首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thirty tomato accessions representing six Lycopersicon species were evaluated for the rate of seed germination under no stress, cold-stress and salt-stress conditions. Most accessions responded similarly to both cold- and salt-stress conditions (i.e. they were equally sensitive or tolerant to both stresses), however, a few accessions exhibited more sensitivity (or tolerance) to one stress than the other. In addition, some accessions that germinated relatively rapidly under non-stress conditions exhibited great sensitivity to both cold stress and salt stress. Across accessions, significant (P < 0.01) positive phenotypic correlations were observed between germination rate under control and cold stress (rP= 0.89), control and salt stress (rP= 0.63) and cold stress and salt stress (rP= 0.77). The results indicate that the rate of tomato seed germination under non-stress, cold- and salt-stress conditions may be controlled by the same genes (or physiological mechanisms), but additional components may be involved which affect germination rate under specific stress conditions.  相似文献   

2.
M. R. Foolad    G. Y. Lin  F. Q. Chen 《Plant Breeding》1999,118(2):167-173
The purpose of this study was to examine whether rate of tomato seed germination under non-stress, cold-stress and salt-stress conditions was under similar genetic control by identifying and comparing quantitative trait loci (QTLs) which affect germination rate under these conditions. A fast-germinating accession (LA722) of the wild tomato species Lycopersicon pimpinellifolium Jusl. and a slow-germinating cultivar (NC84173, maternal and recurrent parent) of tomato (Lycopersicon esculentum Mill.) were hybridized and BC1 and BC1S1 progeny produced. The BC1 population was used to construct a linkage map with 151 restriction fragment length polymorphism (RFLP) markers. The BC1S1 population (consisting of 119 BC1S1 families) was evaluated for germination under non-stress (control), cold-stress and salt-stress conditions and the mean time to 50% germination (T50) in each treatment was determined. Germination analyses indicated the presence of significant (P < 0.01) phenotypic correlations between T50 under control and cold stress (r = 0.71), control and salt stress (r = 0.58) and cold stress and salt stress (r = 0.67). The QTL analysis indicated the presence of genetic relationships between germination under these three conditions: a few QTLs were identified which commonly affected germination under both stress- (cold-, salt- or both) and non-stress conditions, and thus were called stress-nonspecific QTLs. A few QTLs were also identified which affected germination only under cold or salt stress and thus were called stress-specific QTLs. However, the stress-nonspecific QTLs generally exhibited larger individual effects and together accounted for a greater portion of the total phenotypic variation under each condition than the stress-specific QTLs. Whether the effects of stress-nonspecific QTLs were due to pleiotropic effects of the same genes, physical linkage of different genes, or a combination of both could not be determined in this study. The results, however, indicate that the rate of tomato seed germination under different stress and nonstress conditions is partly under the same genetic control.  相似文献   

