首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Conception rates after Ovsynch have been higher in primiparous than in multiparous cows. The objective of this study was to investigate whether this difference might be due to differences in ovulation rate or follicular size. The experiment was conducted with 136 Holstein Frisian cows from a commercial herd in Brandenburg, Germany. All cows were synchronized using Buserelin (GnRH analogue) at day ?10, Tiaprost (PGF2α analogue) at day ?3 and again GnRH at day ?1. Timed artificial insemination (TAI) was carried out 16–20 h after the second dose of GnRH on day 0. Milk samples for analysis of milk progesterone were obtained on days ?17, ?10, ?3 and at TAI. Progesterone concentrations were used to determine the stage of oestrus cycle at the start of the synchronization protocol and to investigate the presence of functional luteal tissue before treatment with PGF2α and TAI. All animals were examined by ultrasound at the second treatment with GnRH, at AI, 8 and 24 h after AI. Overall synchronization rate (proportion of cows with an ovulation within 40 h after GnRH) was 86.8% in primiparous and 88.2% in multiparous cows, respectively. Ovulation occurred earlier in primparous than in multiparous cows (p < 0.05) and ovulatory follicles were smaller. Conception rates were numerically higher in primiparous cows but the difference was not significant. Cows that displayed signs of oestrus on day ?1 and received an additional AI on this day were more likely to conceive than cows that only received TAI 16 to 20 h after GnRH2. It is concluded that ovulation occurs earlier in primiparous than in multiparous cows after Ovsynch. However, a significant relationship between these differences and the probability of conception could not be established.  相似文献   

2.
The objective of the present study was to determine whether oestrous detection with the help of oestrous detection aids during the Heatsynch without timed AI protocol is equally effective with the progesterone‐combined protocol in dairy heifers. A total of 148 heifers were randomly assigned to one of the two groups. A group of heifers treated with Heatsynch with heat detection aids (n = 72) received GnRH on day 0, prostaglandin F (PGF) on day 7 and oestradiol benzoate (EB) on day 8, while in controlled internal drug release (CIDR)‐Heatsynch group (n = 76), CIDR was included during a period from GnRH to PGF. Heifers were checked for oestrus twice daily, i.e. from 09:00 to 10:00 hours and from 15:00 to 16:00 hours starting on day 2 for Heatsynch group and on day 8 in CIDR‐Heatsynch group, and continued up to day 12. KAMAR®heat mount detector (KAMAR® Inc., Steamboat Springs, CO, USA) and ALL‐WEATHER® PAINTSTIK® (LA‐CO Industries Inc., Elk Grove Village, IL, USA) were used as heat detection aids. AI was conducted within 1 h after confirming oestrus in 72 heifers, while 19 animals were transferred with embryo 7 days after oestrus according to the request of the owners. Premature oestrus before PGF injection occurred in 18% of Heatsynch group. Of 13 heifers which showed premature oestrus, six were inseminated and two of them conceived. Oestrus detection rate within 12 days after initiation of the protocols did not differ between the two groups (94% vs 95%). There was no difference in the conception rate after first AI (including heifers that were inseminated before PGF injection) and embryo transfer between Heatsynch with heat detection aids and CIDR‐Heatsynch groups (36% vs 44% and 70% vs 56%). It is concluded that the use of heat detection aids to monitor the occurrence of premature oestrus prior to PGF injection in Heatsynch protocol in dairy heifers was equally effective to the inclusion of CIDR.  相似文献   

