. Soil moisture was significantly (p < 0.01) higher in the 25–30 cm layer of elevated CO2 soils over the length of the study, but soil moisture was equal between CO2 treatments in shallower soils. The increased soil moisture corresponded to decreased net CH4 oxidation, as elevated CO2 soils also oxidized 70% less CH4 at the 25–30 cm depth compared to ambient CO2 soils, while CH4 consumption was equal between treatments in shallower soils. Soil moisture content predicted (p < 0.05) CH4 consumption in upper layers of ambient CO2 soils, but this relationship was not significant in elevated CO2 soils at any depth, suggesting that environmental factors in addition to moisture were influencing net CH4 oxidation under elevated CO2. More than 6% of the activity assays showed net CH4 production, and of these, 80% contained soils from elevated CO2 plots. In addition, more than 50% of the CH4-producing flasks from elevated CO2 sites contained deeper (25–30 cm) soils. These results indicate that subsurface (25 cm+) CH4 production contributes to decreased net CH4 consumption under elevated CO2 in otherwise aerobic soils.  相似文献   

12.
 The evoluion of NH4 +-N and NO3 -N was monitored during three growing seasons, 1992–1993, 1993–1994, 1994–1995 in the soil profile (0–60 or 0–90 cm) under bare fallow and wheat on a vertisol site of the Sais plateau, Morocco. The aim of this study was to relate the soil mineral N dynamics to crop N uptake and soil N transformation processes. The efficacy of the current N fertilisation rate (100 kg N ha–1) for wheat production in the region was evaluated. The high level of residual mineral N in the soil profile resulted from a low N plant uptake relative to the soil N supply and N fertilisation, and masked the effect of N fertilisation on dry matter accumulation. NH4 +-N was present in considerable amounts, suggesting a low nitrification rate under the given pedo-climatic conditions. An artefact due to the sampling procedure was encountered shortly after the application of N fertiliser. Losses through leaching and denitrification occurred after heavy rainfall, but were limited. At least part of the exchangeable NH4 +-N seemed to be barely taken up by the crop. NO3 -N was therefore considered to be a better indicator of plant-available N than total mineral N for this type of soil. The low N fertiliser use efficiencies demonstrated clearly that the current fertilisation rate (100 kg N ha–1) for wheat production in this region is unsustainable. The maximum N uptake ranged from 40 kg N ha–1 to 180 kg N ha–1. The estimation of the seasonal production potential is considered to be the main prerequisite for the determination of the best rates and timing of N fertiliser application in this region. Received: 9 December 1997  相似文献   

13.
 Application of a commercial formulation of the herbicide butachlor (N-butoxymethyl-2-chloro-2′,6′-diethyl acetanilide) at 1 kg a.i. ha–1 to an alluvial soil planted with direct-seeded flooded rice (cv. Annada), significantly inhibited both crop-mediated emission and ebullition fluxes of methane (CH4). Over a cropping period of 110 days, the crop-mediated cumulative emission flux of CH4 was lowered by ∼20% in butachlor-treated field plots compared with that of an untreated control. Concurrently, ebollition flux of CH4 was also retarded in butachlor-treated field plots by about 81% compared with that of control plots. Significant relationships existed between CH4 emission and redox potential (E h) and Fe2+ content of the flooded soil. Application of butachlor retarded a drop in soil redox potential as well as accumulation of Fe2+ in treated field plots. Methanogenic bacterial population, counted at the maturity stage of the crop, was also low in butachlor-treated plots, indicating both direct and indirect inhibitory effects of butachlor on methanogenic bacterial populations and their activity. Results indicate that butachlor, even at field-application level, can effectively abate CH4 emission and ebollition from flooded soils planted to rice whilst maintaining grain yield. Received: 15 March 2000  相似文献   

