首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Two experiments were conducted to evaluate the effects of dietary Zn and Fe supplementation on mineral excretion, body composition, and mineral status of nursery pigs. In Exp. 1 (n = 24; 6.5 kg; 16 to 20 d of age) and 2 (n = 24; 7.2 kg; 19 to 21 d of age), littermate crossbred barrows were weaned and allotted randomly by BW, within litter, to dietary treatments and housed individually in stainless steel pens. In Exp. 1, Phases 1 (d 0 to 7) and 2 (d 7 to 14) diets (as-fed basis) were: 1) NC (negative control, no added Zn source); 2) ZnO (NC + 2,000 mg/kg as Zn oxide); and 3) ZnM (NC + 2,000 mg/kg as Zn Met). In Exp. 2, diets for each phase (Phase 1 = d 0 to 7; Phase 2 = d 7 to 21; Phase 3 = d 21 to 35) were the basal diet supplemented with 0, 25, 50, 100, and 150 mg/kg Fe (as-fed basis) as ferrous sulfate. Orts, feces, and urine were collected daily in Exp. 1; whereas pigs had a 4-d adjustment period followed by a 3-d total collection period (Period 1 = d 5 to 7; Period 2 = d 12 to 14; Period 3 = d 26 to 28) during each phase in Exp. 2. Blood samples were obtained from pigs on d 0, 7, and 14 in Exp. 1 and d 0, 7, 21, and 35 in Exp. 2 to determine hemoglobin (Hb), hematocrit (Hct), and plasma Cu, (PCu), Fe (PFe), and Zn (PZn). Pigs in Exp. 1 were killed at d 14 (mean BW = 8.7 kg) to determine whole-body, liver, and kidney mineral concentrations. There were no differences in growth performance in Exp. 1 or 2. In Exp. 1, pigs fed ZnO or ZnM diets had greater (P < 0.001) dietary Zn intake during the 14-d study and greater fecal Zn excretion during Phase 2 compared with pigs fed the NC diet. Pigs fed 2,000 mg/kg, regardless of Zn source, had greater (P < 0.010) PZn on d 7 and 14 than pigs fed the NC diet. Whole-body Zn, liver Fe and Zn, and kidney Cu concentrations were greater (P < 0.010), whereas kidney Fe and Zn concentrations were less (P < 0.010) in pigs fed pharmacological Zn diets than pigs fed the NC diet. In Exp. 2, dietary Fe supplementation tended to increase (linear, P = 0.075) dietary DMI, resulting in a linear increase (P < 0.050) in dietary Fe, Cu, Mg, Mn, P, and Zn intake. Subsequently, a linear increase (P < 0.010) in fecal Fe and Zn excretion was observed. Increasing dietary Fe resulted in a linear increase in Hb, Hct, and PFe on d 21 (P < 0.050) and 35 (P < 0.010). Results suggest that dietary Zn or Fe additions increase mineral status of nursery pigs. Once tissue mineral stores are loaded, dietary minerals in excess of the body's requirement are excreted.  相似文献   

2.
A study was conducted to determine if supplement withdrawal (omission of dietary vitamin and trace mineral premixes and a two-thirds reduction in dietary inorganic phosphorus) for 28 d preslaughter and the feeding of wheat middlings (dietary concentrations of 5, 15, and 30% from weaning to 16, 16 to 28, and 28 kg to slaughter, respectively) affect growth performance, carcass characteristics, and fecal mineral concentrations ofthe pig, as well as the nutrient content and oxidative stability of the longissimus dorsi muscle. Crossbred pigs (n = 64) were blocked by weight and assigned to one of four dietary treatments in a 2 x 2 factorial design (with or without supplement withdrawal, and with or without wheat middlings). Supplement withdrawal and wheat middling inclusion did not influence average daily gain (ADG), average daily feed intake, gain/feed, or carcass traits, except for a decrease (P < 0.01) in the ADG of pigs from 28 to 65 kg when fed wheat middlings. Supplement withdrawal decreased (P < 0.01) fecal Ca, P, Cu, Fe, Mn, and Zn concentrations. In diets containing full vitamin and mineral supplementation, wheat middling inclusion decreased (P < 0.01) fecal Ca, Cu, Fe, and Zn concentrations and increased (P < 0.01) fecal Mn. Supplement withdrawal decreased (P < 0.05) concentrations of riboflavin, niacin, and P in the longissimus dorsi muscle, but did not affect longissimus dorsi thiamin, vitamin E, Fe, Cu, Zn, and Ca concentrations. Inclusion of wheat middlings increased (P < 0.04) longissimus dorsi thiamin, niacin, riboflavin, and vitamin E concentrations and decreased (P < 0.04) Cu concentrations. However, wheat middling inclusion did not affect (P > 0.05) longissimus dorsi Ca, P, Fe, and Zn concentrations. Dietary treatment did not affect either Cu/Zn superoxide dismutase or glutathione peroxidase activity in the longissimus dorsi. The results from this study indicate that supplement withdrawal and dietary wheat middling inclusion alter pork nutrient content and fecal mineral concentration, but not the oxidative stability of pork.  相似文献   

