首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
微生物降解农药的研究进展   总被引:7,自引:0,他引:7  
杨明伟  叶非 《植物保护》2010,36(3):26-29
在农药的微生物降解研究中,分离构建一种由天然微生物构成的复合系,将其应用于被污染的环境是消除农药污染的一个有效方法。本文综述了环境中降解农药的微生物种类、微生物降解农药的机理、在自然条件下影响微生物降解农药的因素及农药微生物降解研究方面的新技术和新方法。  相似文献   

2.
微生物降解有机磷农药残留机理及菌种筛选研究进展   总被引:11,自引:0,他引:11  
农药的使用一方面可以保证农业稳产和增产,另一方面却改变了土壤微环境,污染周边的水体乃至大气环境。在农药使用造成的各种污染中,农药残留对人类影响大,作用时间长,尤其是部分有机磷农药具有高毒、降解慢的特点,污染人类生存环境,危害人体健康。使用微生物降解农药残留是解决该问题的有效方法。本文对微生物降解有机磷农药残留的机理和微生物诱变和筛选的最新进展进行总结,并对农药残留降解微生物的发展方向提出了自己的观点。  相似文献   

3.
二甲戊灵是一种广谱、高效的二硝基苯胺类除草剂.由于人们对其大量的生产和使用,该农药残留已经成为重要的环境问题.传统物理化学方法降解农药残留成本高、效率低、易造成二次污染等问题,生物法因具有高效、安全、无污染等优势在农残降解方面有巨大的发展前景.为推动二甲戊灵生物降解的研究,文中综述了二甲戊灵微生物降解菌株、降解代谢途径、降解相关基因的研究进展,并对现阶段二甲戊灵微生物降解研究存在的问题及未来研究方向进行了讨论,以期为微生物降解二甲戊灵残留的深入研究提供参考.  相似文献   

4.
4吡虫啉在环境中降解性研究—土壤降解、水解及光解评价农药在环境中的降解性能,是评价农药对整个环境危害影响十分重要的指标,农药在环境中的持留愈长,对环境的污染及其对各种环境生物,甚至对人类的危害也愈大。农药在环境中的降解,包括微生物降解、化学降解和光降...  相似文献   

5.
浅谈有机杀虫剂的微生物降解   总被引:7,自引:0,他引:7  
周乐民 《广西植保》1999,12(1):33-35
寻找,研究有机杀虫剂及其残留物的降解菌有益于环境保护,综述DDT等9种有机杀虫剂的降解微生物,其微生物降解农药的途径,及其应用现状和前景。  相似文献   

6.
为获得能够修复除草剂莠去津污染土壤的高效降解菌,采用摇瓶富集法、平板分离法从莠去津过量使用的土壤中分离得到降解菌SFAD3,通过形态学、生理生化特征观察以及16S rDNA和ITS序列分析进行种类鉴定,测定获得菌株的最适降解条件,并通过土壤接种和盆栽试验验证菌株对莠去津污染土壤的修复作用。结果表明,菌株SFAD3最终被鉴定为门多萨假单胞菌Pseudomonas mendocina,该菌株培养30 d时对污染土壤中50 mg/kg莠去津的降解率可达72.6%;菌株SFAD3在MM液体培养基中最适降解条件为温度37℃、pH 7、莠去津初始浓度6.25 mg/L、接种量2%,对莠去津降的降解率为50.0%~72.2%;与仅有莠去津的处理相比,添加有SFAD3发酵液的处理20 d后芝麻的株高、根长、湿重和干重能够显著恢复,并且该菌对芝麻还具有一定的促生作用。表明降解菌SFAD3在修复莠去津污染土壤方面具有潜在的应用价值。  相似文献   

7.
农药残留及微生物在农药降解中的应用与展望   总被引:14,自引:0,他引:14  
农药在人类防治农作物病虫害、草害等诸方面起到了巨大的贡献,但是因之而来的农药残留问题则对环境和人类健康带来了严重的危害。为解决这一问题,人们进行了大量的研究,其中微生物的降解作用已引起人们的广泛关注。综述了农药残留及微生物在其中的应用及发展情况。  相似文献   

8.
降解残留有机农药的微生物资源研究进展   总被引:4,自引:0,他引:4  
有机农药污染已成为一个世界性问题,微生物在环境农药残留修复中起着重要作用。对降解有机磷、有机氯、拟除虫菊酯类和有机氮等农药的微生物种属资源以及相关酶资源和基因资源的研究进展进行了综述,分析了近年来该领域中对微生物资源的开发和利用状况,并讨论了在环境修复、生物防治和生物肥料等方面多功能化应用微生物资源,同时保障转基因生物安全,避免对环境造成二次污染等应成为该领域重要的研究方向。  相似文献   

