首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract. The phosphorus (P) sorption and desorption dynamics of eleven major agricultural grassland soil types in Ireland were examined using laboratory techniques, so that soils vulnerable to P loss might be identified. Desorption of P from soil using the iron-oxide paper strip test (Pfeo), water extractable P (Pw) and calcium chloride extractable P (Pcacl2) depended on soil P status in all soils. However, soil types with high organic matter levels (OM), namely peat soils (%OM >30), had lower Pfeo and Pw but higher Pcacl2 values compared to mineral soils at similar soil test P levels. Phosphorus sorption capacity remaining (PSCr) was measured using a single addition of P to soils and used to calculate total P sorption capacities (PSCt) and degree of P saturation (DPS). Phosphorus sorption capacities correlated negatively with % OM in soils indicating that OM may inhibit P sorption from solution to soil. High organic matter soils exhibited low P sorption capacities and poor P reserves (total P, oxalate extractable P) compared to mineral soils. Low P sorption capacities (PSCt) in peat soils were attributed to OM, which blocked or eliminated sorption sites with organic acids, therefore, P remained in the soil solution phase (Pcacl2). In this work, peat and high organic matter soils exhibited P sorption and desorption characteristics which suggest that these soils may not be suitable for heavy applications of manure or fertilizer P owing to their low capacities for P sorption and storage.  相似文献   

2.
Accumulation of surplus phosphorus (P) in the soil and the resulting increased transport of P in land runoff contribute to freshwater eutrophication. The effects of increasing soil P (19–194 mg Olsen‐P (OP) kg−1) on the concentrations of particulate P (PP), and sorption properties (Qmax, k and EPCo) of suspended solids (SS) in overland flow from 15 unreplicated field plots established on a dispersive arable soil were measured over three monitoring periods under natural rainfall. Concentrations of PP in plot runoff increased linearly at a rate of 2.6 μg litre−1 per mg OP kg−1 of soil, but this rate was approximately 50% of the rate of increase in dissolved P (< 0.45 μm). Concentrations of SS in runoff were similar across all plots and contained a greater P sorption capacity (mean + 57%) than the soil because of enrichment with fine silt and clay (0.45–20 μm). As soil P increased, the P enrichment ratio of the SS declined exponentially, and the values of P saturation (Psat; 15–42%) and equilibrium P concentration (EPCo; 0.7–5.5 mg litre−1) in the SS fell within narrower ranges compared with the soils (6–74% and 0.1–10 mg litre−1, respectively). When OP was < 100 mg kg−1, Psat and EPCo values in the SS were smaller than those in the soil and vice‐versa, suggesting that eroding particles from soils with both average and high P fertility would release P on entering the local (Rosemaund) stream. Increasing soil OP from average to high P fertility increased the P content of the SS by approximately 10%, but had no significant (P > 0.05) effect on the Psat, or EPCo, of the SS. Management options to reduce soil P status as a means of reducing P losses in land runoff and minimizing eutrophication risk may therefore have more limited effect than is currently assumed in catchment management.  相似文献   

3.
Effect of microbial decomposition of mature leaves on soil pH   总被引:1,自引:0,他引:1  
The hypothesis that the microbial decomposition of organic matter low in organic nitrogen leads to an increase in soil pH was tested and confirmed in a pot experiment with two different soils into which mature cherry leaves were incorporated.  相似文献   

4.
 Litter decomposition is controlled by many factors, including the quality of the litter and conditions within the soil environment. The decomposition and N and P release from prunings of three agroforestry plant species (Sesbania sesban, Croton megalocarpus, and Calliandra calothyrsus) were evaluated on field plots which were amended with: (1) no fertilizer (control), (2) 120 kg N ha–1 applied as urea (urea), and (3) 150 kg P ha–1 applied as triple superphosphate (TSP) over a period of 77 days. For all litters, the percentage of initial mass, N and P remaining (dry weight basis) over time followed the single exponential model and was strongly influenced by the interaction of plant species and fertilizer. Decay rate constants (k) of loss of litter mass (k B), and release of N (k N), and P (k P) varied among litters and fertility regimes. The k B, k N and k P of Sesbania and Croton were enhanced more by urea than by TSP and control treatments. For Calliandra, k B with TSP was higher (0.016 day–1) than with urea (0.012 day–1) and control (0.012 day–1). Sesbania and Croton showed no differences in k B, k N and k P between control and TSP. For Sesbania and Croton, leaching may have accelerated the release of P to meet the needs of decomposer organisms, resulting in no significant effects of TSP on their decomposition processes. The low rate of decomposition of Calliandra may be partly due to its high lignin content. In conclusion, the higher the total N or P of litter, the less likely would be the significant effects of additions of the inorganic form of fertilizer on the decomposition processes. Received: 1 July 1998  相似文献   