3.
Seed of BC1 progeny of an interspecific cross between a slow germinating Lycopersicon esculentum breeding line(NC84173; maternal and recurrent parent) and a fast germinating L.pimpinellifolium accession (LA722) were evaluated for germination under cold stress, salt stress and drought stress, and in each treatment the most rapidly germinating seeds (first 2%) were selected. Selected individuals were grown to maturity and self-pollinated to produce BC1S1 progeny families. The selected BC1S1 progeny from each experiment were evaluated for germination rate in each of a non stress (control),cold-, salt- and drought-stress treatment, and their performances were compared with those of a non selected BC1S1population in the same treatments. Results indicated that selection for rapid seed germination in each of the three stress treatments was effective and significantly improved progeny germination rate under all three stress conditions. The results support the suggestion that same genes might control the rate of seed germination under cold, salt and drought stress. Furthermore, selection in each of the three stress treatments resulted in improved progeny seed germination rate under nonstress conditions, suggesting that genetic mechanisms that facilitate rapid seed germination under stress conditions might also contribute to rapid germination under nonstress conditions. In practice, therefore, selection for rapid seed germination under a single stress environment may result in progeny with improved seed germination under a wide range of environmental conditions. Furthermore, to improve germination rate under nonstress conditions, it might be more efficient to make selections under stress conditions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Two approaches were used to determine the relationship between salt tolerance during seed germination and vegetative growth in tomato. First, F4 progeny families of a cross between a breeding line, ‘UCT5’ (salt sensitive at all developmental stages), and a primitive cultivar, ‘PI 174263’ (salt tolerant during germination and vegetative growth), were evaluated in separate experiments for salt tolerance during germination and vegetative growth. There were significant differences among the F4 families in both the rate of seed germination and the plant growth (dry matter production) under salt stress. There was, however, no significant correlation between the ability of seeds to germinate rapidly and the ability of plants to grow under salt stress. In the second approach, selection was made for rapid germination under salt stress in an F2 population of the same cross and the selected progeny was evaluated for salt tolerance during both germination and vegetative growth. The results indicated that selection for salt tolerance during germination significantly improved germination performance under salt stress; a realized heritability estimate of 0.73 was obtained. Selection for salt tolerance during germination, however, did not affect plant salt tolerance during vegetative growth; there was no significant difference between the selected and unselected progeny based on either absolute or relative growth under salt stress. Obviously, in these genetic materials, salt tolerance during germination and vegetative growth are controlled by different mechanisms. Thus, to develop tomato cultivars with improved salt tolerance, selection protocols that include all critical developmental stages would be desirable.  相似文献   

5.
The genetic basis of low-temperature tolerance during germination of tomato seed was investigated using two approaches. First, a cold-tolerant (PI 120256) and a cold-sensitive tomato cultivar (UCT5) and their reciprocal F2, F3 and BC1 progeny (total of 10 generations) were evaluated for germination at a low (11 ± 0.5°C) and a high (control) temperature 20 ±0.5° C) Weighted least-square regression analysis indicated that in the low-temperature treatment most of the variation resulted from additive genetic effects, and dominance and epistatic interactions were nonsignificant. Partitioning of the total genetic variance into those attributable to the effects of embryo, endosperm, testa and the cytoplasm indicated that additive effects of endosperm and embryo could individually account for 80% and 77% of the total variance, respectively. In the control treatment, greater than 60% of the variation could be explained by individual additive effects of endosperm or embryo and ? 27% of the variation could be explained by embryo dominance effects. Across generations, there was a positive correlation (r = 0.78, P < 0.01) between germination in the control and low-temperature treatments and there were no significant genotype × temperature interactions. The results indicate the presence of similar or identical genes with predominantly additive effects on germination under both low and high temperatures. In the second approach, the effectiveness of directional phenotypic selection to improve tomato cold tolerance during germination was evaluated by selecting (in an F2 population of the same cross) the fastest germinating seeds under low temperature and comparing the germination of the selected F3 progeny with germination of an unselected F3 population. The results indicated that selection was highly effective and significantly improved germination performance of the progeny; a realized heritability of 0.74 was obtained for low-temperature tolerance during germination. It is concluded that in these tomato lines germination under low temperature is genetically controlled, with additivity being the major genetic component, and thus the trait can be improved by phenotypic selection.  相似文献   