3.
Weanling pigs (n = 160) were used to evaluate dietary essential microminerals (Cu, Fe, Mn, Se, and Zn) on performance, tissue minerals, and liver and plasma enzymatic activities during a 35-d postweaning period. A randomized complete block design with 5 treatments and 8 replicates was used in this study. Organic microminerals were added to complex nursery diets at 0 (basal), 50, 100, or 150% of the requirements of microminerals listed by the 1998 NRC. A fifth treatment contained inorganic microminerals at 100% NRC and served as the positive control. Pigs were bled at intervals with hemoglobin (Hb), hematocrit (Hct), glutathione peroxidase, and ceruloplasmin activities determined. Six pigs at weaning and 1 pig per pen at d 35 were killed, and the liver, heart, loin, kidney, pancreas, and the frontal lobe of the brain were collected for micromineral analysis. The liver was frozen in liquid N for determination of enzymatic activities. The analyzed innate microminerals in the basal diet met the NRC requirement for Cu and Mn but not Fe, Se, and Zn. Performance was not affected from 0 to 10 d postweaning, but when microminerals were added to diets, ADG, ADFI, and G:F improved (P < 0.01) from 10 to 35 d and for the overall 35-d period. Pigs fed the basal diet exhibited parakeratosis-like skin lesions, whereas those fed the supplemental microminerals did not. This skin condition was corrected after a diet with the added microminerals was fed. When the basal diet was fed, Hb and Hct declined, but supplemental microminerals increased Hb and Hct values. Liver catalase activity increased (P < 0.01) when microminerals were fed. The Mn superoxide dismutase activity tended to decline quadratically (P = 0.06) when supplemental microminerals were fed above that of the basal diet. Liver plasma glutathione peroxidase activities were greater (P < 0.01) when dietary organic and inorganic micromineral were fed. Liver concentrations of microminerals increased linearly (P < 0.01) as dietary microminerals increased, indicating that the liver was the primary storage organ. Micromineral tissue concentrations were least in pigs fed the basal diet and increased (quadratic, P < 0.01) to the 50% level of organic microminerals in the various tissues collected. The results indicated that innate microminerals, Cu and Mn, from a complex nursery diet may meet the micromineral needs of the weaned pig, but the need for Fe, Se, or Zn was not met by the basal diet.  相似文献   

4.
Four experiments were conducted to determine the effect of Cu source and level and an antimicrobial agent on performance of nursery (6 to 25 kg) and growing (20 to 65 kg) pigs. Copper was fed either as CuSO4.5H2O (CS), inorganic chelated Cu (ICC) or organic chelated Cu (OCC) to provide 31.25 to 250 ppm supplemental Cu. In Exp. 1, 224 pigs were used to study Cu source and level added to nursery diets. No difference (P less than .05) among treatments was observed during the nursery period. Treatments were continued the first 56 d of the growing-finishing period. Regardless of the Cu source, pigs receiving 125 ppm added Cu gained faster (P less than .05) than pigs in other treatments. In Exp. 2, 216 pigs were used to determine the optimum level of CS and ICC in nursery diets. Pigs were less efficient (P less than .01) when Cu was added at 62.5 and 125 ppm than at 250 ppm (1.69, 1.72 and 1.59, feed/gain respectively). In Exp. 3, no differences (P greater than .05) in performance between sources or among levels of Cu were found. In Exp. 4, 216 pigs were utilized to determine the combined effects of Cu source and an antimicrobial on performance. Pigs fed ICC were less efficient (P less than .01) than pigs fed either OCC or CS (1.99, 1.85 and 1.90, respectively). The inorganic and organic chelated Cu compounds used in these studies were not more efficacious than CS for nursery or growing pigs.  相似文献   

5.
Studies comparing the absorption and retention of various forms of trace minerals in horses have yielded mixed results. The objective of this study was to compare Cu and Zn absorption and retention in exercising horses where the mineral was supplemented in the sulfate or organic chelate form. Nine mature horses were used in a modified switchback design experiment consisting of seven 28-d periods. Horses were fed a diet consisting of 50% concentrate and 50% hay that was balanced to meet the energy, protein, Ca, and P requirements for horses performing moderate-intensity exercise. Horses were subjected to a controlled mineral repletion-depletion diet sequence before feeding the experimental diet to standardize mineral status across horses. The experimental diet was designed to provide 90% of the 1989 NRC for Cu and Zn, with supplemental mineral provided in the inorganic sulfate form (CuSO(4) and ZnSO(4)) or the organic chelate form (Cu-Lys and Zn-Met). Feed, fecal, urine, and water samples collected during a total collection during the last 4 d of the experimental diet periods were analyzed to determine apparent absorption and retention of Cu and Zn from the 2 mineral forms. A formulation error caused horses receiving the organic chelate diet to consume about 3 times the amount of Cu and Zn compared with those fed the sulfate-supplemented diet. Copper and Zn intake and fecal excretion were greater (P < 0.05) for horses consuming the organic chelate-supplemented diet. Apparent absorption values for all horses were negative. Apparent Cu absorption and retention as a percentage of intake were greater for horses fed the organic chelate diet (P < 0.05). It is unknown why excretion of Cu and Zn by the horses during the total collection exceeded the mineral intake. Although Cu-Lys seemed to be better absorbed than CuSO(4) and absorption of Zn-Met and ZnSO(4) were not different, these results are tempered by the observation of abnormally high fecal and urinary excretion values for Cu and Zn in the present study.  相似文献   