9.
三种新烟碱类杀虫剂在土壤中的残留降解及影响因子   总被引:1,自引:0,他引:1  
建立了吡虫啉、啶虫脒和噻虫嗪在土壤中的高效液相色谱-串联质谱(HPLC-MS/MS)检测方法。样品经乙腈提取和QuEChERS法净化后,采用HPLC-MS/MS检测,外标法定量,在0.01~1.0 mg/kg添加水平下,3种新烟碱类杀虫剂在土壤中的回收率在89%~103%之间,相对标准偏差(RSD)在1.3%~10.3%之间,定量限均为0.01 mg/kg。采用建立的方法,在室内模拟条件下,研究了土壤微生物、温度、土壤含水量及农药初始浓度对土壤中吡虫啉、啶虫脒和噻虫嗪降解的影响。结果表明:土壤微生物是影响农药残留降解的首要因素,灭菌处理土壤中农药残留降解速率明显低于非灭菌土壤。此外,环境温度、土壤含水量、初始浓度等因素也会对农药残留降解产生不同影响,土壤含水量为最大持水量的60%左右时降解最快,半衰期分别为15.6、7.2和25.8 d;农药初始浓度越高,降解速度越慢;在5~35℃范围内,随着温度的升高,降解速度加快。  相似文献   

10.
莠去津在土壤中的残留动态和淋溶动态   总被引:10,自引:1,他引:10       下载免费PDF全文
利用HPLC法对土壤中莠去津的残留动态、淋溶动态进行了研究。结果显示,莠去津以有效成分2.25 kg/hm2和4.50 kg/hm2的剂量施用时,在土壤中的半衰期分别为19.1 d和18.1 d,即其半衰期与莠去津的施用浓度无关,属于典型的一级动力学反应。在120 d的玉米生长期中,土壤中莠去津在不断降解代谢的同时,逐渐向深层土壤中淋溶,多数莠去津持留在表层土壤中。施用莠去津27 d后,高浓度处理小区莠去津的淋溶深度超过30 cm,深度为10~15 cm处的土壤在施用后27 d莠去津的浓度最大。同一土壤深度,莠去津在高浓度处理小区的残留量要远高于低浓度处理小区。这些结果显示,减小莠去津的用量可以减少莠去津在土壤中的移动,表明低剂量施用莠去津是保护地下水免受污染的一种有效措施。影响莠去津的淋溶作用的主要因素包括使用量和土壤的理化特性。  相似文献   

11.
微生物降解三唑类杀菌剂研究进展   总被引:1,自引:1,他引:0  
三唑类杀菌剂因具有高效、低毒的特性已在中国得到广泛使用,但同时也因其残留期较长、易污染土壤而备受关注。微生物降解被认为是修复被污染土壤的有效措施。文章从降解三唑类杀菌剂的微生物种类、降解机理及影响微生物降解的因素等方面进行了综述,同时指出,目前有关微生物降解三唑类杀菌剂的研究多数仅限于降解菌的筛选及影响降解的因素分析等方面,对于三唑类杀菌剂的微生物代谢途径、降解过程中起关键作用的酶和基因,以及对手性三唑类杀菌剂的对映体选择性降解机制等机理方面的研究仍较少,相关研究有待进一步加强。  相似文献   

12.
Agricultural, industrial and domestic use of surfactants leads to the entry of these compounds into terrestrial and aquatic ecosystems. Synthetic surfactants vary significantly in structure, but most consist of alkyl or alkylphenol groups attached to nonionic or anionic hydrophilic moieties. Continued use of these compounds is usually justified on the basis that they do not cause pollution problems because they undergo biodegradation by micro-organisms present in soils and surface waters. In accomplishing biodegradation, micro-organisms, predominantly bacteria, are exploiting these potentially useful resources of reduced carbon to derive energy and support growth in situations which are otherwise frequently oligotrophic. This paper reviews aspects of surfactant biodegradation, especially in relation to alcohol and alkylphenol ethoxylates used extensively as adjuvants for agrochemicals. In principle, bacteria can employ two strategies to gain access to the aliphatic chains in alcohol ethoxylate surfactants: separation of the hydrophobic chain from the hydrophile (central fission), or direct attack on the -terminal of the alkyl chain of the intact surfactant. Direct exo-cleavage of ethylene glycol units from the polyethylene glycol (PEG) chain also provides a third route to assimilable carbon. In pure cultures of known degraders or in mined environmental samples, all three strategies are exploited, some even within the same organism. Central fission occurs predominantly at the alkyl-ether bond, but may also occur within the PEG chain itself, thus producing various glycol intermediates which accumulate in pure cultures but appear only transiently in mixed environmental samples. Against this background, the relative resistance of some alkylphenol ethoxylates to biodegradation can be assessed in mechanistic terms. The steric bulk of the aryl nucleus effectively eliminates the central fission pathway. Moreover, some alkyl phenol ethoxylates contain branched alkyl chains which restrict ω-β-oxidation. As a result, ethoxylate shortening appears to be the major course of biodegradation observed so far. Not surprisingly, these surfactants are observed to undergo extensive primary biodegradation (removal of surfactant properties) but relatively restricted ultimate degradation to carbon dioxide and normal cell components.  相似文献   