5.
氮对磷在潮土中迁移与转化的影响   总被引:1,自引:1,他引:1       下载免费PDF全文
通过土柱培养试验对磷肥在潮土中的迁移转化和其受不同氮肥的影响进行了研究。结果表明:培养60d后,单施磷酸二氢钙处理(MCP)距施肥点0~2 mm土壤pH值从8.29降至7.82,土柱中水溶性磷(W-P)、Ca_2-P和Ca_8-P分别为7.4、18.6和9.0 mg,分别占土壤无机磷增量的13.0%、32.7%、15.8%。配施尿素处理(MCP+U)和配施硫酸铵处理(MCP+AS)均较MCP降低了距施肥点0~2 mm土壤的pH值,提高了W-P的迁移距离和Ca_2-P与Ca_8-P的分布范围。MCP+U土柱中W-P、Ca_2-P分别下降63.5%(2.7 mg)、65.6%(6.4 mg),Ca_8-P则提高176.7%(24.9 mg),而MCP+AS土柱中W-P、Ca_2-P分别提高100%(14.8 mg)、32.3%(24.6 mg),Ca_8-P则下降42.2%(5.2 mg)。相比MCP,MCP+AS提高了磷肥的速效性,对于作物养分亏缺时及时供给磷素更为有利;MCP+U的磷肥速效性有所降低,对于磷肥供作物中长期利用效果更显著。  相似文献   

6.
The effect of tropical forest conversion on soil microbial biomass   总被引:3,自引:0,他引:3  
We investigated the effects of converting forest to savanna and plough land on the microbial biomass in tropical soils of India. Conversion of the forest led to a significant reduction in soil organic C (40–46%), total N (47–53%), and microbial biomass C (52–58%) in the savanna and the plough land. Among forest, savanna, and plough land, basal soil respiration was maximum in the forest, but the microbial metabolic quotient (qCO2 was estimated to be at a minimum in the forest and at a maximum in the plough land.  相似文献   

7.
磷素活化剂对黑土磷形态及有效性影响的研究   总被引:1,自引:0,他引:1  
试验研究了不同温度下活化剂对黑土各形态磷的影响,阐述了活化剂对Olsen-P影响的机制。结果显示,活化剂具有很好的增加土壤中有效磷的能力,在不同的温度条件下作用效果不同,施肥条件下,高温加速磷的固定。10℃时,3种活化剂活化能力为柠檬酸铵>腐植酸>活化剂H2,分别提高土壤Olsen-P的含量达40.93%、33.06%、23.20%;20℃时,活化能力为腐植酸>柠檬酸铵>活化剂H2,分别提高土壤Olsen-P含量达32.35%、24.89%、16.72%;30℃时,与CK相比Olsen-P含量没有明显增加。活化剂能促进各形态无机磷之间的转化,活化能力随温度升高而逐渐降低。SPSS分析结果证实,Al-P和Ca2-P是黑土有效磷的主要组分,与Olsen-P极相关;Ca8-P起负作用,而Fe-P作用效果不显著,但它们仍能通过影响Al-P和Ca2-P来间接影响Olsen-P。  相似文献   

8.
To study C chemistry and nutrient dynamics in decomposing residues and P dynamics at the residue-soil interface, young pea (Pea-Y) and mature pea (Pea-M) residues were incubated in a sandy soil with low P availability. The study was conducted in microcosms in which the residues were separated from the soil by a nylon mesh. Controls consisted of microcosms without residues. Residues and the soil in the immediate vicinity of the nylon mesh were sampled after 5, 15, 28, 42 and 61 days. Residue chemistry was studied by 13C nuclear magnetic resonance (NMR) spectroscopy and determination of C, N and P concentrations. Compared to Pea-M, Pea-Y was characterised by higher N and P concentrations, higher percentage of proteins, esters, fatty acids and sugars, and was more easily decomposable in the first 15 days. Pea-M residues had a greater percentage of cellulose and other polysaccharides than Pea-Y and showed a more gradual loss in dry weight. Differences in C chemistry and N and P concentration between the residues decreased with time. The decomposition of Pea-Y and Pea-M residues resulted in an increase in microbial P in the residue-soil interface compared to the control, but available P was increased only in the vicinity of Pea-Y residues.  相似文献   