6.
Crossbred, multiparous beef cows (n = 178 in Year 1; n = 148 in Year 2) were used to evaluate the effects of Cu, Zn, and Mn supplementation and source on reproduction, mineral status, and performance in grazing cattle in eastern Colorado over a 2-yr period. Cows were stratified by expected calving date, age, BW, BCS, and liver mineral status and assigned to the following treatments: 1) control (no supplemental Cu, Zn, or Mn); 2) organic (ORG; 50% organic and 50% inorganic Cu, Zn, and Mn); and 3) inorganic (ING; 100% inorganic CuSO4, ZnSO4, and MnSO4). Free-choice mineral feeders were used to provide current NRC-recommended concentrations of Cu, Zn, and Mn from 82 d (Year 1) and 81 d (Year 2) before the average calving date of the herd through 110 d (Year 1) and 135 d (Year 2) after calving. At the end of Year 1, supplemented cows had greater liver Cu (P < 0.01), Zn (P < 0.05), and Mn (P < 0.01) concentrations compared with controls, whereas liver Cu concentration was greater (P < 0.01) in ORG vs. ING cows. At the end of Year 2, supplemented cows had greater (P < 0.01) liver Cu concentrations relative to controls, whereas control cows had greater (P < 0.02) liver Mn concentration than did supplemented cows. In Year 1, pregnancy rate to AI in control cows did not differ (P = 0.47) from supplemented cows, but there was a trend (P < 0.08) for pregnancy rate to be higher for ORG than ING cows. In Year 2, supplemented cows had a higher (P < 0.02) pregnancy rate to AI than controls. In both years, when cows were inseminated after an observed estrus, supplemented cows had a higher (P < 0.04) pregnancy rate than did controls. Also, for both years, overall 60-d pregnancy rate tended (P = 0.10) to be higher for supplemented cows than for controls. In Year 1, kilograms of calf weaned per cow exposed was greater (P < 0.02) in controls than in supplemented cows, and kilograms of calf weaned per cow exposed was greater (P < 0.01) in ING than ORG treatments. However, in Year 2, kilograms of calf weaned per cow exposed was greater (P < 0.02) in controls than in supplemented cows, and tended (P = 0.09) to be greater in ORG than ING treatments. Results indicate that supplementation and source of trace minerals affected mineral status and kilograms of calf weaned per cow exposed in grazing beef cows. Supplementation also improved pregnancy rate to AI compared with cows not supplemented with Cu, Zn, or Mn for more than 1 yr. Furthermore, mineral source may influence pregnancy rate to AI.  相似文献   

7.
Two experiments were conducted to determine the effects of dietary P and trace mineral source on immune response, mineral status, and performance in steers stressed by weaning and disease exposure. In Experiment 1, 24 Angus and 24 Simmental weaned steers were used. Treatments consisted of 1) inorganic trace minerals, 2) organic trace minerals, 3) 0.15% supplemental P + inorganic trace minerals, and 4) 0.15% supplemental P + organic trace minerals. Copper, Mn, and Zn were added to provide 10, 25, and 25 mg/kg DM, respectively. The organic treatments supplied 50% of the supplemental Cu and Mn, and 66% of the supplemental Zn from metal proteinates, with the remainder supplied by inorganic sulfate forms. Inorganic treatments supplied all of the supplemental Zn, Cu, and Mn from sulfate forms. The basal diet was a corn silage-soybean meal-based diet. On d 2 following weaning, steers received an intranasal inoculation of infectious bovine rhinotracheitis virus (IBRV). Rectal temperatures in response to IBRV inoculation were similar across treatments. On d 9, steers were injected with 10 ml of a 25% pig red blood cell (PRBC) suspension. Total Ig titers against PRBC concentrations were higher (P<0.05) in steers receiving no supplemental P on d 7 postinjection. However, IgG and IgM titers were unaffected by treatment. Cell-mediated immune response (CMI) to phytohemagglutinin (PHA), plasma Cu and Zn concentrations, and 38-d performance were unaffected by treatment. In Experiment 2, 35 Angus steers were fed diets containing either inorganic or organic trace minerals. Performance and percent morbidity were unaffected by treatment. Plasma Cu was higher for steers fed organic trace minerals. Results indicate that increasing dietary P or replacing inorganic trace minerals with organic forms had little effect on immunity or performance of steers stressed by weaning.  相似文献   