3.
This study aimed to evaluate three regimes for oestrus and ovulation synchronization in Farafra ewes in the subtropics. During autumn, 43 ewes were assigned to (i) controlled internal drug releasing (CIDR)‐eCG group, treated with CIDR for 12 days and eCG at insert withdrawal, n = 13; (ii) PGF2α‐PGF2α group, treated with two PGF2α injections at 11 days interval, n = 14; and (iii) GnRH‐PGF2α‐GnRH group, treated with GnRH, followed 5 days later with PGF2α and 24 h later with a second GnRH, n = 16. Oestrus‐mating detection was carried out at 4 h intervals starting on day 0 [the day of CIDR withdrawal (CIDR‐eCG group), the day of second PGF2α treatment (PGF2α‐PGF2α group) and the day of PGF2α treatment (GnRH‐PGF2α‐GnRH group)]. Ovarian dynamics was monitored by ultrasound every 12 h beginning on day 0 and continued for 4 days. Blood samples were obtained daily for progesterone (P4) and oestradiol 17β (E2) estimation starting on day 0 and continued for 4 days. The obtained results showed that, oestrus expression, ovulation and conception were greater (p < 0.05) in CIDR‐eCG and PGF2α‐PGF2α groups than in GnRH‐PGF2α‐GnRH group. All ewes of PGF2α‐PGF2α group presented, on day of second PGF2α injection with mature CL (P4 > 2.0 ng/ml), compared to 42.9% in GnRH‐PGF2α‐GnRH group (p = 0.01). The peak of oestrus occurred 32–52, 48–60 and 28–96 h after the end of treatment in CIDR‐eCG, PGF2α‐PGF2α and GnRH‐PGF2α‐GnRH groups, respectively. Ovulation started 48 h after treatment in all groups and extended for 24, 36 and 48 h for CIDR‐eCG, PGF2α‐PGF2α and GnRH‐PGF2α‐GnRH groups, respectively. Results demonstrated that oestrus and ovulation synchronization could be efficiently achieved in Farafra ewes using either CIDR‐eCG or PGF2α‐PGF2α regimes; however, the GnRH‐PGF2α‐GnRH treatment induced a more spread oestrus and ovulation that may make the protocol inadequate for timed artificial insemination.  相似文献   

4.
The objective of the study was to compare the fertility after using sex-sorted or conventional semen either with oestrus detection (EST) or timed artificial insemination (TAI) in Holstein heifers. Holstein heifers were randomly assigned to one of the following treatments in a 2 × 2 factorial design. Heifers in the EST group were inseminated with sex-sorted (n = 114) or conventional semen (n = 100) after spontaneous or induced oestrus. Heifers in the TAI, subjected to the 5-day Cosynch+Progesterone protocol (GnRH+P4 insertion-5d-PGF+P4 removal-1d-PGF-2d-GnRH+TAI), were inseminated with sex-sorted (n = 113) or conventional semen (n = 88). Statistical analyses were performed using PROC GLIMMIX procedure of SAS 9.4 (SAS Institute Inc., Cary, NC). Overall P/AI was 60.7% for EST and 54.2% for TAI regardless of types of semen and 68.1% for conventional and 48.9% for sex-sorted semen regardless of insemination strategies. Fertility of heifers inseminated with either sex-sorted (53.5%; 44.2%) or conventional (69.0%; 67.0%) semen did not differ between EST and TAI respectively. Besides, the interaction between the semen type and the insemination strategy was not significant for P/AI. The embryonic loss was significantly greater with sex-sorted semen (17.1%) compared to conventional semen (1.6%). There was no sire effect with sex-sorted semen on P/AI (52.6% vs. 46.2%) and embryonic loss (16.4% vs. 18.0%). As expected, sex-sorted semen resulted in more female calves (89.8% vs. 51.6%) than conventional semen. Thus, sex-sorted semen can be used with 5-day Cosynch+Progesterone protocol to eliminate the inadequate oestrus detection and to increase female calves born in dairy heifers.  相似文献   

5.
Crossbred cows (n = 1073) from five locations had oestrous cycles synchronized with 100 μg of GnRH IM and insertion of controlled internal drug release device (CIDR) on Day 0 followed by 25 mg of PGF IM and CIDR removal on Day 7. Kamar® patches were placed on all cows at CIDR removal. Cows were observed three times daily for oestrus after PGF administration. In the Ovsynch‐CIDR group, cows detected in oestrus (n = 193) within 48 h after PGF were inseminated using the AM–PM rule. Among these cows, 80 received and 113 did not receive a second GnRH at 48 h after PGF. Cows (n = 345) not detected in oestrus received a second GnRH at 48 h after PGF on Day 9, and fixed‐time AI 16 h after the GnRH on Day 10. In the CO‐Synch‐CIDR group, cows detected in oestrus (n = 224) within 48 h after PGF were inseminated using the AM–PM rule. Among these cows, 79 received and 145 did not receive a second GnRH at 64 h after PGF. Cows (n = 311) not detected in oestrus received a second GnRH on Day 10 at the time of AI, 64 h after PGF. The AI pregnancy rates were not different between the Ovsynch‐CIDR and CO‐Synch‐CIDR groups (p = 0.48). There were no differences in the AI pregnancy rates for cows inseminated at a fixed time (p = 0.26) or at detected oestrus (p = 0.79) between the treatment groups. Among cows inseminated in oestrus, there were no differences in the AI pregnancy rates between cows that received or did not receive the second GnRH (p = 0.47). In conclusion, acceptable AI pregnancy rates can be achieved with or without inclusion of oestrus detection in the Ovsynch‐CIDR and CO‐Synch‐CIDR protocols. Among cows detected in oestrus, cows that received a second GnRH yielded similar pregnancy rates when compared with cows that did not receive the second GnRH.  相似文献   