6.
M. R. Foolad 《Plant Breeding》1996,115(4):245-250
Breeding for salt tolerance in tomato has been impeded by insufficient knowledge of the genetic control of tolerance. The genetic basis of salt tolerance during vegetative growth was investigated by growing a salt-tolerant (PI174263) and a salt-sensitive tomato cultivar (UCT5) and their F1, F2 and backcross progeny in saline solutions with electrical conductivity of 0.5 (control) and 20 dS/m (salt-stress). The relative salt-tolerance of each generation was determined as the percentage of growth (i.e. dry matter production) under salt-stress relative to growth under control conditions. In all generations, shoot growth was significantly reduced by salt stress. The reduction was largest in UCT5 (56.1%) and smallest in the F1 (27.4%), followed by PI174263 (32.3%). Analysis of the absolute and relative growth under salt-stress indicated that genes contributing to vigour might be different from genes conferring tolerance. Generation means analyses of the absolute and relative growth indicated that the majority of the genetic variation among generations were due to simple (additive and dominance) genetic effects; nonallelic interactions, although significant, were far less important. Partitioning of the total genetic variance by weighted least-square regression analysis and variance component analysis indicated that 88% or more of the variation was due to additive genetic effects. A moderate estimate of narrow sense heritability (0.49 ± 0.09) was obtained for shoot DW under salt-stress treatment. The results indicate that tomato salt-tolerance during vegetative growth can be improved by breeding and selection.  相似文献   

7.
Genetic relationships between salt tolerance and expression of various physiological traits during vegetative growth in tomato, Lycopersicon esculentum Mill., were investigated. Parental, F1, F2 and backcross progeny of a cross between a salt tolerant (PI174263) and a salt sensitive tomato cultivar (‘UCT5’) were evaluated in saline solutions with electrical conductivity of 0.5 (non-stress) and 20 dS/m (salt stress). Absolute growth, relative growth, tissue ion content, leaf solute potential and the rate of ethylene evolution were measured. Growth of both parents was reduced under salt stress; however, the reduction was significantly less in PI174263 than ‘UCT5’, suggesting greater salt tolerance of the former. Under salt stress, leaves of PI174263 accumulated significantly less Na+ and Cl? and more Ca2+ than leaves of ‘UCT5’. Across parental and progeny generations, growth under salt stress was positively correlated with leaf Ca2+ content and negatively correlated with leaf Na+ content. In contrast, no correlation was observed between growth and either leaf solute potential or the rate of ethylene evolution under salt stress. Generation means analysis indicated that under salt stress both absolute and relative growth and the Na+ and Ca2+ accumulations in the leaf were genetically controlled with additivity being the major genetic component. The results indicated that the inherent genetic capabilities of PI174263 to maintain high tissue Ca2+ levels and to exclude Na+ from the shoot were essential features underlying its adaptation to salt stress and that these features were highly heritable. Thus, tissue ion concentration may be a useful selection criterion when breeding for improved salt tolerance of tomato using progeny derived from PI174263.  相似文献   

8.
[Objective] Cotton (Gossypium hirsutum L.) seed germination, in which melatonin plays an important regulatory role, is seriously affected by soil salinization. Cotton seed germination, antioxidant enzyme activity levels and other physiological indicators were analyzed to clarify the regulatory effects of exogenous melatonin on cotton seed germination under salt-stress conditions. [Method] The experiment was conducted in a greenhouse of Hebei Agricultural University in Baoding City, Hebei Province from 2018 to 2019 using Guoxin Cotton 9 as the material. The germination rate, germination potential, seed biomass after germination, superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities, as well as the malondialdehyde (MDA) content, of cotton seeds were measured after exposure to different melatonin concentrations (0, 10, 20, 50 and 100 μmol·L-1) and 150 mmol·L-1 NaCl treatments. [Result] After germination, the germination rate, germination potential, radical length and seed biomass significantly decreased, as did the SOD, POD and CAT activities. However, the MDA content significantly increased under salt-stress conditions. Low exogenous melatonin concentrations (10 and 20 μmol·L-1) increased the germination potential, germination rate and biomass of cotton seeds, and promoted the elongation of radicals; however high melatonin concentrations (50 and 100 μmol·L-1) inhibited cotton seed germination and decreased seed biomass after germination. Low melatonin concentrations (10 and 20 μmol·L-1) increased the SOD, POD and CAT activities and decreased the MDA content in cotton seeds. [Conclusion] Low melatonin concentrations could promote germination and improve the salt tolerance of cotton seeds, while high melatonin concentrations could inhibit their germination. A 20 μmol·L-1 melatonin concentration is appropriate for regulating cotton seed germination under salt-stress conditions.  相似文献   