8.
Two experiments were conducted to determine the interactive effects of phytase with and without a trace mineral premix (TMP) in diets for nursery, growing, and finishing pigs on growth performance, bone responses, and tissue mineral concentrations. Pigs (initial and final BW of 5.5 and 111.6 kg [Exp. 1] or 5.4 and 22.6 kg [Exp. 2]) were allotted to treatments on the basis of BW with eight (Exp. 1) or six (Exp. 2) replications of six or seven pigs per replicate pen. Pigs were started on the diets the day of weaning (average of 18 d). In both experiments, the treatments were with or without 500 phytase units/kg of diet and with or without the TMP in a 2 x 2 factorial arrangement. The Ca and available P concentrations were decreased by 0.10% in diets with phytase. The nursery phase consisted of Phase I (7 d), Phase II (14 d), and Phase III (13 d) periods. In Exp. 1, 26 of 52 pigs fed the diet without the TMP and without phytase had severe skin lesions and decreased growth performance; therefore, pigs fed this diet were switched to the positive control diet. In Exp. 2, the treatment without the TMP and without phytase had 12 replications instead of six. At the end of Phase III, half these replications were switched to the positive control diet and half were switched to the diet without the TMP but with phytase. In Exp. 1 during Phases II and III and in the overall data, pigs fed the diet without the TMP had decreased ADG and ADFI, but the addition of phytase prevented these responses (phytase x TMP; P < 0.02). Growth performance was not affected by diet during the growing-finishing period. Coccygeal bone Zn and Na concentrations were decreased (P < 0.09) in pigs fed the diet without the TMP, and adding phytase increased (P < 0.03) Zn and Fe concentrations. In Exp. 2 during Phases I and II, pigs fed the diet without the TMP had decreased ADG, but the addition of phytase prevented this response (phytase x TMP; P < 0.10). Pigs fed the diet without the TMP had decreased (P < 0.10) ADG (Phase II and overall), ADFI (Phases II and III and in the overall data), and G:F (Phase III). Coccygeal bone Zn and Cu concentrations were decreased (P < 0.09) in pigs fed the diet without the TMP, and adding phytase increased (P < 0.03) Zn concentration in the bones. These data indicate that removing the TMP in diets for nursery pigs decreases growth performance and bone mineral content, and that phytase addition to the diet without the TMP prevented the decreased growth performance.  相似文献   

9.
The objective of this study was to determine whether a combination of Cu, Co, Mn, and Zn in an organic or inorganic form fed at higher than nutrient recommendations for 2-yr-old cows from calving to breeding would affect pregnancy rate, calving date, calf performance, and cow liver and serum mineral concentrations. Crossbred 2-yr-old cows were used after calving in 1994 (n = 127) and 1995 (n = 109). Cows were blocked by calving date to one of three treatments: 1) no supplemental minerals (CTL), 2) organic minerals (ORG), or 3) inorganic minerals (ING). Minerals were fed for the same daily intake for both organic and inorganic treatments: Cu (125 mg), Co (25 mg), Mn (200 mg), and Zn (360 mg). Cows were individually fed a mineral-protein supplement with grass hay from calving (February-March) to before breeding (May 15). Hay intakes were calculated using chromium oxide boluses to determine fecal output. Fecal excretion of minerals was calculated following trace element analysis of feces. Liver biopsies were obtained before calving, after calving (start of supplementation), at the end of supplementation, and in midsummer. Over 2 yr, more cows did not become pregnant (P < .01) in ORG (11/78) and ING (11/78) treatments than in CTL (0/80) treatments. A treatment x year interaction was found for day of conception. Cows in the ORG group conceived later (P < .01) than cows in the ING or CTL groups in 1994. In 1995, there was no difference (P > .10) in day of conception among groups. Liver Zn and Mn concentrations were not different (P > .10) and Cu concentrations increased (P < .01) for the ORG and ING groups. Cows in the ORG and ING groups had higher (P < .01) concentrations of Cu, Mn, and Zn in the feces than the CTL cows. Trace elements in the feces did not differ for ORG and ING groups. Results indicate that combinations of Cu, Co, Mn, and Zn fed at higher levels than are required reduced reproductive performance.  相似文献   