9.
Cellulose decomposition experiments were conducted under field conditions to analyze the effects of climatic and soil properties on rates of organic matter decomposition in temperate and tropical forests. The mass loss rates of cellulose filter papers buried in the soil surface were measured to estimate the respiratory C fluxes caused by cellulose decomposition and mean residence time (MRT) of cellulose. The rates of cellulose decomposition increased with soil temperature, except for during the dry season, while rate constants of decomposition (normalized for temperature) decreased with decreasing pH because of lower cellulase activity. The estimated MRTs of soil cellulosic carbohydrates varied from 81 to 495 days for the temperate forests and from 31 to 61 days for the tropical forests. As a major organic substrate, the C fluxes from cellulose decomposition can account for a substantial fraction of heterotrophic (basal) soil respiration. However, the respiratory C fluxes can be limited by the low substrate availability and low pH in tropical soils, despite high microbial activity. The rate-regulating factors of cellulose decomposition, i.e., temperature, soil pH, and substrate availability, can accordingly influence the rates of heterotrophic soil respiration.  相似文献   

10.
研究了施用有机肥对土壤磷形态的影响 ,分析了不同有机肥施用量下土壤各种磷组分变化。结果表明 ,施用有机肥能显著增加旱地红壤的速效磷含量。有机肥对土壤速效磷的影响随其 C/P比不同而不同。有机肥能提高土壤中等活性有机磷的含量。中等活性有机磷是土壤速效磷主要的有机磷源。施用有机肥 ,能增加土壤磷的供应和贮备 ,并能增加作物的吸磷量及产量  相似文献   

11.
The effect of gypsum amendment on transport of phosphorus (P) in a Pineda sand (loamy, silicious, hyperthermic Arenic Glossaqualf) was investigated in a leaching column experiment. Phosphorus was either placed on the surface of the soil or mixed with the surface 2 cm depth of soil in the column. Gypsum amendment decreased the transport of P in soil. Compared to the unamended soil, transport of P decreased by 35 and 54% in soils amended with 4.5 and 9.0 M.T./ha gypsum, respectively. The transport of P was further decreased by 74% when P was premixed with the surface 2 cm of soil. The transport of P was not influenced by the SO4 ion from gypsum amendment. Instead, formation of Ca-P precipitate appeared to be responsible for the decreased transport of P in the gypsum-amended soil.  相似文献   

12.
 Soil P availability and efficiency of applied P may be improved through an understanding of soil P dynamics in relation to management practices in a cropping system. Our objectives in this study were to evaluate changes in plant-available (Olsen) P and in different inorganic P (Pi) and organic P (P0) fractions in soil as related to repeated additions of manure and fertilizer P under a soybean-wheat rotation. A field experiment on a Typic Haplustert was conducted from 1992 to 1995 wherein the annual treatments included four rates of fertilizer P (0, 11, 22 and 44 kg ha–1 applied to both soybean and wheat) in the absence and presence of 16 t ha–1 of manure (applied to soybean only). With regular application of fertilizer P to each crop the level of Olsen P increased significantly and linearly through the years in both manured and unmanured plots. The mean P balance required to raise Olsen P by 1 mg kg–1 was 17.9 kg ha–1 of fertilizer P in unmanured plots and 5.6 kg ha–1 of manure plus fertilizer P in manured plots. The relative sizes of labile [NaHCO3-extractable Pi (NaHCO3-Pi) and NaHCO3-extractable P0 (NaHCO3-P0)], moderately labile [NaOH-extractable Pi (NaOH-Pi) and NaOH-extractable P0 (NaOH-P0)] and stable [HCl-extractable P (HCl-P) and H2SO4/H2O2-extractable P (resisual-P)] P pools were in a 1 : 2.9 : 7.6 ratio. Application of fertilizer P and manure significantly increased NaHCO3-Pi and -P0 and NaOH-Pi, and -P0 fractions and also total P. However, HCl-P and residual-P were not affected. The changes in NaHCO3-Pi, NaOH-Pi and NaOH-P0 fractions were significantly correlated with the apparent P balance and were thought to represent biologically dynamic soil P and act as major sources and sinks of plant-available P. Received: 23 October 1997  相似文献   