13.
二氯喹啉酸是水稻田防除稗草常用的除草剂之一,由于存在代谢周期长、易对后茬敏感作物产生药害的问题,有必要开展二氯喹啉酸残留现状及治理对策研究.本文梳理了二氯喹啉酸在土壤、作物及水域中的残留现状,分析了微生物降解技术、解毒剂补救法、吸附法以及高级氧化技术处理二氯喹啉酸残留的机制与途径,并对其去除技术的未来发展情况进行了展望...  相似文献   

14.
Enhanced biodegradation of soil-applied pesticides has long been correlated with soil pH above ca 6.5-7.5, but the possibility of confounding or interdependence with calcium, given that soil calcium concentration increases exponentially as pH rises above that range, has not previously been studied. Enhanced biodegradation of the broad-spectrum biocide metam-sodium was readily induced de novo in a naturally acid sandy soil (pH 4.2 measured in 0.01 M CaCl2) by multiple treatments, but only when the pH and calcium concentration were raised simultaneously using calcium carbonate (lime). Enhanced biodegradation was not induced when soil pH alone was raised with magnesium carbonate, nor when calcium alone was raised using calcium chloride. In limed sand treated monthly for 12 months, the degradation rate increased to where dissipation was complete within 24 h of application after the fifth metam-sodium treatment at pH 7.8 and after the eighth metam-sodium treatment at pH 6.8. Pesticide concentration was reduced, but not eliminated, at pH 5.8 and was unchanged at pH 4.8. When metam-sodium was applied bi- and tri-monthly, the degradation rate also increased when soil pH was raised with calcium carbonate, but to a lesser extent than with monthly applications. In an acid loam soil amended to the same pH values with calcium carbonate and treated monthly, there was no correlation between soil pH or calcium concentration and degradation. The results reveal the crucial interdependence of pH and calcium concentration in enhancement of biodegradation of soil-applied pesticides, but confirm that the phenomenon ultimately depends on interaction with soil type and frequency of application factors, all of which probably together act to affect the abundance, composition and activity of the soil microbial biomass.  相似文献   

15.
Vegetable oils, synthetic esters (including transesterified oils) and mineral oils are the main classes of oil used in pesticide formulations. Biodegradation is a major route for the removal of oils from soil systems. Most of the oils used in pesticide formulations are degraded substantially in the laboratory tests that are used to assess aquatic biodegradability. The susceptibility of different oils to biodegradation can be explained in terms of the metabolic capacity of common microorganisms. Fewer soil biodegradability tests have been carried out with oils, but the available data suggest that the mode of degradation is not very different from that in aquatic systems. Supplements of inorganic nutrients (in particular nitrogen) are needed to stimulate microbial activity in soils containing the high concentrations of oil that can be encountered in the event of a spill. However, oils are applied at such low rates in pesticide form illations (maximum of 5g oil m? soil) that nutrient availability is unlikely to affect the rate of biodegradation in the field.  相似文献   