10.
An experiment was conducted with 64 crossbred pigs to determine the effect of 0 or .50% dietary sodium zeolite-A (NZA) in combination with 0 or 250 ppm supplemental Cu (as CuSO4.5H2O). Pigs were assigned randomly to one of the following four treatments: 1) corn-soybean meal basal (B), 2) B + .50% NZA, 3) B + 250 ppm Cu, or 4) B + .50% NZA + 250 ppm Cu. Each treatment was replicated four times with four pigs per replicate. Average initial weight was 7.5 kg and the experimental period lasted 144 d. Overall rate and efficiency of gain, incidence of gastric ulcers, dressing percentage, carcass weight, percentage of muscling, 10th rib fat, loin eye area, blood urea N, and bone Ca, P, Mn, Fe, Ni, Na, and Al concentrations were not affected by treatment. The addition of 250 ppm Cu increased liver (P less than .01), serum (P less than .06), and bone (P less than .07) Cu concentrations but decreased mean backfat thickness (P less than .09), bone ash percentage (P less than .03) and serum (P less than .09) and bone (P less than .01) Zn concentrations. Sodium zeolite-A increased serum alkaline phosphatase (P less than .04), carcass length (P less than .06), and liver (P less than .02) and bone (P less than .01) Zn content but decreased (P less than .04) serum Ca and serum inorganic P concentrations. Sodium zeolite-A did not protect against liver Cu accumulation or gastric ulceration in growing swine fed 250 ppm supplemental Cu.  相似文献   

11.
Three experiments were conducted to evaluate the effects of feeding dietary concentrations of organic Zn as a Zn-polysaccharide (Quali Tech Inc., Chaska, MN) or as a Zn-proteinate (Alltech Inc., Nicholasville, KY) on growth performance, plasma concentrations, and excretion in nursery pigs compared with pigs fed 2,000 ppm inorganic Zn as ZnO. Experiments 1 and 2 were growth experiments, and Exp. 3 was a balance experiment, and they used 306, 98, and 20 crossbred pigs, respectively. Initially, pigs averaged 17 d of age and 5.2 kg BW in Exp. 1 and 2, and 31 d of age and 11.2 kg BW in Exp. 3. The basal diets for Exp. 1, 2, and 3 contained 165 ppm supplemental Zn as ZnSO4 (as-fed basis), which was supplied from the premix. In Exp. 1, the Phase 1 (d 1 to 14) basal diet was supplemented with 0, 125, 250, 375, or 500 ppm Zn as Zn-polysaccharide (as-fed basis) or 2,000 ppm Zn as ZnO (as-fed basis). All pigs were then fed the same Phase 2 (d 15 to 28) and Phase 3 (d 29 to 42) diets. In Exp. 2, both the Phase 1 and 2 basal diets were supplemented with 0, 50, 100, 200, 400, or 800 ppm Zn as Zn-proteinate (as-fed basis) or 2,000 ppm Zn as ZnO (as-fed basis). For the 28-d Exp. 3, the Phase 2 basal diet was supplemented with 0, 200, or 400 ppm Zn as Zn-proteinate, or 2,000 ppm Zn as ZnO (as-fed basis). All diets were fed in meal form. In Exp. 1, 2, and 3, pigs were bled on d 14, 28, or 27, respectively, to determine plasma Zn and Cu concentrations. For all three experiments, there were no overall treatment differences in ADG, ADFI, or G:F (P = 0.15, 0.22, and 0.45, respectively). However, during wk 1 of Exp. 1, pigs fed 2,000 ppm Zn as ZnO had greater (P < or = 0.05) ADG and G:F than pigs fed the basal diet. In all experiments, pigs fed a diet containing 2,000 ppm Zn as ZnO had higher plasma Zn concentrations (P < 0.10) than pigs fed the basal diet. In Exp. 1 and 3, pigs fed 2,000 ppm Zn as ZnO had higher fecal Zn concentrations (P < 0.01) than pigs fed the other dietary Zn treatments. In conclusion, organic Zn either as a polysaccharide or a proteinate had no effect on growth performance at lower inclusion rates; however, feeding lower concentrations of organic Zn greatly decreased the amount of Zn excreted.  相似文献   

12.
Eighteen weanling crossbred barrows (7.3 kg; 22 d of age) were used in a randomized complete block design to evaluate the effect of supplemental Zn from ZnO on fecal excretion of Zn and other minerals. Pigs were blocked by BW and penned (two pigs per crate) in stainless steel metabolism crates. Dietary treatments were 0, 2,000, or 3,000 ppm supplemental Zn from ZnO. Growth performance and feed intake were measured weekly for a total of 21 d. Excretion of minerals was measured by total fecal collection with indigo carmine marking the beginning and end of each weekly period. No differences (P > 0.05) occurred in ADG, ADFI, and feed/gain (F/G) among treatments. Increasing dietary Zn increased (linear, P < 0.01) Zn intake, absolute absorption of Zn, and absolute fecal excretion of Zn. Increasing dietary Zn also increased absolute excretion of Fe, Cu, and Mn and decreased apparent absorption of P, Fe, and Cu (linear, P < 0.05) for the entire period. Fecal N increased, and N digestibility decreased, with increasing dietary Zn (linear, P < 0.05). Increasing dietary Zn increased fecal DM (quadratic, P < 0.05) and decreased DM digestibility (quadratic, P < 0.05). Increasing dietary Zn also increased liver Zn (quadratic, P < 0.01) and decreased (linear, P < 0.05) liver Cu and Mn. Overall, pharmacological levels of Zn reduced Zn and other mineral apparent absorption and increased fecal mineral excretion.  相似文献   

