首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A. M. Castro    A. Vasicek    S. Ramos    A. Martin    L. M. Martin  A. F. G. Dixon 《Plant Breeding》1998,117(6):515-522
A collection of tritordeum amphiploids (Hordeum chilense × Triticum turgadum) and their wheat parents were screened for resistance against the two main aphid pesis of cereals, the greenhug. Schizaphis graminum Rond. and ihe Russian wheat aphid (RWA) Diuraphis naxia Mord-vilko. Antixenosis. antibiosis and tolerance were evaluated in controlled environmental conditions using a. clone of greenbug biotypc C and a clone of RWA collected on pasta wheat. Tritordeum amphiploids pos-sess genetic resistance against greenbug and RWA; some of the lines tested were more resistant than the parental wheat line. Four principal components explained the resistance against both aphid species. The antixenosis shown against both pests was mainly contributed by their wheat parents. The antibiosis againsl both aphid species was obviously dependent on diflerent plant traits. The highest levels of antibiosis against the two aphids occurred in different amphiploids. Different genes are involved in the antibiotic reaction against the two aphids. The Tritordeum resistance to RWA is based on anlixenosis and ant-biosis since the tolerance trails were not independent of the other types of resistance. The level of tolerance shown to the greenbug was variable and appears to be controlled by differeni mechanisms. The tolerance to aphids shown by H. chilense is expressed in the amphiploids. but with some genomic interaction. Genes conferring resistance to aphids in H. chilensee could be incorporated into new cultivars of wheat to broaden their genetic base of resistance against greenbug and RWA.  相似文献   

2.
R. Simeone    D. Pignoni    A. Blanco  M. Attolico 《Plant Breeding》1989,103(3):189-195
Interspecific hybrids and amphiploids between Aegilops caudata L. (2n = 2x = 14, CC) and Triticum turgidum (L.) Thell. conv. durum Desf M. K. (2n = 4x = 28, AABB) were produced. Such hybrids can be used to introduce desirable traits such as disease resistance into cultivated durum wheats. One of the durum parents was a ph I mutation of the cv. ‘Cappelli’ used for testing the possibility of direct introduction of alien variation into cultivated species. The amphiploids were obtained both through colchicine chromosome doubling and as natural non-reductional mciosis products. In both hybrids and amphiploids, meiotic pairing and fertility were studied. Hybrids showed varying degrees of pairing and, in addition to the one involving the ph 1 mutant, one high pairing hybrid was found (Ae. caudata× cv. ‘Capinera’). Cytological examination of microsporogenesis in amphiploids revealed a high frequency of bivalent formation. Fertility proved to be a very variable character since some of the amphiploids were almost completely sterile. The use of amphiploids in breeding programmes is discussed in relation to meiotic and fertility data.  相似文献   