9.
以民勤沙生针茅种子为试验材料,研究不同温度蒸馏水处理、GA3处理、PEG处理对沙生针茅种子萌发的影响。研究结果表明:在不同水温处理下的沙生针茅种子发芽率随着水温的升高其吸胀率呈递增趋势,且不同水温浸泡下沙生针茅种子的吸水率差异极显著;GA3处理对沙生针茅种子的萌发具有促进作用,在80 mg/L的GA3溶液处理下的发芽率、发芽势最高,分别为54%、48%,第7天达萌发高峰期,有效得缩短了萌发周期;随着PEG溶液的增加,沙生针茅种子的萌发得到不同程度的诱发,PEG溶液浓度越低,诱发作用越明显,PEG溶液浓度在5%时,种子发芽率、发芽势较高,说明干旱胁迫对沙生针茅种子的萌发具有不同程度的诱发作用,沙生针茅种子能适应一定程度的干旱土壤生境。  相似文献   

10.
Summary Four highly heterogeneous populations of barley were assayed for salt stress tolerance at the time of seed germination. Three of these, Davis, Dryland and Irrigated, were derived originally from a population called Composite Cross XXI and propagated until F17 under contrasting conditions. The fourth, Composite Cross XXX-C, was of relatively recent (F5) origin. This population showed the highest germinability in nutrient solution salinated with sodium chloride. Davis was poorer in salt tolerance than CC XXX-C but better than Dryland and Irrigated. Dryland and Irrigated, propagated for 14 successive genrations under contrasting levels of soil moisture, showed no significant difference in salt stress tolerance. In several hundred random samples of lines developed from these two populations, ear row number, lemma awn texture, seed weight and yield showed non-random associations with salt tolerance. These associations might be gainfully utilized in barley breeding for salt stress tolerance.  相似文献   

11.
Seed priming is a method to improve germination and seedling establishment under stress conditions. The effect of seed priming in chemical solutions such as urea and KNO3, on protein and proline content, germination, and seedling growth responses of four maize (Zea mays L.) hybrids under drought and salt stress conditions was studied in a controlled environment in 2010. Treatments included stress type and intensity at five levels: moderate drought (MD), severe drought (SD), moderate salt (MS), severe salt (SS), and control (C1, without stress), three seed priming types including water (C2, as control), KNO3, and urea (as chemical priming), and four maize hybrids including Maxima, SC704, Zola, and 307. The results showed that the highest germination percentage (Ger %), germination rate (GR), seedling length (SL), radical length (RL), and seedling to radical length ratio (S/R) were achieved in no stress treatments and most proline content in SD treatment. Urea priming led to more Ger%, GR, and SL compared to other primers and treatment under KNO3 priming resulted in higher RL compared to other primers. Chemical priming had no effect on S/R and proline content. Also, in terms of most traits, no difference was found among the four hybrids. Results showed that salt stress could affect GR and RL more than the drought stress. Drought stress affected germination percentage and S/R more than the salt stress. Both stresses decreased all measured parameters, except protein and proline content which were increased remarkably, and more under drought compared to salt stress. Based on proline content, hybrid 304 appeared to be more resistant to stress than other hybrids. Generally, KNO3 and urea alleviated effects of both stresses and led to increased germination and seedling growth as well as the root length. Therefore, priming could be recommended for enhancing maize growth responses under stressful conditions.  相似文献   