13.
The aim of this study was to determine the effect of winter cover crop (CC) residues on soil pH and phosphorus (P) availability. Three incubation assays were performed in pots using two CC: vetch (V) (Vicia villosa Roth.) and oats (Oa) (Avena sativa L.). Soil samples were taken from 10 sites at 0–20-cm depth. The rate of residues were 0 (D0), 10 (D1), 20 (D2), 30 (D3), and 40 (D4) g dry matter kg?1 soil and the soil sampling was after 10, 20, 30, 60, 90, and 120 days of incubation. Soil pH, extractable P (Pe), and soil organic matter (SOM) and its fractions were determined. The pH increase was correlated with the rate applied (D1 < D2 < D3 < D4). No differences were found for pH comparing V and Oa residues with low residue rates. Soil pH changes were dependent from initial pH and SOM fractions in different soils across the incubation period. The multiple regression models showed that the pH changes were dependent on initial pH level and SOM fractions with a high R2 (0.81). CC residues and its quantities produced different changes on pH – especially at the beginning of the incubation – which influenced the P availability.  相似文献   

14.
To clarify how litter decomposition processes affect soil dissolved organic carbon (DOC) and soil dissolved nitrogen (DN) dynamics, we conducted a field experiment on leaf litter and collected DOC and DN from the underlying soil in a tropical rainforest in Xishuangbanna, southwest China. Principal components analysis (PCA) showed the first PCA axis (corresponding to degraded litter quantity and quality) explained 61.3% and 71.2% of variation in DOC and DN concentrations, respectively. Stepwise linear regression analysis indicated that litter carbon mass controlled DOC and hemicellulose mass controlled DN concentrations. Litter decomposition was the predominant factor controlling surface-soil DOC and DN dynamics in this tropical rainforest.  相似文献   

15.
In the highly weathered soils of humid tropical forests, iron (Fe) plays a key role in ecosystem biogeochemical cycling through its interactions with carbon (C) and phosphorus (P). We used a laboratory study to explore the role of C quantity and quality in Fe reduction and associated P mobilization in tropical forest soils. Soils were incubated under an ambient atmosphere headspace (room air) with multiple levels of leaf litter leachate or acetate additions. Net Fe reduction occurred in all the treatments and at every time point. The more complex mixture of organic compounds in leaf litter leachate stimulated Fe reduction as much acetate, an easily fermentable C source. At the end of the experiment, Fe reduction was generally greater with higher C additions than in the low C additions and controls. The microbial biomass P had increased significantly suggesting rapid microbial uptake of P liberated from Fe. This occurred without increases in the available (NaHCO3) P pool. The immobilization of P by microbes during the incubation provides a P conservation mechanism in these soils with fluctuating redox potential, and may ultimately stimulate more C cycling in these highly productive ecosystems. Iron cycling appears to be an important source of P for the biota and can contribute significantly to C oxidation in upland tropical forest soils.  相似文献   

16.
The use of organic matter (OM) amendments is widespread in tropical countries and may be beneficial for soil carbon storage. Interactions between earthworms and OM amendments in tropical soils are largely unknown. The aim of this study was to investigate the effect of bioturbation on the quantity and chemical composition of OM in soil amended with compost and vermicompost. Our approach included comparison of soil samples amended with compost, vermicompost or chemical fertilizers in the presence or absence of earthworms during a one-year greenhouse experiment. The soils were submitted to a regular cultivation cycle. After one year, we analysed bulk samples for soil OM elemental composition and characterised its lignin and non-cellulosic carbohydrate components.Our results showed a decrease of the carbon and nitrogen content in soil amended with chemical fertilizers. Vermicompost amendment led to unchanged OC content, whereas the compost amendment increased the soils OC content compared to initial soil. The addition of earthworms reduced OC and N content in soils with organic amendments. This is in contrast to soil amended with mineral fertilizer only, where the presence of earthworms did not have any effect. Bioturbation influenced the lignin signature of the soils, and to a lesser extent the non-cellulosic carbohydrate signature. In conclusion, compost amendment combined with bioturbation influenced the quality and quantity of SOM and as result carbon storage and its biogeochemical cycling in tropical soils. Implications for soil fertility remain to be elucidated.  相似文献   