3.
Stripe rust (caused by Puccinia striiformis Westend.) is a wheat disease of worldwide importance. Seedlings of 75 accessions of Triticum boeoticum, 12 of T. monococcum, 16 of T. urartu, 230 of durum wheat (T. turgidum L. var. durum), and 128 amphiploids (genome AAAABB) involving the crosses of the three diploid species (AA) with T. turgidum (AABB) were evaluated in the greenhouse for their reaction to P. striiformis race 14E14. Durum wheats and the amphiploids were also evaluated at two field locations in Mexico with the same race for their adult plant response. Resistant seedling reactions (infection types: 0-3 on a 0-9 scale) were seen for 10 (13%) accessions of T. boeticum, 19 (8%) accessions of T. turgidum and 32 (25%) amphiploids. The remaining accessions were either moderately resistant (ITs 4-6) or susceptible (ITs 7-9). The three amphiploids derived from the crosses of seedling resistant T. boeoticum and T. turgidum, were resistant as seedlings. Among the 51 amphiploids involving one resistant parent, 29 were resistant and the remaining 22 displayed intermediate to susceptible reactions. Suppressors for resistance were common in the A and AB genomes and suppression was resistance gene specific. Forty-five (20%) durums showed adequate field resistance (relative AUDPC <10% of the susceptible check ‘Morocco’). These included the 19 seedling resistant durums. Presence of genes involved in adult plant resistance was evident, because 26 of the remaining adult plant resistant durums had displayed intermediate-susceptible seedling reactions. Though the seedling reactions of the amphiploids varied from low to high, all involving the adult plant resistant durums possessed adequate field resistance. The resistant, newly produced, AAAABB amphiploids are useful genetic resources for stripe rust resistance which could be transferred to the cultivated T. turgidum. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Plant regeneration through callus initiation from mature embryo of Triticum   总被引:3,自引:0,他引:3  
R. M. Bi    M. Kou    L. G. Chen    S. R. Mao    H. G. Wang 《Plant Breeding》2007,126(1):9-12
The behaviour of diverse Triticum genotypes in the tissue culture response of mature embryo callus was compared, and factors affecting tissue culture response were studied in this paper. Significant differences were detected in callus induction, embryogenic callus differentiation, plantlet regeneration and culture efficiency when mature embryos of 31 plants of different Triticum species were compared. These were the main wheat cultivars of the Chinese northern winter‐type wheat region and breeding lines (Triticum aestivum L.), durum wheat (Triticum durum Desf.), cultivable emmer wheat (Triticumdicoccum Schuble) and the common wheat progenitors Triticum dicoccoides and Triticum aegilopides. The genotype dependency was particularly high in tissue culture of mature embryos of these Triticum genotypes. The efficiency of induction, differentiation and regeneration of mature embryos callus was high in genotypes selected out. Mature embryo‐derived callus of HB341, TS021, SN2618, T. dicoccum, HB188, and T9817 showed better tissue culture response than the other genotypes. Plantlets can be regenerated from mature embryo‐derived callus of 31 genotypes, saving on growth facility resources and time required for the collection of other explants, and providing a solid basis for the genetic transformation and molecular plant breeding of Triticum plants.  相似文献   

5.
Twelve synthesized ainphiplonds involving Karnal bunt (Neovossia indica)-resisiant accessions of Triticum monococum, T. boeoticum and Aegilops sqiwrrosa and susceptible but otherwise well adapted and high yielding T. Durum cultiviars were evaluated for Karnal bunt resisiance under artificial inoculation conditions. All ihe synthetic amphiploids, except DWI. 5031 x T. monocoirtum aniphlploid, were free from Karnal bunt disease indicating that the Karnal bunt resistance or T. motsococcum, T. boeoticMrn and Ae, squarrosa is expressec in the presence of the dnrum complement. The importance and utilization of the amphiploids fox breeding wheat varieties resistant to karnal bunt are discussed.  相似文献   

6.
Tolerance of wheat (Triticum aestivumL.) to high temperature might be improved by introducing alien genes from amphiploids. Our objectives were to determine responses of synthetic hexaploid and octaploid amphiploid wheats to high temperature and evaluate their potential usefulness for developing improved cultivars. Thirty synthetic hexaploids from durum wheat (T. turgidum L.) × Aegilops tauschii Cos. Accessions and four octaploid amphiploids from Chinese Spring wheat × different grasses were grown at 20/15 and 30/25 °C day/night during maturation. Tolerance was ascertained by two measures of senescence, leaf chlorophyll content and grain filling duration, plus grain yield and its components. Leaf chlorophyll was measured after 10 and 15 days of treatment, and grain yield was determined at maturity to calculate the heat susceptibility index(HSI), a gauge of the reduction in yield at high temperature of each line relative to all other lines. Chlorophyll content, grain filling duration, yield, and kernel weight were highly negatively correlated with HIS of the hexaploid amphiploids at30/25 °C, but grain yield was positively correlated with HSI at20/15 °C. The hexaploid lines might be useful for improving wheat for regions where stress from high temperature occurs frequently. Chlorophyll content and grain filling duration also were highly negatively correlated with HSI of the octaploid lines, but they would be less directly useful for improving wheat because the kernel number was reduced greatly due to unbalanced meiotic chromosomal segregation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Summary Hexaploid and octoploid tritordeum and their Triticum spp. parents were studied in the seedling stage to compare their components of partial resistance to Puccinia recondita f.sp. tritici. The components studied were infection frequency, latency period and size of uredia. The non-host Hordeum chilense parent does not confer any increase of partial resistance to wheat brown rust to its amphiploids with wheat.  相似文献   