6.
An experiment was conducted to examine the effect of progesterone prior to a GnRH‐PGF2α treatment on oestrus and pregnancy in seasonally anoestrous Awassi ewes. Twenty‐four ewes were randomly assigned to three groups to be pre‐treated with 60 mg medroxyprogesterone acetate sponges (group A), 600 mg progesterone sponges (group B) or blank sponges (group C) for 4 days. All ewes were injected with 100 μg of GnRH 24 h after sponge removal followed, 5 days later, by 20 mg PGF2α injection. Ewes were exposed to three fertile rams at the time of PGF2α injection (day 0, 0 h) and were checked for breeding marks at 6‐h intervals for 5 days. Blood samples were collected from all ewes 1 day (day ?10) prior to sponge insertion, at the time of sponge removal (day ?6), 1 day following sponge removal (day ?5, at the time of GnRH injection) and at the time of PGF2α injection (day 0) for analysis of progesterone. Progesterone concentrations on days ?10 and ?5 were basal and averaged 0.2 ± 0.04 and 0.2 ± 0.2 ng/ml, respectively. Progesterone concentrations on day ?6 were elevated only in group B ewes and were higher (p < 0.0001) than those of groups A and C. Progesterone concentrations on day 0 were higher (p = 0.002) in groups A and B than group C. Oestrous responses occurred only in ewes of groups A and B (p > 0.05). Induced oestrus conception rate was greater (p < 0.01) in group A than groups B and C. Ewes returned to oestrus 17–20 days following day 0 were two of eight, six of eight and three of eight of groups A, B and C, respectively, all of which eventually lambed. The overall lambing rate was 82% in progesterone‐primed ewes compared with only 38% non‐progesterone‐primed ewes (p < 0.05). Progesterone priming apparently sensitizes GnRH‐PGF2α‐treated seasonally anoestrous ewes and increases their response in oestrus and pregnancy rates.  相似文献   

7.
Objectives were to evaluate risk factors affecting ovulatory responses and conception rate to the Ovsynch protocol. Holstein cows, 466, were submitted to the Ovsynch protocol [day 0, GnRH‐1; day 7, prostaglandin (PG) F; day 9, GnRH‐2] and 103 cows were inseminated 12 h after GnRH‐2. Information on parity, days in milk at GnRH‐1, body condition, milk yield, exposure to heat stress, pre‐synchronization with PGF and the use of progesterone insert from GnRH‐1 to PGF was collected. Ovaries were scanned to determine responses to treatments. Overall, 54.7%, 10.6%, 2.2%, 81.1%, 9.0%, 91.5% and 36.9% of the cows ovulated to GnRH‐1, multiple ovulated to GnRH‐1, ovulated before GnRH‐2, ovulated to GnRH‐2, multiple ovulated to GnRH‐2, experienced corpus luteum (CL) regression and conceived, respectively. Ovulation to GnRH‐1 was greater in cows without a CL at GnRH‐1, cows with follicles >19 mm and cows not pre‐synchronized with PGF 14 days before GnRH‐1. Multiple ovulations to GnRH‐1 increased in cows without CL at GnRH‐1 and cows with follicles ≤19 mm at GnRH‐1. Ovulation before GnRH‐2 was greater in cows without CL at PGF. Ovulation to GnRH‐2 increased in cows that received a progesterone insert, cows with a CL at GnRH‐1, cows with follicles not regressing from the PGF to GnRH‐2, cows with larger follicles at GnRH‐2, cows that ovulated to GnRH‐1 and cows not pre‐synchronized. Multiple ovulations after GnRH‐2 increased in cows with no CL at GnRH‐1, multiparous cows and cows that multiple ovulated to GnRH‐1. Conception rate at 42 days after AI increased in cows with body condition score > 2.75 and cows that ovulated to GnRH‐2. Strategies that optimize ovulation to GnRH‐2, such as increased ovulation to GnRH‐1, should improve response to the Ovsynch protocol.  相似文献   