14.
 The effect of land use and different soil tillage systems on CH4 oxidation was tested in a laboratory incubation study. Intact soil cores were collected from the topsoil (0–12 cm) of a field site with ploughed, direct-drilled and set-aside treatments, and from an adjacent undisturbed forest site. CH4 oxidation rates were 4.5 to 11 times higher in the direct-drilled than in the continuously ploughed treatment, in the set-aside soil they were intermediate. The oxidation rates in the forest soil were 11 times the highest rate measured at the field site, pointing to a distinct land use effect. Vertical profiles of CH4 oxidation activity revealed a very clear zonation in all treatments. CH4 oxidation increased significantly below the plough layer (0–25 cm), and showed a subsurface maximum under direct-drilling (5–15 cm) and under forest (5–10 cm). The vertical zonation under set-aside was comparable to that under ploughing. Generally, the maximum CH4 oxidizing activity was in the zone nearest to the soil surface, unless various constraints prevented this. Received: 1 December 1997  相似文献   

15.
 The high input of nutrients through the use of fertilizers, manure and animal feed make it possible to reach high levels of agricultural production. However, high nutrient inputs may also result in large nutrient losses and thus have adverse effects on groundwater, surface water, and the atmosphere. To minimize nutrient emissions from agriculture, the Dutch government has introduced regulations on nutrient use. These include: (1) a ban on spreading animal manure on agricultural land during the winter, (2) the obligation to cover storage facilities for animal manure, (3) compulsory low-emission applications of animal manure to land, and (4) applying levies when the maximum permissible annual N and P surpluses for farms are exceeded. The nutrient surplus is the difference between nutrient input into the farm and nutrient output from the farm. The maximum permissible N surpluses for 2000 are 250 kg N ha–1 year–1 and 125 kg N ha–1 year–1 for grassland and arable land, respectively, and for P, 35 kg P2O5 ha–1 year–1 for both grassland and arable land. When the annual permissible levels are exceeded, farmers are charged with a levy. Results obtained at the experimental dairy farm "De Marke" showed that a reduction in nutrient inputs via fertilizers and purchased food, in combination with restricted grazing, reduced the N surplus in such a way that the NO3 concentration in the groundwater decreased to about the maximum permissible level of 50 mg NO3 l–1. Since these results were obtained on a sandy soil that is very sensitive to NO3 leaching, it is suggested that all dairy farmers should be able to sufficiently reduce NO3 leaching by improving their farm management. Received: 13 July 1999  相似文献   

16.
 The release of SO4 2–-S, K+, Ca2+ and Mg2+ from soil amended with spent mushroom compost (SMC), a byproduct of mushroom production, was measured in leachate from field lysimeters for 30 weeks. Rates of application were 0 and 80 t ha–1 moist SMC. The SMC contained 1.7% K, 6.5% Ca, 0.4% Mg and 1.2% S (of which 87% is SO4 2–-S), and has a C : S ratio of 26. The break-through curves of ion leaching were polymodal indicating the preservation of soil structure in the lysimeters and its influence on leaching. SO4 2–-S release from SMC was rapid (first-order exponential) and was very similar to the release from a laboratory incubation. The release of K+, Ca2+ and Mg2+ was described using first/zero-order models which were also used to describe their release in the laboratory. The rate and amount of Ca2+ release was similar in the field and laboratory, but the amount of K+ (and to a lesser extent Mg2+) release was less in the field than in the laboratory. Recoveries of SMC applied nutrients in leachate were 80% of S (263 kg ha–1), 3% of K (14 kg ha–1), 16% of Ca (284 kg ha–1) and 37% of Mg (40 kg ha–1). Little if any S was mineralised. Using SMC could provide plants with S, K, Ca and Mg but there is potential for SO4 2–-S losses via leaching. Received: 7 April 1999  相似文献   

17.
Soluble organic nitrogen in agricultural soils   总被引:36,自引:0,他引:36  
 The existence of soluble organic forms of N in rain and drainage waters has been known for many years, but these have not been generally regarded as significant pools of N in agricultural soils. We review the size and function of both soluble organic N extracted from soils (SON) and dissolved organic N present in soil solution and drainage waters (DON) in arable agricultural soils. SON is of the same order of magnitude as mineral N and of equal size in many cases; 20–30 kg SON-N ha–1 is present in a wide range of arable agricultural soils from England. Its dynamics are affected by mineralisation, immobilisation, leaching and plant uptake in the same way as those of mineral N, but its pool size is more constant than that of mineral N. DON can be sampled from soil solution using suction cups and collected in drainage waters. Significant amounts of DON are leached, but this comprises only about one-tenth of the SON extracted from the same soil. Leached DON may take with it nutrients, chelated or complexed metals and pesticides. SON/DON is clearly an important pool in N transformations and plant uptake, but there are still many gaps in our understanding. Received: 10 June 1999  相似文献   

