首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Field observations and laboratory analyses of podzols developed on sandy Triassic parent material in the Vosges have demonstrated clay accumulation in the upper parts of spodic horizons, especially in the Bh horizons. To see whether clay accumulation corresponds to real clay illuviation, two types of podzol profiles have been studied. The first is an iron podzol, called “podzol forestier”, because it has been entirely developed under climax forest environment. The second, an iron-humus podzol, called “podzol de dégradation”, was first developed under forest and more recently (the last 1000 to 2000 years) under heath vegetation. Methods used in the study of the two profiles were the “isoquartz” alteration balance, clay mineral identification by X-ray analyses and micromorphholigical examination.For the podzol forestier, the data strongly support a hypothesis of illuviation of very fine micaceous clays (vermiculite), especially the ferriargillans in the Bh horizon. Consequently, it is believed that illuviation of the greatest part of clays promoted differentiation of podzol horizons. Podzolization is strongly redistributive.In the podzol de dégradation, the identified clay minerals are the same as in the podzol forestier but the pedological features in the Bh horizon correspond to those of classic spodic horizons (mixed concentration and grain coatings). Moreover, podzolization is geochemically strongly subtractive in this second type of podzol.Inasmuch as the podzols de dégradation are developed from the podzols forestiers, the authors define an evolutionary time-sequence: the first phase of forest soil genesis is regulated by the double process of clay illuviation and redistributive podzolization. The following degradation phase connected to the particular nature of heath vegetation and to abundant chelating organic compounds induces the disruption of the ferriargillans previously formed in the Bh horizon, the formation of an agglomeroplasmic fabric microstructure and above all, the elimination of hydrolyzed products of minerals from the profile. During this last phase, a strongly subtractive podzolization prevails over clay illuviation.  相似文献   

2.
The occurence of acid brown soils, podzols and podzolic soils, and the intermediate types of ochreous brown and brown podzolic soils over arenaceous granite in Vosges was closely correlated with the contents of iron rather than with calcium plus magnesium in the parent materials. Acid brown soils were associated with high and podzols and podzolic soils with low contents of iron, the limiting value being near 5 percent. Additional investigations in beech forests of soils derived from a variety of acid rocks indicated that contents of iron and clay in the parent materials controlled the type of humification of litter. With higher contents of iron and clay, humification gave rise to mull. With lower contents, mor or moder was formed. The nature of humification was believed responsible for tilting pedogenesis toward brunification or toward podzolization. In brunification, the clay-iron-humus complexes that are formed tend to be immobile and promote formation of crumbly structure. The “active iron” occurs as films around clay particles and thus links them to humus. In podzolization, on the other hand, the complexes formed are of humus with iron or aluminum but without clay. These are mobile and are translocated downward in profiles to form spodic horizons. The organo-metal complexes in ochreous brown and brown podzolic soils are mobile to only a limited extent. The combined results of these investigations demonstrate that contents of iron and clay rather than calcium in parent materials determine the pathway of pedogenesis from acid rocks under humid, temperate climates.  相似文献   

3.
The soils of montane cloud forests (MCF) are still insufficiently studied. A number of researchers report Podzols to be the main soil group for MCF ecosystems; however, a great deal of contradictory data exists. We studied an altitudinal sequence of soils formed on ferrous chlorite shale under natural MCF vegetation in Sierra Juárez, Southern Mexico, from 1500 to 2500 m asl. The soils of the upper part of the toposequence were Folic Stagnic Podzols, with inclusions of Folic Stagnosols in local depressions, while the soils of the lower part of the toposequence were Folic Cambisols (Humic, Hyperdystric). All the soils in the toposequence were extremely acid, and had thick organic surface horizon. Mineral horizons of all soils were poor both in exchangeable and total reserves of bases; the bases were concentrated mainly in organic topsoil. With decreasing altitude both the thickness of albic horizons, the depth of the maximum acid oxalate-extractable Fe and Al concentrations, and the difference in clay content between the eluvial and illuvial horizons decreased. In the upper part of the toposequence the composition of soil clays was similar to that of parent material (chlorite and mica), with some mixed-layered 2:1 minerals. However, gibbsite and kaolinite were also present in the soils of the other site within the same upper MCF belt. The phenomenon was ascribed to parent material heterogenity. In the medium and lower parts of the toposequence gibbsite and kaolinite were the dominant minerals. We consider that the main pedogenic processes in the study area are raw humus accumulation, weathering in situ, podzolization, and iron reduction due to water stagnation in mineral topsoil. The intensity of weathering decreases, while the extent of water stagnation increases with altitude. To a great extent the genesis and altitudinal distribution of the soils in the MCF depends on parent material.  相似文献   