17.
Earthworms are important processors of soil organic matter (SOM) and nutrient turnover in terrestrial ecosystems. In agroecosystems, they are often seen as beneficial organisms to crop growth and are actively promoted by farmers and extension agents, yet their contribution to agroecosystem services is uncertain and depends largely on management. The Quesungual slash-and-mulch agroforestry system (QSMAS) of western Honduras has been proposed as a viable alternative to traditional slash-and-burn (SB) practices and has been shown to increase earthworm populations, yet the effect of earthworms on soil fertility and SOM in QSMAS is poorly understood. This study examined the role of Pontoscolex corethrurus in QSMAS by comparing their influence on aggregate-associated SOM and fertilizer dynamics with their effects under SB and secondary forest in a replicated field trial. Both the fertilized QSMAS and SB treatments had plots receiving additions of inorganic 15N and P, as well as plots with no inorganic N additions. Earthworm populations were manipulated in field microcosms at the beginning of the rainy season within each management treatment via additions of P. corethrurus or complete removal of existing earthworm populations. Microcosms were destructively sampled at harvest of Zea mays and soils were wet-sieved (using 53, 250 and 2000 μm mesh sizes) to isolate different aggregate size fractions, which were analyzed for total C, N and 15N. The effects of management system were smaller than expected, likely due to disturbance associated with the microcosm installation. Contrary to our hypothesis that earthworms would stabilize organic matter in soil aggregates, P. corethrurus decreased total soil C by 3% in the surface layer (0-15 cm), predominantly through a decrease in the C concentration of macroaggregates (>250 μm) and a corresponding depletion of C in coarse particulate organic matter occluded within macroaggregates. Earthworms also decreased bulk density by over 4%, but had no effect on aggregate size distribution. Within the two fertilized treatments, the QSMAS appeared to retain slightly more fertilizer derived N in smaller aggregate fractions (<250 μm) than did SB, while earthworms greatly reduced the recovery of fertilizer N (34% decrease) in both systems. Although management system did not appear to influence the impact of P. corethrurus on SOM or nutrient dynamics, we suggest the lack of differences may be due to artificially low inputs of fresh residue C to microcosms within all management treatments. Our findings highlight the potential for P. corethrurus to have deleterious impacts on soil C and fertilizer N dynamics, and emphasize the need to fully consider the activities of soil fauna when evaluating agroecosystem management options.  相似文献   

18.
19.
保护地土壤氮、磷积累及影响研究   总被引:7,自引:0,他引:7  
为评价长期大量施用有机肥和无机复合肥对蔬菜连作保护地土壤的影响,调查了2~5年、11~12年、15~17年棚龄表层(0~15 cm)和亚表层(15~30 cm)土壤pH状况、硝酸盐、有效硫、土壤有机质、N、P含量和有效性.结果表明:随着日光温室棚龄增加,土壤中N、P不断积累,其中总氮在12年棚龄达到最大(1.99 g·kg-1),而总磷则持续增加,在17年棚龄时达到4.22 g·kg-1,分别比小麦玉米轮作地高70%、298%.土壤有效态氮、磷在各棚龄段间差异较小.在小麦玉米轮作改为保护地蔬菜连作的头2~5年内,表层和亚表层土壤有机质分别损失8.6%和14.0%,此后土壤有机质逐步积累,在11年棚龄时达到20.4 g·kg-1,此后变化很小.土壤硝酸盐、有效硫最大值均出现在2~5年棚龄段,此后含量下降.土壤pH比小麦玉米轮作地低0.35~0.59,但差异不显著.综上所述,大量施用有机肥和无机复合肥在短期内可显著增加土壤有效态氮、磷营养含量,并引起有机质损失;长期施用则导致土壤中N、P元素大量积累,而N、P的有效性则相对降低,随着土壤有机质增加,土壤理化性状恶化.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号