12.
Crop improvement in sorghum has progressed extensively availing the variation available in the primary gene pool of S. bicolor. Crossing further, the yield plateau can be accomplished by bringing in the genes from tertiary gene pool into the cultivated gene pool. Earlier efforts for wide hybridization in sorghum with tertiary gene pool were not successful due to inhibition of wild pollen germination on the stigma of cultivated species. In the current study, elite lines of cultivated Sorghum species were pollinated with wild species using different floral treatments. The results showed that spray with the synthetic auxin, 2,4-dichlorophenoxyacetic acid, has promoted the seed set. Overall, 76% crosses showed seed set, but many seeds were underdeveloped and deformed. F1 progeny showed traits of both cultivated and wild parents. Hybrids were confirmed through PCR analysis. Many (80%) F1 plants were sterile, and 20% of F1s were advanced to F2 generation. Wide variation was observed in F2 progeny, and the phenotype selections were made and are being evaluated in the field.  相似文献   

13.
S. J. Scott  R. A. Jones 《Euphytica》1990,48(3):239-244
Summary In studies to determine the inheritance of response-time traits, such as time to seed germination, some viable individuals may fail to respond during an experiment. If these right-censored observations are ignored, sample means and variances will be underestimated. This is illustrated using data from time to seed germination at 9°C for Lycopersicon esculentum (Mill.) fast germinating PI 120256, slow-germinating T3 and their reciprocal F1, F2 and backcross progeny. This paper presents methods to detect and to accommodate right-censored data in generation means analysis. Genetic interpretations derived from corrected and uncorrected estimates of generation means and variances are compared. Correction for right-censoring increased estimates of environmental and phenotypic variances, and decreased heritability estimates.  相似文献   

14.
Grain yield is more likely to be compromised by poor seed germination and vigour in low phytic acid (LPA) and quality protein maize (QPM) than normal maize (Nm), especially when grown under stressful tropical environmental conditions. The objectives of this study were to determine the effect of stress conditions on seed germination and vigour traits (percentage germination, seedling dry weight, average root and shoot length and vigour index) and to determine the GCA effects of the parental lines and SCA effects of the crosses. A ten parent half diallel (LPA, Nm, QPM lines) was subjected to the standard germination (non-stress) and accelerated aging (AA) (stress) tests. All seed lots were at the same physiological age and produced under the same season and conditions. Genotypic and group differences were investigated. General combining ability (GCA) and specific combining ability (SCA) effects were significant (P ≤ 0.001) for all traits under both stress and non-stress conditions indicating that both additive and non-additive gene effects were significant. Generally SCA effects were superior for all traits. The LPA lines displayed 61 % reduction in germination and 23–52 % reduction in vigour under stress conditions thereby underscoring challenges that are expected in deploying LPA maize in stress conditions. However, LPA line CM 31 exhibited large positive and mostly significant GCA effects, while two LPA × LPA crosses showed significant positive SCA effects. Results indicate breeding is required to improve both germination and vigour of the LPA lines to adapt them to tropical conditions that are generally stress-prone.  相似文献   

15.
Wheat cellular thermotolerance is related to yield under heat stress   总被引:3,自引:0,他引:3  
Cellular thermotolerance in terms of cellular membrane thermostability is often implied as an indication of crop heat tolerance and it is therefore considered as a possible selection criterion for heat tolerance. While there is ample genetic variability for cellular thermotolerance in wheat and other crop plants its relations to yield under heat stress is not sufficiently established. This study was performed to assess the genetic relations in wheat between cellular thermotolerance and yield under heat stress. In one study the co-segregation among cellular membrane thermostability (CMS), yield under chronic heat stress and yield under non-stress conditions was evaluated in a random inbred line (RIL) population of a cross between heat resistant (Danbata) and heat susceptible (Nacozari) cultivars. In a second study the same association was evaluated for yield under heat stress in 49 F7 breeding lines randomly selected from a breeding program. CMS was assayed in growth chamber grown and heat-hardened seedlings. Yield was evaluated under Mediterranean summer irrigated conditions where chronic heat stress caused a reduction in mean yield of the RIL population by 47% as compared with the normal winter growing conditions (non-stress). The RILs varied significantly (p<0.05) for CMS, biomass and yield under stress and non-stress conditions. The two parent cultivars did not differ in biomass or yield under non-stress (winter) conditions but they widely differed for both traits under heat stress. Yield of RILs under heat stress was well distributed between the extreme values of the parent cultivars. There was a significant RIL by season interaction for biomass (F = 9.74; p<0.0001) and yield (F = 10.08; p<0.0001), indicating specific adaptation to heat stress of certain lines in terms of their productivity. Broad-sense heritability for yield was high and nearly the same in the winter (h 2=0.71)and the summer (h 2=0.67). Broad-sense heritability for CMS was high (h 2=0.74). CMS was positively and significantly (p<0.01) correlated across 98 RILs with biomass (r = 0.60* *) and yield (r = 0.53**) under stress but rot with biomass or yield under non-stress conditions. The 49 breeding lines varied significantly (p<0.01) for CMS and yield under chronic heat stress in the summer season. CMS and yield were significantly correlated (r = 0.56**) across lines. Overall the associations between CMS and yield under heat stress were reasonably strong and significant but not perfect. Other factors besides cellular thermostability may support yield under heat stress. CMS alone cannot be used as the exclusive selection criterion for heat tolerance in wheat breeding. lt may be valuable as a supplemental criterion in the final breeding stages or as a rough selection tool to reduce a large population into the most likely heat tolerant core at the early stages of the breeding program.  相似文献   