4.
Abstract

Using sequential extractions, total elemental analysis, and X‐ray diffraction, we have investigated the impact of the podzolization process on component composition of the clay fraction in the eluvial horizons of eight more or less podzolized Danish soils. The results indicate that podzolization is highly aggressive towards all clay components in the eluvial horizons eventually leading to their disintegration. The 2:1 layer silicate clay minerals, illite and chlorite, are first transformed into other 2:1 layer silicate clay minerals. After passing through a microcrystalline phase high in Si but low in Al, Fe, Mg, and K, they finally disintegrate completely. Even gibbsite and kaolinite disintegrate under the aggressive conditions, caused among other things by the presence of dissolved complex forming organic molecules in these horizons. Application of lime and fertilizers seems to be able to reverse the process in case of the 2:1 layer silicate clay minerals.  相似文献   

5.
Statistical data on the bulk contents of iron and aluminum oxides in iron-depleted and iron-enriched horizons of a wide range of taiga and tundra soils were compared. It was found that the soils could be arranged into the following sequence characterized by an increase in the relative contribution of iron oxides and a decrease in the relative contribution of aluminum oxides to the differentiation of sesquioxides in the soil profiles: sandy podzols—soddy-podzolic soils—loamy micropodzols and iron-illuvial svetlozems—cryogenic ferruginated gleyzems. It was concluded that the bleaching of eluvial horizons and the depletion of sesquioxides from them, as well as the accumulation of sesquioxides in the illuvial horizons, are controlled by different processes in different soils. In sandy podzols, the differentiation of sesquioxides is due to the Al-Fe-humus podzolization; in loamy micropodzols and iron-illuvial svetlozems, due to the redox-Al-Fe-humus podzolization; in podzolic and soddy-podzolic soils, due to the selective podzolization and lessivage; and, in cryogenic ferruginated gleyzems, due to the reduction-oxidation processes.  相似文献   

6.
A study was conducted along the Kelantan–Terengganu Coastal Plains, Peninsular Malaysia to explain the occurrence of sandy beach ridges and to determine the physico-chemical properties of the soils formed on them. Two or occasionally three series of sandy ridges running parallel to the shoreline occur in the area. These ridges are believed to have been formed by the continuous action of the sea waves following changes in the sea level during the Holocene, the oldest ridge being the one farthest away from the shoreline. In between these ridges occurs a slight depression, usually occupied by soils under submerged condition. The soils on the ridges are subjected to the processes of soil formation, mainly podzolization. There is no horizon differentiation in the soils on the ridge nearest to the shoreline. However, soils on the older ridges contain spodic horizon, occurring at varying depths. Drainage and the depth below which this spodic horizon occurs are the deciding factors for determining soil type (series). Physically, the soils are sandy containing > 95% sand, with the drainage varying from moderately well to excessively-drained for the soils on the ridges. Under this condition, the mineralogy of the clay and silt fractions is dominated by quartz; some feldspars, mica, kaolinite, gibbsite and anatase are also present. Sandy nature of the soils on beach ridges, extreme leaching, low cation exchange capacity and low exchangeable bases leads to their low productivity.  相似文献   