13.
Benefits of feeding pharmacological concentrations of zinc (Zn) provided by Zn oxide (ZnO) to 21-d conventionally weaned pigs in the nursery have been documented; however, several management questions remain. We conducted two experiments to evaluate the effect on growth from feeding 3,000 ppm Zn as ZnO during different weeks of the nursery period. In Exp. 1 (n = 138, 11.5 d of age, 3.8 kg BW) and Exp. 2 (n = 246, 24.5 d of age, 7.2 kg BW), pigs were fed either basal diets containing 100 ppm supplemental Zn (adequate) or the same diet with an additional 3,000 ppm Zn (high) supplied as ZnO. Pigs were fed four or two dietary phases in Exp. 1 and 2, respectively, that changed in dietary ingredients and nutrient content (lysine and crude protein) to meet the changing physiological needs of the pigs for the 28-d nursery period. Dietary Zn treatments were 1) adequate Zn fed wk 1 to 4, 2) high Zn fed wk 1, 3) high Zn fed wk 2, 4) high Zn fed wk 1 and 2, 5) high Zn fed wk 2 and 3, and 6) high Zn fed wk 1 to 4. In Exp. 1 and 2, pigs fed high Zn for wk 1 and 2 or the entire 28-d nursery period had the greatest (P < .05) ADG. During any week, pigs fed high Zn had greater concentrations of hepatic metallothionein and Zn in plasma, liver, and kidney than those pigs fed adequate Zn (P < .05). In summary, both early- and traditionally weaned pigs need to be fed pharmacological concentrations of Zn provided as ZnO for a minimum of 2 wk immediately after weaning to enhance growth.  相似文献   

14.
1.?The aim of the present study was to demonstrate trace mineral interactions among organic copper, iron, manganese and zinc (Cu, Fe, Mn and Zn) in broiler chickens.

2.?Three experiments were conducted using a control diet which was deficient in Cu, Fe, Mn and Zn.

3.?In experiment 1, the control diet, supplemental organic Cu, Fe alone and combined diets, were randomly fed to 4 groups of one-day-old Cobb broilers (each group had 6 replicates of 4 birds).

4.?In experiment 2, the control diet, supplemental organic Mn and Zn alone or combined with Cu, Fe diets and corresponding inorganic combined diet, were randomly fed to 6 groups (each group had 8 replicates of 6 birds).

5.?In experiment 3, the depletion of organic Zn, the depletion of inorganic Zn and normal Zn treatments were carried out in three groups of one-day-old Cobb broilers (each group had 8 replicates of 6 birds).

6.?Adding organic Cu, Fe and Mn alone or combined to Zn deficient diets did not significantly improve bird performance and were mostly excreted. Supplemental organic Zn alone or combined with other elements significantly increased feed intake, body weight gain and tibia bone length. However, supplemental organic Fe alone or combined with Cu significantly increased feed intake but had no obvious effect on body weight gain. The organic Fe supplementation resulted in a wider tibia.

7.?Depletion of organic and inorganic Zn resulted in decreased feed intake, body weight gain and total tibia bone Zn content. Zinc deficiency did not affect the uptake of organic Fe by tibia bone but reduced its total Fe content.

8.?Zinc is the first limiting element among these 4 trace minerals. Adding Mn, Cu and Fe to Zn deficient diets did not stimulate bird performance. Surplus organic Fe and Cu resulted in increased feed intake and increased tibia bone Fe content but did not contribute to bird performance.  相似文献   