16.
为了探讨复合盐碱对韭菜种子萌发的影响和韭菜栽培的盐碱适应能力,本试验采用不同浓度的氯化钠、硫酸钠、碳酸氢钠、碳酸钠混合液对韭菜种子萌发进行试验,来测定25种复合盐碱胁迫条件下韭菜种子的萌发率、萌发指数、胚轴长度和恢复萌发率等生长指标。结果表明:随着盐碱胁迫的增强,韭菜种子的萌发率、萌发指数均明显低于对照,但同一pH、不同盐浓度下种子萌发率的下降幅度要大于同一盐浓度、不同pH下的处理;将未萌发的种子转移至蒸馏水中复水后,高盐浓度和高pH最终萌发率只有最高萌发率的24.7%,延缓了种子的萌发,也抑制了一些低活力种子的萌发,萌发恢复率随着盐浓度的增加而增加;盐浓度、pH及其相互作用对韭菜种子萌发有抑制作用,其中盐浓度是决定性的主导因素。  相似文献   

17.
陶瑞  刘涛  褚贵新 《棉花学报》2013,25(5):426-431
通过设置0、80、120 mmol·L-1 3种NaCl浓度,研究了3种盐分水平下2-氯-6-(三氯甲基)吡啶浸种对棉种发芽的影响,分析了棉种萌发过程中可溶性蛋白、可溶性糖、抗氧化物酶及丙二醛含量对2-氯-6-(三氯甲基)吡啶浸种的生理响应.结果表明,盐分胁迫显著抑制了棉种的萌发,而2-氯-6-(三氯甲基)吡啶浸种能明显减轻盐分胁迫对种子发芽的抑制.在3个盐分水平(0、80、120 mmol·L-1)下,2-氯-6-(三氯甲基)吡啶浸种处理的发芽率、发芽势及种子活力指数均比清水浸种有显著提高,其增幅分别为11.5%~58.4%、16.8%~65.0%和42.9%~82.5%;同时,2-氯-6-(三氯甲基)吡啶浸种可显著提高棉种SOD、POD、CAT的活性,分别比清水浸种增加了57.2%~282.7%、8.3%~139.3%和6.4%~15.1%,且显著降低了电解质外渗率与MDA含量.在盐分胁迫下,利用4.1×10-3 mmol· L-1的2-氯-6-(三氯甲基)吡啶浸种可提高棉种抗氧化物酶活性,促进其萌发过程中可溶性有机物的转化,显著提高棉种发芽率和发芽势.  相似文献   