7.
D. Righi  F. De Connick 《Geoderma》1977,19(4):339-359
Soils of the nearly level “Landes du Médoc” in southwestern France have a pattern of alternating bodies of hydromorphic podzols (Haplaquods) and low humic hydromorphic soils (Psammaquents). The soils are formed in a sedimentary mantle of coarse, quartzose sands with a slight microrelief consisting of low, elongated ridges and shallow, intervening troughs. The water table is at shallow depths throughout the plain, even at the surface in places. The podzols on the crests of the low ridges have distinct A2 and cemented B2 h horizons. Podzols persist down the sides of ridges but going downslope first lose the A2 horizon and then the cementation of the Bh horizon. Soils in the shallow troughs have A1 and Cg horizons without B horizons.The fine silt (2–20 μm) and clay (0–2 μm) fractions of the parent sand contain primary trioctahedral chlorite, mica, feldspars, and quartz, with the last mineral predominant. During soil development, the first three minerals undergo weathering at different rates and to different extents. Chlorite is most strongly weathered, followed in order by plagioclases and K-minerals. In the fine silt fraction, weathering seems to occur mostly by fragmentation of particles. In the clay fraction, the phyllosilicates successively form irregularly interstratified minerals with contractible but not expandable vermiculitic layers, interstratified minerals with contractible and expandable smectitic layers, and finally smectites.The extent to which the silicate minerals are weathered becomes progressively greater from the low humic hydromorphic soils to the podzols with friable Bh horizons to the podzols with cemented Bh horizons. Smectite is present only in the A2 horizons of these last podzols.The aluminum release by weathering of silicate minerals is translocated in part in the form of organo-metal complexes into the Bh horizons of the podzols. Greatest concentrations of Al are associated with coatings of monomorphic organic matter on mineral grains in the cemented Bh horizons, in which some Al has also crystallized into gibbsite. That mineral was not detected in friable B horizons of podzols nor in the low humic hydromorphic soil. Contrary to expectations, the mobile Al did not enter interlayer spaces of expanding 2:1 clay minerals.  相似文献   

8.
Characteristics of the soils include well-defined horizons, very low pH values and base saturation percentages, and a slight but general increase in the silt-plusclay content down the profile. X-ray diffraction shows that the soil clays are rich in mica and chlorite with subsidiary amounts of kaolinite, goethite, and lepidocrocite. The general distribution of the clay minerals in the profiles studied suggests that the weathering of chlorite leads to the formation of kaolinite in the A horizons and to the accumulation of crystalline iron-oxide minerals in the B horizons. The presence of kaolinite, taken in conjunction with recent clay mineral studies of Scandinavian and Canadian podzols, indicates that the Ben Lawers soils may pre-date the last glacial period.  相似文献   

9.
Placic (Bsm) and spodic (Bhs) horizons are common in subalpine or alpine forest soils in Taiwan. Bsm horizons are found more usually in finer textured soils than those with Bhs horizons. To understand the different formation processes in Bsm and Bhs horizons in a humid subtropical ecosystem, we identified micro‐morphological features by using scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and electron probe micro‐analysis (EPMA), and determined the physiochemical properties by chemical extractions and clay mineralogy. The study included four pedons with well‐developed Bsm horizons from our previous study and four with well‐developed Bhs horizons at other sites. Both sites were in subtropical mountain forests with similar climate, topography and general geology but over regoliths with distinctly different textures. Micro‐morphology revealed a vughy (small cavities lined with in‐washed materials) microstructure in Bsm horizons but a granular structure with bridge microstructures between coarse grains in Bhs horizons. Chemical analysis revealed more free pedogenic iron (Fed) and aluminium (Ald) in Bsm than in Bhs horizons, but more organically complexed Al (Alp) in Bhs horizons. Energy dispersive spectrometry revealed predominant Fe, oxygen (O) and carbon (C) in the matrix of the Bsm horizons, whereas Al, silicon (Si) and C were the major elements of interstitial materials in Bhs horizons. Polarizing microscopy and EPMA spectra confirmed the illuvial nature of organic Al complexes in Bhs horizons. The transformation of clay minerals showed more intense podzolization in Bhs horizons than in Bsm horizons. The different formation mechanisms in Bsm and Bhs horizons result from contrasting texture; redox processes are predominant in Bsm horizons because of the clayey texture whereas podzolization is predominant in sandy Bhs horizons.  相似文献   