8.
W. Lange  G. Jochemsen 《Euphytica》1992,59(2-3):197-212
Summary Triticum turgidum ssp. dicoccoides (wild emmer wheat, AABB, 2n=28) and Aegilops squarrosa (goat grass, DD, 2n=14) comprise a rich reservoir of valuable genetic material, which could be useful for the breeding of common wheat (T. aestivum, AABBDD, 2n=42). Many accessions of both wild species, most of them selected for resistance to stripe rust, were used to make amphiploids. Two strategies were applied: (1) the production of autopolyploid cytotypes of the wild species, followed by hybridisation, and (2) the production of allotriploid interspecific hybrids, followed by doubling of the number of chromosomes. The first route was unsuccessful because of failure of the crosses between the autopolyploid cytotypes, possibly due to incongruity between the two species and to reduced fertility in the autopolyploid cytotypes. The second route yielded the desired synthetic hexaploids. However, the rate of success of the crosses was low and there were great differences between years, and within years between crosses. Embryo rescue was applied to obtain the primary hybrids (2n=21), which were highly sterile and had on average 0.3 bivalents and 20.4 univalents per pollen mother cell. Various abnormalities were recorded. Doubling of the number of chromosomes sometimes occurred spontaneously or was brought about by colchicine treatment. The large scale of the interspecific hybridisation programme ensured that one-third of the female and one-sixth of the male accessions were represented in the synthetic hexaploids.  相似文献   

9.
Yield and quality reductions caused by Fusarium head blight (FHB) have spurred spring wheat (Triticum aestivum L.) breeders to identify and develop new sources of host plant resistance. Four wheat synthetic hexaploids (×Aegilotriticum sp.) were developed, each having a quantitative trait locus (QTL), Qfhs.ndsu‐3AS, providing FHB resistance from Triticum turgidum L. var. dicoccoides chromosome 3A. Synthetics were produced by hybridizing a ‘Langdon’‐T. dicoccoides‐ recombinant chromosome 3A substitution line (2n = 4x = 28, AABB with two accessions of T. tauschii (2n= 2x = 14, DD). Synthetics were inoculated and evaluated for FHB resistance in two separate greenhouse seasons. One synthetic, 01NDSWG‐5, exhibited FHB severity ratings of 36% and 32% in the separate seasons, compared with ratings of 9% and 30% for ‘Alsen’, a FHB‐resistant spring cultivar, and ratings of 70% and 96% for ‘McNeal’, a susceptible spring cultivar, respectively. Synthetic × Alsen backcross‐derived lines were produced to initiate combining different sources of FHB resistance.  相似文献   

10.
The reaction of tritordeum and its Hordeum chilense and Triticum spp. parents to common bunt incited by Tilletia tritici were determined in field experiments. H. chilense accessions were very resistant, and durum wheats exhibited high to moderate levels of resistance. Conversely, bread wheats were highly susceptible. Resistance from H. chilense was expressed in the amphiploids, although the level of resistance was partially diluted at higher ploidy levels. Hexaploid tritordeums were immune to the disease; some infection was observed among the octo-ploids but at much lower levels than in their respective wheat parents.  相似文献   

11.
G. S. Deol    G. E. Wilde  B. S. Gill 《Plant Breeding》1995,114(6):545-546
A total of 259 accessions of wild Triticum species originating from different countries, along with 91 triticale (6×)× bread wheat true-breeding derivatives, two bread wheat, and three triticale cultivars were screened for resistance to the Russian wheat aphid, a serious insect pest of the wheat crop. Twenty-four entries with low damage ratings on the basis of amount of leaf rolling and leaf chlorosis were retested along with resistant and susceptible controls. On the basis of leaf roll damage ratings, eight entries including four Triticum monococcum var. boeoticum (T. boeoticum), one T. monococcum var. monococcum (T. monococcum), two T. timopheevii var. araraticum (T. araraticum), and one triticale cultivar were significantly superior to ‘Karl’ (susceptible control) wheat. Among these, four accessions — three T. boeoticum and one T. araraticum— were significantly superior to all other entries and were equal to the resistant control (PI 372129) in resistance rating based on leaf rolling and leaf chlorosis (except T. boeoticum TA 202). The leaf chlorosis damage rating of all accessions were significantly lower than that of the susceptible check.  相似文献   