8.
During the cycle, the secretion of progesterone by the corpus luteum inhibits the positive feedback of oestrogens and thus prevents the LH discharge, and also primes the central nervous system for oestrous behaviour. Prostaglandin F has been identified as the hormone produced by the uterus which causes luteal regression. The LH discharge leading to ovulation follows the demise of the CL. None of the characteristics of the LH surge (duration, maximum level, total release) can be related to ovulation rate. However, the interval from onset of oestrus to the beginning of the LH discharge is greater in highly prolific breeds than in less prolific ones.The knowledge of these physiological processes leading to oestrus and ovulation makes possible the control of ovarian activity in the ewe. In cyclic females, the control of the timing of the LH discharge and ovulation can be obtained either by inducing luteolysis with PGF or its synthetic analogues after day 4–5 of the cycle, or by artificially lengthening the luteal phase with exogenous progesterone or progestagens.During the seasonal and post-partum anoestrus, PGF is ineffective and progesterone or progestagens alone are generally unable to induce oestrus and ovulation. Addition at the end of progestagen treatment of inducers of follicular growth and LH release is necessary. Both PMSG and synthetic GnRH are used for this purpose.  相似文献   

9.
This study was carried out to investigate the efficacy of PGF2α for oestrus synchronization (ES) in Awassi ewes to which were administered the progestagen–PMSG combination, and to evaluate the effect of the exogenous GnRH administration immediately after the artificial insemination (AI) on their pregnancy rate and lambing performance during the breeding season. The ewes (n = 33) were treated with an intravaginal sponge impregnated with 30 mg fluorogestane acetate for 12 days and were injected with 500 IU PMSG at the time of removal of the sponge. The ewes were then divided into three equal groups of 11 ewes each. One millilitre of physiological saline (0.9% NaCl; placebo) was administered to each ewe in Group 1 at the time of second AI. Approximately 4 μg GnRH (busereline) was injected to each ewe in Group 2 immediately after second AI. A total of 150 μg PGF2α (cloprostenole) was injected at the time of sponge removal on day 12 and 4 μg GnRH immediately after the second AI was also treated to each ewe in Group 3. Intracervical AI with diluted fresh semen was performed twice at 12 and 24 h following the onset of oestrus. The injection‐oestrus onset and injection‐oestrus‐end interval in Group 3 was significantly (p < 0.001) shorter than both Groups 1 and 2. Although the pregnancy rates of Groups 2 and 3 (81.8%; 9/11) were numerically higher than of Group 1 (63.6%; 7/11), the difference among the groups was statistically insignificant. The multiple birth rate of Group 3 was found higher than Groups 1 and 2. However, the number of single lambs of Group 1 was also higher than Groups 2 and 3 (p < 0.05). Despite the litter sizes of Groups 2 (1.27; 14/11) and 3 (1.55; 17/11) being numerically higher than Group 1 (0.73; 8/11), the differences among all the groups were statistically insignificant. In conclusion, the administration of PGF2α at the time of removal of the sponge shortens the injection oestrus‐onset and oestrus‐end interval in Awassi ewes treated with progestagen–PMSG. Additionally, exogenous GnRH treatment immediately after the AI increases the multiple birth rate of Awassi ewes synchronized with progestagen–PMSG–PGF2α combination.  相似文献   