10.
Major weathering sequences in soils are well established; however, knowledge on rates of mineral transformations remains unknown, because it is often difficult to date precisely soil processes. This work was carried out on soils developed on recent (< 188 y) sand dunes on the W coast of Oléron Island (France). The coast has been protected against marine and wind erosion by constructing five consecutives barriers close to the coastline since 1820 (1820, 1864, 1876, 1889, 1948) defining the maximum age of the soil parent material, as before the areas between the barriers were under water. Soils on the older dunes have low clay content (> 94% of sand) and exhibit a bleached E horizon that overlies a yellowish brown B horizon. The process responsible for their formation is podzolization promoted by the high permeability of the material and complexing organic matter produced by coniferous vegetation. Initial mineralogy of C horizons is homogenous and constituted of chlorite, illite, illite/smectite mixed‐layer minerals, and kaolinite, quartz, calcite (≈ 8% related to shell fragments), and feldspars. The initial clay‐mineral assemblage of the E horizons is dominated by illite (well‐crystallized WCI and poorly crystallized PCI) and chlorite. With progressive podzolization, poorly crystallized illite is first transformed to illite/smectite mixed‐layer minerals and in a further step into smectite. In addition, transformation of well‐crystallized illite leads to formation of ordered illite/smectite mixed‐layer minerals in the E horizons, which is not commonly described in soils. In the B horizons, illite/smectite mixed‐layer minerals are present with traces of smectite, as well as Al and Fe oxi‐hydroxides as revealed by DCB and oxalate chemical extractions. This chronosequence illustrates that over short distances and short time (< 188 y) intense mineral weathering and soil development occur. Major clay‐mineral changes occur between 132 and 188 y in agreement with development of the pine forest producing acidic litter.  相似文献   

11.
Chemical and mineralogical properties of ochreous brown earths have been studied with particular reference to: (1) the distribution within the profiles of Fe and Al compounds; (2) the occurrence of smectite-like clay minerals in surface horizons. Ochreous brown earths studied belong to a developmental sequence of forest soils, from acid brown earths to ferric podzols, developed on sandy or loamy-sandy acid parent materials. In such a soil sequence, both selective chemical and mineralogical data show clearly that podzolization is already active in ochreous brown earths, whereas such an incipient podzolization is quite undetectable by direct morphological observations. The distribution patterns of amorphous Fe and Al hydrous oxides and organic associations, clearly show the intergrade character of ochreous brown earths, when compared with the vertical distribution of Fe and Al forms in acid brown earths and podzolized soils. The Fe/Al ratio of both an NH4-oxalate extract and an NaOH/Na-tetraborate extract buffered at pH 9.7, measured in the A1B diagnostic horizon of ochreous brown earths, is a particularly appropriate and useful genetic criterion for the detection of incipient podzolization. Moreover, the presence of expansible clay minerals (degradation smectites) in the clay-sized fraction of the surface horizons of ochreous brown earths (A1 and A1B) can be considered as supplementary evidence of incipient podzolization.  相似文献   

12.
Hydrochemical processes involved in the development of hydromorphic Podzols are a major concern for the upper Amazon Basin because of the extent of the areas affected by such processes and the large amounts of organic carbon and associated metals exported to the rivers. The dynamics and chemical composition of ground and surface waters were studied along an Acrisol‐Podzol sequence lying in an open depression of a plateau. Water levels were monitored along the sequence over a period of 2 years by means of piezometers. Water was sampled in zero‐tension lysimeters for groundwater and for surface water in the drainage network of the depression. The pH and concentrations of organic carbon and major elements (Si, Fe and Al) were determined. The contrasted changes reported for concentrations of Si, organic carbon and metals (Fe, Al) mainly reflect the dynamics of the groundwater and the weathering conditions that prevail in the soils. Iron is released by the reductive dissolution of Fe oxides, mostly in the Bg horizons of the upslope Acrisols. It moves laterally under the control of hydraulic gradients and migrates through the iron‐depleted Podzols where it is exported to the river network. Aluminium is released from the dissolution of Al‐bearing minerals (gibbsite and kaolinite) at the margin of the podzolic area but is immobilized as organo‐Al complexes in spodic horizons. In downslope positions, the quick recharge of the groundwater and large release of organic compounds lead to acidification and a loss of metals (mainly Al), previously stored in the Podzols.  相似文献   