15.
An experiment was conducted to evaluate the effects of supplementing increasing concentrations of Fe to the diet of nursery pigs on growth performance and indices of hematological and mineral status. Pigs (n = 225; 6.5 kg; 19 +/- 3 d) were allotted randomly by BW, litter, and gender to one of five dietary treatments (five pigs per pen; nine pens per treatment). Basal diets for each phase (Phase 1: d 0 to 7; Phase 2: d 7 to 21; Phase 3: d 21 to 35) were formulated to contain minimal Fe concentration and then supplemented with 0, 25, 50, 100, and 150 mg Fe/kg of diet (as-fed basis) from ferrous sulfate. Three pigs per pen (n = 135) were chosen and bled throughout (d 0, 7, 21, and 35) to determine hemoglobin (Hb), hematocrit (Hct), transferrin (Tf), and plasma Fe (PFe). In addition, pigs (n = 5; 5.9 kg; 19 +/- 3 d) from the contemporary group were killed at d 0 to establish baseline (BL), and 30 pigs (six pigs/treatment) were killed at d 35 to determine whole-body and liver mineral concentrations. The improvements in growth performance during Phase 2 (ADG = linear, P = 0.04; ADFI = linear, P = 0.10; G:F = quadratic, P = 0.07) were of sufficient magnitude that dietary treatments tended to increase ADG (linear, P = 0.08), ADFI (quadratic, P = 0.09), and G:F (quadratic, P = 0.10) for the 35-d experiment. Hematological variables were not affected until d 21, at which time dietary Fe supplementation resulted in a linear increase (P = 0.03) in Hb, Hct, and PFe. This linear increase (P = 0.001) was maintained until d 35 of the experiment; however, dietary treatments resulted in a linear decrease (P = 0.01) in Tf on d 35. Whole-body Fe concentration increased (linear, P = 0.01) in pigs due to increasing dietary Fe concentrations. Moreover, pigs fed for 35 d had greater (P = 0.02) whole-body Fe, Zn, Mg, Mn, Ca, and P concentrations and lower (P = 0.001) whole-body Cu concentration than BL. Hepatic Fe concentration increased (linear, P = 0.001) in pigs due to dietary treatments; however, the hepatic Fe concentration of all pigs killed on d 35 was lower (P = 0.001) than the BL. Results suggest that Fe contributed by feed ingredients was not sufficient to maintain indices of Fe status. The decrease in Fe stores of the pigs was not severe enough to reduce growth performance. Even so, the lessening of a pig's Fe stores during this rapid growth period may result in the occurrence of anemia during the subsequent grower and finisher periods.  相似文献   

16.
In an experiment with 2,040 Ross 308 broiler chickens, the effect of substituting inorganic with organic minerals in broiler feed on performance was determined. The experiment comprised 2 dietary treatments, with 6 replicates of 170 mixed-sex broiler chickens per pen replicate. Experimental diets consisted of a control treatment, formulated with inorganic Mn, Zn, Fe, and Cu sulfates at levels of 70, 37, 45, and 12 ppm, respectively, and an organic mineral diet supplemented with lower levels of Mn, Zn, Fe (all 10 ppm), and Cu (2.5 ppm) supplied as peptide chelates (Bioplex). Production performance was measured during the 39-d trial period, and mineral excretion was evaluated at 26 d of age. In the starter period (0 to 14 d), FCR tended to improve (P = 0.06) in broilers fed the organic mineral diet. However, no significant differences were observed in any of the productive performance parameters measured during the trial. Significantly lower (P < 0.05) excretion rates were recorded for all minerals in fecal samples taken from broilers receiving the organic mineral diet. Fecal levels of Mn, Zn, Fe, and Cu were 46, 63, 73, and 55%, respectively, compared to the controls.  相似文献   

17.
Twelve Angus steers (BW 452.8 ± 6.1 kg) fitted with ruminal cannulae were used to determine the impact of trace mineral (TM) source on digestibility, ruminal volatile fatty acid (VFA) composition, ruminal soluble concentrations of Cu, Zn, and Mn, and relative binding strength of trace minerals located in the rumen insoluble digesta fraction. Steers were fed a medium-quality grass hay diet (DM basis: 10.8% CP, 63.1% neutral detergent fiber [NDF], 6.9 mg Cu/kg, 65.5 mg Mn/kg, and 39.4 mg Zn/kg) supplemented with protein for 21 d. Treatments consisted of either sulfate (STM) or hydroxy (HTM) sources (n = 6 steers/treatment) to provide 20, 40, and 60 mg supplemental Cu, Mn, and Zn/kg DM, respectively. Following a 21-d adaptation period, total fecal output was collected for 5 d. Dry matter (P < 0.07) and CP (P < 0.06) digestibility tended to be reduced, and NDF (P < 0.04) and acid detergent fiber (ADF) (P < 0.05) digestibility were reduced in STM- vs. HTM-supplemented steers. On day 6, ruminal fluid was collected at 0, 2, and 4 h post-feeding and analyzed for VFA. There were no treatment x time interactions for VFA. Steers receiving HTM had less (P < 0.02) molar proportions of butyric acid and greater (P < 0.05) total VFA concentrations than STM-supplemented steers. Steers were then fed the same diet without supplemental Cu, Zn, or Mn for 14 d. On day 15 steers received a pulse dose of 20 mg Cu, 40 mg Mn, and 60 mg Zn/kg DM from either STM or HTM (n = 6 steers/treatment). Ruminal samples were obtained at 2-h intervals starting at −4 and ending at 24 h relative to dosing. There was a treatment x time interaction (P < 0.03) for ruminal soluble Cu, Mn, and Zn concentrations. Ruminal soluble mineral concentrations were greater (P < 0.05) for Cu at 4, 6, 8, 10, 12, and 14 h; for Mn at 4 and 6 h; and for Zn at 4, 6, and 8 h post-dosing in STM compared with HTM-supplemented steers. Copper concentrations were greater (P < 0.05) at 12 and 24 h and Zn concentrations in ruminal solid digesta were greater at 24 h in HTM-supplemented steers. Upon dialysis against Tris-EDTA, the percent Zn released from digesta was greater (P < 0.05) at 12 h (P < 0.03) and 24 h (P < 0.05), and the percent Cu released was greater (P < 0.02) at 24 h post-dosing in HTM steers when compared with STM-supplemented steers. Results indicate that Cu and Zn from HTM have low solubility in the rumen and appear to be less tightly bound to ruminal solid digesta than Cu and Zn from STM. The lower ruminal soluble concentrations of Cu and Zn in steers given HTM were associated with greater fiber digestibility.  相似文献   