12.
With the aim of widening the genetic variability of hexaploid tritorceum through the wheat parents, amphiploids between Hordeum chilense and Triticum turgidum ssp. dicoccoides, ssp. georgicum, and Cody, polonicum have been synthesized. The meiotic behaviour and the fertility were examined in these amphiploids. The morphology of the amphiploids in comparison to their wheat parents was described.  相似文献   

13.
Summary Triploid hybrid embryos (AABB × SS = ABS) were produced by crossing two moderately salt-tolerant wheats, namely Triticum turgidum durum and Aegilops speltoides subsp. speltoides. The embryos were rescued by culturing on agar No. 1. Chromosome doubling was achieved by using 0.05% colchicine. The resulting hexaploid plants grew to maturity, and produced a considerable amount of seed (≈40,000). The synthetic hexaploid (C2) was tested for salinity tolerance, grown at 0, 100, 125, 150, 160, 170, 180 and 200 mM NaCl in a standard nutrient solution for 2 weeks. The criterion of salt tolerance was root growth in different NaCl concentrations. The amphidiploid material showed greater salinity tolerance than either parent, suggesting the presence of different genes for tolerance in the parents.  相似文献   

14.
A total of 523 accessions of 25 Triticum species were screened for tolerance of aluminum in solution. Only 22 accessions were identified with some root re growth following exposure w culture solutions containing 12 ppm aluminum. Interestingly, 15 of these 22 accessions were species with the Un genome (T. uniaristatum). The level of aluminum tolerance of none of these 22 accessions is as high as that of the cultivar ‘Atlas 66’.  相似文献   

15.
Tetraploid wheatgrass, Thinopyrum junceiforme(2n = 4x = 28; J1J1J2J2), a wild relative of wheat, is an excellent source of resistance to Fusarium head blight. Intergeneric F1 hybrids (2n = 4x = 28; ABJ1J2) between durum wheat (Triticum turgidum; 2n = 4x = 28; AABB) cultivars Lloyd or Langdon and Th. junceiforme were synthesized. Most of the pairing in F1 hybrids was between the J1- and J2-genome chromosomes. Some pairing occurred between wheat chromosomes and alien chromosomes, resulting in segmental exchange that was confirmed by fluorescent in situ hybridization (FISH). The F1hybrids were largely male-sterile and were backcrossed, as the female parent, to the respective durum cultivar. Backcrosses from Lloyd × Th. junceiforme hybrids yielded fertile partial amphiploids (2n = 6x = 42; AABBJ1J2) as a result of functioning of unreduced female gametes of the hybrid. Lloyd proved to be a more useful durum parent than Langdon in crosses with Th. junceiforme designed to transfer scab resistance genes. Pairing in the amphiploids was characterized by preferential pairing,which resulted in bivalent formation. However, some intergeneric pairing also occurred. Several fertile hybrid derivatives were produced by further backcrossing and selfing. The introduction of alien chromatin into the durum complement was confirmed by FISH. Hybrid derivative lines had significantly lower mean infection scores (p = 0.01), the best showing 10.93% infection, whereas the parental durum cultivars had 70.34% to 89.46% infection. Hybridization with wild relatives may offer an excellent means of introducing scab resistance into durum wheat. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Wheat pre-breeding using wild progenitors   总被引:6,自引:1,他引:6  
J. J. Valkoun 《Euphytica》2001,119(1-2):17-23
To facilitate the use of wheat wild relatives in conventional breedingprograms, a wheat pre-breeding activity started at ICARDA in 1994/1995season. Preliminary results of gene introgression from wild diploidprogenitors, Triticum urartu, T. baeoticum, Aegilops speltoides andAe. tauschii and tetraploid T. dicoccoides are described. Crosseswith wild diploid Triticum spp. yielded high variation in plant andspike morphology. Synthetic hexaploids were produced from crosses of alocal durum wheat landrace `Haurani' with two Ae. tauschiiaccessions. Both Ae. tauschii accessions carry hybrid necrosis allelesthat gave necrotic plant phenotypes in crosses with some bread wheats.Backcross progenies with agronomical desirable traits, i.e. high spikeproductivity, short plant stature, earliness, drought tolerance and highproductive tillering, were identified in crosses of durum wheat with wild Triticum spp. and in a cross of one of the hexaploid synthetics with alocally adapted bread wheat cv. `Cham 6'. Resistance to yellow rust wasfound in durum wheat crosses with the three wild Triticum spp. andAe. speltoides and leaf rust resistance was identified in crosses withT. baeoticum and Ae. speltoides. The results show that wheatimmediate progenitors may be a valuable and readily accessible source ofnew genetic diversity for wheat improvement.  相似文献   