13.
Proto-imogolite allophane was found in amounts ranging from 1% to 5% in concretions and ortstein from several sandy podzols in Australia. Micromorphological observations on concretions in which allophane was the dominant clay component indicated that it had been deposited in layers during successive drying episodes to form a yellow, glassy, weakly anisotropic, fluorescent cement around sand grains. Iron oxides and organic matter were minor components of the cement. It is proposed that a proto-imogolite sol is the mobile phase that deposits Al and Si in these concretions, and that the proto-imogolite allophane could be a precursor of kaolinite in older concretions, and of gibbsite in leaching environments. Proto-imogolite sols and allophane could play a similar role in the pedogenesis of kaolinite and gibbsite in concretions in freely drained ferrallitic soils.  相似文献   

14.
This study is based on a sequence of soils on a typical slope of the Himalayas in central Nepal from 2300 m to 4000 m. Above 2300 m the land is forested and at 4000 m forest gives way to alpine meadows.The soils have developed in silty loam materials derived from weathering of micaschists. They are humic, acid and strongly desaturated. Their spatial distribution is related to the bioclimatic zonation: acid brown soils and deep humic acid soils occur in the mountain zone and podzols and brown podzolic soils in the subalpine and alpine ones.Biological activity and “maturation” of humus decrease with increasing elevation. The podzolization process dominates. There is intense weathering of ferruginous phyllosilicates in eluvial horizons and accumulation of amorphous products in B horizons.  相似文献   

15.
To elucidate the mechanism of podzolization in its first stages we studied the fate of the water-soluble organic matter (WSOM) in incipient podzols in sandy soils by comparing the composition of the WSOM from L, F and H horizons with that in the bulk of the Bh horizons and fibres of three profiles. The WSOM appeared to consist significantly of ligno-cellulose and proteins, but these biopolymers were hardly present in the Bh horizons. The material of the fibres, however, greatly resembled the WSOM composition, thereby suggesting that in these soils most of the WSOM is transported through the B horizon and accumulates hardly changed in thin bands where the water stops moving. This implies that in the early steps of podzolization, accumulation of organic matter in the B horizon is not likely to be caused by water-soluble material.  相似文献   

16.
许冀泉  杨德涌 《土壤学报》1964,12(3):275-285
西藏高原突起于我国西南,绝大部分地面的海拔高度在4000米以上,为世界上最高的大高原。它大致在第三纪开始形成,后来曾受第四纪冰川的深刻作用,高山顶部至今仍是冰川的活动场所[1,2]。高原为昆仑山、唐古拉山、喜马拉雅山和横断山等大山脉所盘踞。  相似文献   

17.
Along with Fe and Al, many heavy metals (Mn, Cr, Zn, Cu, and Ni) show a markedly pronounced eluvial-illuvial redistribution in the profiles of soils of the podzolic group. The intensity of the redistribution of the bulk forms of these metals is comparable with that of Fe and exceeds that of Al. Although the podzolic soils are depleted of rare-earth metals, the latter respond readily to soil podzolization. The inactive participation of Al is explained by an insignificant portion of the active reaction-capable fraction. Podzolization does not influence the profile distribution of Sr and Ba. The leaching degree of heavy metals such as Mn, Cr, Zn, Ni, and Zr is noticeably higher in the sandy podzols than in the loamy podzolic soils. Leaching of heavy metals from the podzolic horizons is of geochemical importance, whereas the depletion of metals participating in plant nutrition and biota development is of ecological importance. The leaching of heavy metals is related to the destruction of clay particles in the heavy-textured podzolic soils; the effect of the soil acidity on the leaching of heavy metals is less significant.  相似文献   