18.
本试验旨在研究饲粮中减少铁、锰、锌、镁和铜5种矿物元素添加量对育肥猪后期生长性能、肉品质、血清生化指标以及骨骼肌矿物元素含量的影响。选用体况良好、体重接近[(76.17±1.58)kg]的"杜×长×大"三元杂交育肥猪300头,随机分成3个组,每组10个重复,每个重复10头猪,公母各占1/2。对照组饲喂基础饲粮,试验组饲喂在基础饲粮基础上减少30%或60%矿物元素的饲粮。预试期3 d,正试期30 d。结果表明:与对照组相比,1)饲粮减少30%和60%矿物元素对育肥猪的生长性能和肉品质无显著影响(P0.05);2)饲粮减少30%和60%矿物元素,育肥猪血清氨含量显著升高(P0.05);减少60%矿物元素显著降低血清中总胆固醇的含量(P0.05),同时有降低血清总蛋白含量的趋势(P0.10);3)饲粮减少30%矿物元素对育肥猪骨骼肌中各矿物元素含量并无显著影响(P0.05),而减少60%矿物元素使得骨骼肌铜、铁和锰元素含量显著降低(P0.05)。由此得知,育肥猪饲粮中铁、锰、锌、镁和铜元素的含量可减少NRC(2012)推荐量的30%,而不会影响育肥猪后期的生长性能和肉品质。  相似文献   

19.
Twenty-four lambs, averaging 29 kg, were used to determine the effect of supplemental dietary Fe on performance and Cu, P, Zn and Mn utilization. Treatments consisted of supplemental Fe at 0, 300, 600 or 1,200 mg/kg diet as ferrous carbonate. The basal diet contained 154 mg Fe/kg diet and consisted of 90% Coastal bermudagrass pellets, 9.45% group corn, .5% sodium chloride and .05% vitamin mix. Lambs were slaughtered after having ad libitum access to diets for 98 to 121 d. Dietary Fe did not affect lamb gain or feed intake. Supplemental Fe increased Fe concentrations in liver (P less than .01), spleen (P less than .01) and bone (P less than .10), but not in kidney and muscle. Serum Fe concentrations and percentage transferrin saturation in serum were increased (P less than .01) by supplemental Fe at 28 and 84 d, but not at the termination of the study. Plasma Cu was decreased (P less than .01) at 56 d, whereas serum ceruloplasmin activity was reduced (P less than .01) at 28 d in lambs fed 1,200 mg Fe/kg diet compared with lambs fed 600 mg Fe/kg diet. Lower levels of Fe (300 and 600) reduced (P less than .01) ceruloplasmin by 56 d and plasma Cu by 84 d compared with controls. Liver Cu also was decreased (P less than .05) by supplemental Fe. Plasma P was decreased slightly (P less than .10) by 28 d and significantly (P less than .01) at the other sampling dates by supplemental Fe.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Zinc-amino acid complexes for swine   总被引:3,自引:0,他引:3  
Two experiments were conducted to determine the effect of sources of dietary zinc on gain, feed conversion and blood and bone traits of swine. In the first experiment 96 pigs were used in a 28-d study. The pigs were fed diets with no supplemental Zn or with either 9 or 12 ppm supplemental Zn from zinc sulfate (ZnSO4), zinc methionine (ZnMet) or zinc methionine with picolinic acid (ZnMet w/PA), each with or without 5% added corn oil. There were differences (P less than .05) in average daily gain (ADG) and average daily feed intake (ADFI) between the pigs fed the two organic Zn sources, with those fed ZnMet w/PA showing the better gains and feed conversion. However, neither organic Zn source resulted in pig performance that was different from either the diet with no supplemental Zn or the diets supplemented with Zn from ZnSO4. In the second experiment the same dietary Zn sources and treatments were fed as in Exp. 1 except that corn oil was deleted as a variable. No differences in ADG, ADFI, feed/gain (F/G) or in changes in serum Zn or Cu were observed among treatments during either the 21-d nursery or the 56-d growing periods. During the subsequent 56-d finishing period ADG and ADFI were greater (P less than .01) for pigs fed the Zn-supplemented diets than for those fed the diets without supplemental Zn. There were no differences among treatments in F/G during the finishing period. Zn content of bone ash was lower (P less than .01) in the non-Zn-supplemented pigs. These data suggest that the Zn sources used are of similar biological value and do not support the theory that picolinic acid aids Zn absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号