18.
In a field study, potassium (K) applied as muriate of potash (MOP) significantly reduced methane (CH4) emission from a flooded alluvial soil planted to rice. Cumulative emission was highest in control plots (125.34 kg CH4 ha−1), while the lowest emission was recorded in field plots receiving 30 kg K ha−1 (63.81 kg CH4 ha−1), with a 49% reduction in CH4 emission. Potassium application prevented a drop in the redox potential and reduced the contents of active reducing substances and Fe2+ content in the rhizosphere soil. Potassium amendment also inhibited methanogenic bacteria and stimulated methanotrophic bacterial population. Results suggest that, apart form producing higher plant biomass (both above- and underground) and grain yield, K amendment can effectively reduce CH4 emission from flooded soil and could be developed into an effective mitigation option, especially in K-deficient soils.  相似文献   

19.
Effect of cropping systems on nitrogen mineralization in soils   总被引:3,自引:0,他引:3  
 Understanding the effect of cropping systems on N mineralization in soils is crucial for a better assessment of N fertilizer requirements of crops in order to minimize nitrate contamination of surface and groundwater resources. The effects of crop rotations and N fertilization on N mineralization were studied in soils from two long-term field experiments at the Northeast Research Center and the Clarion-Webster Research Center in Iowa that were initiated in 1979 and 1954, respectively. Surface soil samples were taken in 1996 from plots of corn (Zea mays L.), soybean (Glycine max (L.) Merr.), oats (Avena sativa L.), or meadow (alfalfa) (Medicago sativa L.) that had received 0 or 180 kg N ha–1 before corn and an annual application of 20 kg P and 56 kg K ha–1. N mineralization was studied in leaching columns under aerobic conditions at 30  °C for 24 weeks. The results showed that N mineralization was affected by cover crop at the time of sampling. Continuous soybean decreased, whereas inclusion of meadow increased, the amount of cumulative N mineralized. The mineralizable N pool (N o) varied considerably among the soil samples studied, ranging from 137 mg N kg–1 soil under continuous soybean to >500 mg N kg–1 soil under meadow-based rotations, sampled in meadow. The results suggest that the N o and/or organic N in soils under meadow-based cropping systems contained a higher proportion of active N fractions. Received: 10 February 1999  相似文献   

20.
 High molecular weight, anionic polyacrylamide (PAM) is currently being used as an irrigation water additive to significantly reduce soil erosion associated with furrow irrigation. PAM contains amide-N, and PAM application to soils has been correlated with increased activity of soil enzymes, such as urease and amidase, involved in N cycling. Therefore we investigated potential impacts of PAM treatment on the rate at which fertilizer N is transformed into NH4 + and NO3 in soil. PAM-treated and untreated soil microcosms were amended with a variety of fertilizers, ranging from common rapid-release forms, such as ammonium sulfate [(NH4)2SO4] and urea, to a variety of slow-release formulations, including polymerized urea and polymer-encapsulated urea. Ammonium sulfate was also tested together with the nitrification inhibitor dicyandiamide (DCD). The fertilizers were applied at a concentration of 1.0 mg g–1, which is comparable to 100 lb acre–l, or 112 kg ha–1. Potassium chloride-extractable NH4 +-N and NO3 -N were quantified periodically during 2–4 week incubations. PAM treatment had no significant effect on NH4 + release rates for any of the fertilizers tested and did not alter the efficacy of DCD as a nitrification inhibitor. However, the nitrification rate of urea and encapsulated urea-derived NH4 +-N was slightly accelerated in the PAM-treated soil. Received: 16 January 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号