18.
人工模拟盐、碱环境对向日葵种子萌发及幼苗生长的影响   总被引:27,自引:1,他引:26  
刘杰  张美丽  张义  石德成 《作物学报》2008,34(10):1818-1825
以向日葵品种白葵杂6号为试验材料, 中性盐NaCl和Na2SO4混合模拟盐胁迫、碱性盐NaHCO3和Na2CO3混合模拟碱胁迫(两者摩尔比均为9∶1), 设计各6种处理。研究盐、碱胁迫下种子萌发及幼苗形成的相关生理表现。结果表明, 种子能够萌发并成苗的最高盐胁迫强度是pH 6.98, 电导率为1.311 dS m-1(培养介质的pH和电导率); 碱胁迫强度是pH 9.71, 电导率为0.360 dS m-1。在能够成苗的盐碱条件下, 随着盐胁迫强度的增强出苗率、成苗率下降, 出苗时间明显延迟; 而随着碱胁迫强度的增加, 成苗率下降, 出苗时间并不延迟。同时随着盐碱胁迫强度的增强, 幼苗的各项生理指标均下降, 下降幅度以碱胁迫明显大于盐胁迫。试验结果证明, 盐胁迫和碱胁迫对白葵杂6号种子萌发及幼苗形成的影响机制不同, 向日葵在这两个阶段对盐碱两种胁迫的耐受能力及响应特点也不同。这一结论进一步证实了盐、碱胁迫是两种性质不同的胁迫。  相似文献   

19.
M.R. Foolad  G.Y. Lin 《Euphytica》2001,122(1):105-111
The genetic basis of cold tolerance (CT) during vegetative growth in tomato was investigated by evaluating plants of a cold-tolerant primitive cultivar (PI120256) and a cold-sensitive breeding line (UCT5) and their reciprocal F1, F2, F3, BC1P1 and BC1P2 progeny under two temperature regimes of 15/10 °C (cold stress) and 25/15 °C (control). Plants were evaluated for shoot dry weight (DW) under cold stress and by a tolerance index (TI) measured as the ratio of DW under cold stress (DWs) to DW under control (DWc) conditions. Shoot DW was reduced in all genotypes in response to cold stress. However, PI120256 exhibited the highest CT (TI = 90.5%) and UCT5 the lowest (TI = 38.9%). The TIs of the filial and backcross progeny were intermediate to the parents. Across generations, there was a positive correlation (r = 0.76, p < 0.01) between DWs and DWc indicating that growth under cold stress was influenced by plant vigor. However, the absence of a significant correlation (r=0.47, p >0.05) between DWc and the TI and, in contrast, the presence of a significant correlation (r =0.92, p <0.01) between DWs and the TI suggest that plant vigor was not a determining factor in the expression of CT in PI120256 and its progeny. Generation means analyses of DWs and TI indicated that the variation among generations was genetically controlled, with additive effects accounting for most of the variation. There were no significant dominance effects, and epistatic effects were minor and involved only additive × additive interactions. The results suggest that the inherent CT of PI120256 should be useful for improving CT of commercial cultivars of tomato. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
H. Jonkers 《Euphytica》1958,7(1):41-46
For shortening the life-cycle of strawberry plants a combination of seed- and plant treatment was applied to seeds and resulting seedlings of the varieties Climax, Jucunda and Deutsch Evern.Of the seed treatments applied, a cold treatment of 16 days at 3–5°C produced a very bad germination. A treatment with H2SO4 96% gave a more rapid germination and a considerably higher percentage of germination.Seedlings with three trifoliate leaves cannot be induced to flower by short-day treatment. For an effective short-day treatment of Deutsch Evern at least five and with Climax and Jucunda at least seven trifoliate leaves should be formed prior to short-day treatment. The freshly harvested seed from seedlings forced to rapid flowering has normal germination power.Through a combination of sulfuric acid treatment of the seed and a short-day treatment of the seedlings as soon as the latter have become sensitive, the life-cycle can be shortened from 18–24 months to 8–9 months.

Publikatie 175  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号