10.
This study compares the factors associated with variable interval to oestrus and ovulation between early versus late ovulating goats following PGF administration. The time of ovulation in Beetal goats (n = 38) was monitored through transrectal ultrasound at every 6 hr following a single dose of PGF (experiment 1). Variations in oestrus and ovulation times were further explored through the changes in follicular dynamics, endocrine profiles and behaviour in another set of goats (n = 13) following single PGF given randomly during the luteal phase (experiment 2). The ovulation time varied between 60 and 96 hr, and 57% of ovulations occurred by 72 hr following PGF (experiment 1). Accordingly, the goats (n = 13) in the second experiment were retrospectively divided either into early and/or late ovulating, that is, ≤72 and/or ≥84 hr following PGF. The onset of oestrus, peak estradiol‐17β concentration and LH surge after PGFwas first observed in early than late ovulating goats (p < 0.05). The goats ovulating early had larger follicle and smaller CL in diameter at the time of PGF administration than those ovulating late (5.4 ± 0.2 vs. 4.3 ± 0.2 mm and 10 ± 0.6 vs. 11.8 ± 0.3 mm, respectively; p < 0.05). Likewise, plasma progesterone concentration tended to be lower (p = 0.087) in early than late ovulating goats. In conclusion, the size of dominant follicle and CL at the time of PGF2a determines the interval to ovulation following a single dose of PGF2a during the luteal phase.  相似文献   

11.
AIM: To evaluate the conception rate to fixed-time artificial insemination (FTAI) of two oestrus synchronisation programmes in dairy heifers on eight farms over 2 years.

METHODS: The study was conducted in 2008 and 2010 on eight farms near Palmerston North, New Zealand. Nulliparous Friesian and Friesian×Jersey heifers (13–15 months of age) were randomly allocated to one of two oestrus synchronisation programmes. Group 1 (GPG+P4; n=330), received gonadotrophin-releasing hormone (GnRH) I/M on Day 0, a progesterone (P4)-releasing intravaginal device from Days 0–7, prostaglandin F (PGF) I/M on Day 7 and a second dose of GnRH at the time of FTAI on Day 9. The second group (P4+PGF; n=343) received a P4-releasing intravaginal device from Days 0–7, PGF on Day 6 and FTAI on Day 9. Pregnancy was diagnosed from Days 42–52 by transrectal ultrasonography.

RESULTS: The overall conception rate was 52.4% and 54.8% for the GPG+P4 and P4+PGF groups, respectively. The odds of conception for the two treatments were not different (OR=0.90; 95% CI=0.67–1.23), nor was there any difference between groups in different years (p=0.58). Farm affected conception rate (p=0.002), but there was no interaction with treatment (p=0.92) .

CONCLUSIONS: This study has shown that an alternative synchronisation programme can produce similar results in terms of conception rate to the GPG+P4 treatment, currently commonly used in heifers. More research is required to establish whether other modifications to the GPG+P4 programme can produce similar results at lower costs, and to identify and quantify farm factors which affect the economic benefit of heifer synchronisation.

CLINICAL RELEVANCE: This study indicated that synchronising heifers with P4 and PGF resulted in conception rates equivalent to those resulting from a GPG+P4 treatment, but with reduced drug costs. However, because heifers in the GPG+P4 group received the second GnRH injection at the time of AI, they needed only three yardings as opposed to the four required for the heifers treated with P4 and PGF. Thus, the choice of programme for an individual farm will depend on that farm's circumstances, in particular the cost of yarding the heifers.  相似文献   

12.
Objectives of this study were to evaluate synchronization, conception, and pregnancy rates of heifers synchronized with melengestrol acetate (MGA)-prostaglandin F (PGF,), Select Synch, or Select Synch preceded by MGA (MGA-Select Synch). Heifers in the MGA-PGF group (n = 209; BW = 378 kg) received MGA (0.5 mg/ d per heifer) for 14 d and PGF (25 mg) 19 d later. Select Synch heifers (n = 213; BW = 374 kg) received gonadotropin-releasing hormone (GnRH; 100 μg) followed by PGF (25 mg) 7 d later. The MGA-Select Synch heifers (n = 210; BW = 373 kg) were fed MGA (0.5 mg/d per heifer) for 7 d, GnRH (100 μg) the day following the last MGA feeding, and PGF (25 mg) 7 d after GnRH. More (P<0.01) heifers were in estrus 1 to 4 d before PGF2a administration in both the Select Synch (20%) and MGA-Select Synch (24%) groups than in the MGA-PGF (4%) group. Pregnancy rates for heifers in estrus early (d 1 to 4 before PGF) were greater (P<0.05) for both Select Synch (55%) and MGA-Select Synch (63%) compared with MGA-PGF heifers (18%). Synchronization rate (detected after PGF) was greater (P<0.01) for MGA-PGF heifers (86%) compared with Select Synch (66%) and MGA-Select Synch (68%) heifers; however, conception rate did not differ (P=0.13) and averaged 72, 63, and 62% for MGA-PGF, Select Synch, and MGA-Select Synch heifers, respectively. Select Synch (52%), MGA-Select Synch (58%), and MGA-PGF protocols (61%) provided similar (P=0.18) overall AI pregnancy rates; however, more heifers were in estrus before PGF administration in protocols using GnRH.  相似文献   