18.
The soils and sediments of the uplands in the Manaus region are described and analysed along a representative cross‐section. There are two broad types of features, lateritic and redoximorphic. Their formation is linked to two main processes acting under contrasted hydrological regimes. The first process, acting under well‐drained conditions, is lateritization. It has transformed strongly weathered sediment into soil and led to depletion of silica (mainly quartz) as well as to relative accumulation of both kaolinite and iron oxides (haematite and goethite). Crystallographic changes observed in the latter have resulted from alternating dissolution and crystallization cycles without significant transfer of iron and alumina. However, in the uppermost soil, dissolution of kaolinite has prevailed over crystallization, leading to depletion of clay and the formation of tiny crystals of gibbsite disseminated throughout the groundmass. The second process results from the development of reducing conditions in groundwater giving redoximorphic features in lateritic soils and sediments. In the sediments, iron has been depleted by regional aquifers to form a pallid zone. In the soil, large amounts of iron and minor amounts of alumina, mainly from aluminous goethite, have been mobilized at first in small patches, which with further mobilization and vertical transfer of these elements have increased in size and have led to the formation of bleached horizons over thin iron pans. Iron has crystallized predominantly as haematite in the iron pans and alumina as large crystals of gibbsite in soil voids. Formation of impervious iron pans holds up fluctuating perched groundwater in the overlying horizons depending on rainfall events. Neotectonic events (formation of uplifted blocks and small grabens) have markedly altered the hydrological regimes. In the uplifted blocks, the soil has been deeply truncated and iron loss has been checked in the uppermost sediment. By contrast, mobilization of iron has been initiated at various places in the soil of the small grabens. In this way tectonic events have checked mobilization of iron in sediments but activated it in soils, leaving spectacular fingerprints on the landscape.  相似文献   

19.
The present study reports the occurrence of gibbsite and halloysite in soils derived from granitic saprolites and from glacial deposits formed from granitic saprolites of the Bayerischer Wald (Germany). Both minerals are common in soils of this area. They were formed in the initial stages of weathering, most probably before the Pleistocene and in a warmer climate. Under present conditions halloysite and gibbsite are unstable in the surface soils, as indicated by a decrease in gibbsite concentration towards the surface and by an undersaturation of the equilibrium soil solution with respect to both minerals. It is assumed that the strongly acid conditions and the high concentration of organic compounds in the surface horizons lead to dissolution of gibbsite and possibly to transformation of halloysite to kaolinite.  相似文献   

20.
C.W. Childs  R.L. Parfitt  R. Lee 《Geoderma》1983,29(2):139-155
Chemical and mineralogical data are presented for three Spodosols (podzols) and a related Inceptisol (yellow-brown loam). Allophane with an Al/Si atomic ratio close to two is identified in the B horizons of all four soils, and minor amounts of imogolite are present in association with allophane in all but one soil where small-particle gibbsite occurs. Parent materials for these soils are essentially non-vitric. Allophane (Al/Si = 2) has been estimated quantitatively in all soils using oxalate-extractable Si (Si0) and is selected clay fractions using both Si0 and infrared spectroscopy. Maximum concentrations of allophane (Al/Si = 2) range from 5% to 18% of fine earth (< 2 mm) fractions and all occur in B horizons. Fe0 values are low relative to Al0 values except for the upper horizons of the Inceptisol. Al0 values peak in B horizons and the ratio pyrophosphate-extractable Al to Al0 decreases from about 1 in A and upper B horizons to 0.1–0.4 in lower B horizons.An interpretation of the data is consistent with recent proposals that the movement of Al in podzolisation is due primarily to the formation of inorganic complexes with Si. Chemical criteria for spodic horizons should be consistent with the total illuviation of Al and Fe (and perhaps Si), rather than just the organic-bound fraction of Al and Fe in these horizons as indicated by amounts in extractants such as pyrophosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号