17.
The inheritance of isoproturon tolerance exhibited by the selected progenies of durum wheat was investigated. This tolerance to the herbicide isoproturon had been transferred from Triticum monococcum to durum wheat cultivars. It was shown to be conditioned by a single dominant gene  相似文献   

18.
Four hundred and eighty one accessions of species and subspecies of genera Triticum and Aegilops were evaluated for resistance to speckled snow mold caused by Typhula ishikariensis and for freezing tolerance. All Triticum and seven of Aegilops species were severely affected by snow mold. Among surviving Aegilops spp., only the Ae. cylindrica accessions exhibited resistance similar to that of the most resistant winter wheat cultivar, PI 173438. After repeated screening of accessions of Ae. cylindrica, 12 accessions were identified as having resistance similar to that of PI 173438; eleven of those were considered more freezing tolerant than PI 173438, but less than wheat cv. Valjevskaya, the freezing tolerant check. Accessions of Ae. cylindrica with snow mold resistance exceeding that of PI 173438, and with freezing tolerance, are currently being screened. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Late maturity α-amylase (LMA) is a genetic defect that is fairly widely spread in bread wheat (Triticum aestivum L.) germplasm, and recently detected in durum cultivars, which can result in unacceptably high α-amylase activity (low falling number) in ripe grain. LMA has also been observed at unexpectedly high frequency and severity in synthetic hexaploid wheats derived from the interspecific hybridisation of Triticum durum (AABB) and Aegilops tauschii (DD). Since synthetic hexaploids represent an important new source of resistances/tolerances to a range of biotic and abiotic stresses for wheat breeders, there is a pressing need to understand the mechanisms involved in LMA in synthetics and develop strategies for avoiding its adverse effects on grain quality. The objectives of this study were to firstly, compare the LMA phenotype of synthetics that varied for plant height, secondly, to characterise the LMA phenotype in groups of synthetics derived from the same durum parents and finally to determine whether LMA in primary synthetics is associated with the QTL previously reported in conventional bread wheat. More than 250 synthetic hexaploids, a range of durum cultivars and a doubled haploid population derived from Worrakatta (non-LMA) × AUS29663 (high LMA synthetic) were phenotyped and genotyped with markers reported to be linked to LMA in conventional bread wheat and markers diagnostic for the semi-dwarfing gene, Rht1. More than 85% of synthetics were prone to LMA, approximately 60% ranked as very high. Genetic control of LMA in synthetic hexaploids appeared to involve QTL located on 7B, and to a lesser extent 3B, similar to bread wheats. However, the LMA phenotype of many synthetic hexaploids appeared to be more extreme than could be explained by comparisons with bread wheat even taking into account the apparent absence of Rht1 in most genotypes. Other mechanisms, possibly triggered by the interaction between the AABB and DD genomes cannot be excluded. The presence of wild type rht1 in most synthetic hexaploids and their extreme height is difficult to reconcile with the semi-dwarf, Rht1, stature of many of the durums used in the interspecific hybridisation process. Mechanisms that could explain this observation remain unclear.  相似文献   

20.
小麦与山羊草双二倍体抗病性的研究与利用   总被引:6,自引:1,他引:6  
许树军  董玉琛 《作物学报》1990,16(2):106-111
本文报道了波斯小麦与粗山羊草(5个品系),小伞山羊草和卵穗山羊草双二倍体及其亲本的抗叶锈和白粉病鉴定结果。粗山羊草对叶锈的抗性受波斯小麦品系 PS 5(不抗叶锈)的抑制,在双二倍体中不能表现。小伞山羊草和卵穗山羊草对叶锈的抗性不受波斯小麦的影响,能在双二倍体中充分表达。以对白粉病免疫的波斯小麦为母本与免疫的山羊  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号