16.
Enhanced biodegradation of ethoprophos was evident in a soil from a previously treated field in Northern Greece. However, enhanced biodegradation was specific to ethoprophos and there was no cross‐enhancement leading to rapid degradation for any of the other organophosphorus (cadusafos, fenamiphos, fonofos, isazofos) or carbamate (aldicarb, oxamyl) nematicides registered in Greece for the control of potato cyst nematodes. Studies with radio‐labelled ethoprophos showed that the adapted microflora in the soil from the previously treated field was able to degrade [propyl‐1‐14C]ethoprophos rapidly and mineralized about 60% of the initially applied nematicide. When [ethyl‐1‐14C] ethoprophos was applied, the reduction in extractable radioactivity in the previously treated soil was coupled with evolution of lower amounts of [14C] carbon dioxide and was similar to the amounts produced from the previously untreated soils. It is suggested that degradation of ethoprophos in the soil from the previously treated field proceeds via hydrolysis of the P‐S bond in the ‐S‐propyl moiety of the ethoprophos molecule, which is then further mineralized by the adapted micro‐organisms. Enhanced biodegradation of ethoprophos in this specific previously treated soil in Northern Greece and under the local environmental conditions was still evident two years after the last ethoprophos field application. It appears that, once established, enhanced biodegradation of ethoprophos can be quite stable. A possible solution to this problem might be the introduction of a rotation scheme where other nematicides like fenamiphos, cadusafos, aldicarb or oxamyl are used as alternatives with ethoprophos application restricted to only once every three or four years. © 2000 Society of Chemical Industry  相似文献   

17.
BACKGROUND: Although biodegradation seems to be the main cause of herbicide degradation, abiotic degradation can also be important for chemicals such as phenylureas, which are subject to catalysed soil reactions. The aim of this work is to investigate the effect of dissolved humic acids (HAs), normally present in natural waters, on the hydrolysis of phenylurea herbicides, and it presents a kinetic model that takes into account the role of adsorption. RESULTS: The linearity of the adsorption isotherms indicates that phenylurea-humic acid interaction can be considered in terms of a repartition-like equilibrium of phenylurea between water and HAs. Kinetic experiments show that the degradation rates of phenylureas increase with HA concentration. CONCLUSION: The kinetic equation adopted adequately describes the experimental data trend, allowing the evaluation of the catalytic effect of HAs on the chemical degradation of phenylureas. Carboxyl groups of HAs seem to play a leading role in the catalysis. The kinetic equation derived in this work could be helpful in predicting the persistence of phenylureas and of related compounds in natural water.  相似文献   

18.
A study was conducted to relate the occurrence of accelerated pesticide biodegradation to the susceptibility of the pesticides to growth-linked degradation or cometabolism. The mineralization of 2,4-D was initially slow but then became rapid, and a second application was mineralized with no acclimation phase and more rapidly than the first. The numbers of 2,4-D-degrading micro-organisms increased markedly following its first application and then declined, but the population size increased after a second addition. Glyphosate was rapidly and extensively mineralized following the first and second applications to soil, and the abundance of organisms able to degrade it rose after the first addition and remained high before and following the second application. Propham (IPC) mineralization was detected only 15 days after its application but the degradation was rapid thereafter, and the second addition was rapidly and extensively mineralized with no acclimation phase. The population of propham-degrading micro-organisms was initially small, but increased markedy 10 days after the initial herbicide addition and was still large at the time of the second application. The rate of carbofuran biodegradation in the test soil was the same following the first and second applications, and the abundance of carbofuran-metabolizing microorganisms did not change appreciably as a result of soil treatment with the insecticide. Simazine mineralization was slow, although the rate was higher following the second addition; however, the number of simazine-degrading organisms did not increase appreciably. From 10 to 12% of the 14C from radiolabeled 2,4-D, propham, glyphosate or glucose was usually incorporated into the microbial biomass of soil but 0.82% or less of the 14C from simazine or ring- or carbonyl-labeled carbofuran was converted to biomass. It is suggested that pesticides that support microbial growth may be subject to accelerated biodegradation if the population remains large until the pesticide is applied again. Pesticides that do not support growth may not be subject to accelerated biodegradation.  相似文献   

19.
BACKGROUND: Since biological degradation processes are known to be a major driver of the natural attenuation of pesticide residues in the environment, microbial communities adapted to pesticide biodegradation are likely to play a key environmental role in reducing pesticide exposure in contaminated ecosystems. The aim of this study was to assess the diuron‐mineralising potential of microbial communities at a small‐scale watershed level, including a diuron‐treated vineyard (pollution source), its associated grass buffer strip (as a river protection area against pesticide runoff) and the lotic receiver hydrosystem (sediments and epilithon), by using radiorespirometry. RESULTS: Comparison of results obtained at different sampling sites (in both soil and aquatic systems) revealed the importance of diuron exposure in the adaptation of microbial communities to rapid diuron mineralisation in the vineyard but also in the contaminated grass strip and in downstream epilithic biofilms and sediments. CONCLUSION: This study provides strong suggestive evidence for high diuron biodegradation potential throughout its course, from the pollution source to the final receiving hydrosystem, and suggests that, after microbial adaptation, grass strips may represent an effective environmental tool for mineralisation and attenuation of intercepted pesticides. Copyright © 2009 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号