13.
The primary objective of this study was to investigate the impact of animal‐level factors including energy balance and environmental/management stress, on the ovarian function of Bos indicus heifers treated to synchronize ovulation. Two‐year‐old Brahman (BN) (n = 30) and BN‐cross (n = 34) heifers were randomly allocated to three intravaginal progesterone‐releasing device (IPRD) treatment groups: (i) standard‐dose IPRD [Cue‐Mate® (CM) 1.56 g; n = 17]; (ii) half‐dose IPRD [0.78 g progesterone (P4); CM 0.78 g; n = 15]; (iii) half‐dose IPRD + 300 IU equine chorionic gonadotrophin at IPRD removal (CM 0.78 g + G; n = 14); (iv) and a control group, 2× PGF [500 μg prostaglandin F (PGF)] on Day ?16 and ?2 (n = 18). Intravaginal progesterone‐releasing device‐treated heifers received 250 μg PGF at IPRD insertion (Day ?10) and IPRD removal (Day ?2) and 1 mg oestradiol benzoate on Day ?10 and ?1. Heifers were managed in a small feedlot and fed a defined ration. Ovarian function was evaluated by ultrasonography and plasma P4 throughout the synchronized and return cycles. Energy balance was evaluated using plasma insulin‐like growth factor 1 (IGF‐I) and glucose concentrations. The impact of environmental stressors was evaluated using plasma cortisol concentration. Heifers that had normal ovarian function had significantly higher IGF‐I concentrations at commencement of the experiment (p = 0.008) and significantly higher plasma glucose concentrations at Day ?2 (p = 0.040) and Day 4 (p = 0.043), than heifers with abnormal ovarian function. There was no difference between the mean pre‐ovulatory cortisol concentrations of heifers that ovulated or did not ovulate. However, heifers that ovulated had higher cortisol concentrations at Day 4 (p = 0.056) and 6 (p = 0.026) after ovulation than heifers that did not ovulate.  相似文献   

14.
Timed artificial insemination (TAI) has boosted the use of conventional artificial insemination (CAI) by employing hormonal protocols to synchronize oestrus and ovulation. This study aimed to evaluate the efficiency of a hormonal protocol for TAI in mares, based on a combination of progesterone releasing intravaginal device (PRID), prostaglandin (PGF) and human chorionic gonadotropin (hCG); and compare financial costs between CAI and TAI. Twenty-one mares were divided into two groups: CAI group (CAIG; n = 6 mares; 17 oestrous cycles) and TAI group (TAIG; n = 15 mares; 15 oestrous cycles). The CAIG was subjected to CAI, involving follicular dynamics and uterine oedema monitoring with ultrasound examinations (US), and administration of hCG (1,600 IU) when the dominant follicle (DF) diameter's ≥35 mm + uterine oedema + cervix opening. The AI was performed with fresh semen (500 × 106 cells), and embryo was recovered on day 8 (D8) after ovulation. In TAI, mares received 1.9 g PRID on D0. On D10, PRID was removed and 6.71 mg dinoprost tromethamine was administered. Ovulation was induced on D14 (1,600 IU of hCG) regardless of the DF diameter's, and AI was performed with fresh semen (500 × 106 cells). On D30 after AI, pregnancy was confirmed by US. The pregnancy rate was 80.0% in TAIG and 82.3% in CAIG (p > .05). The TAI protocol resulted in 65% reduction in professional transport costs, and 40% reduction in material costs. The TAI was as efficient as CAI, provided reduction in costs and handlings, and is recommended in mares.  相似文献   

15.
The objective of the study was to determine the efficiency of ovsynch (OV) versus presynch-ovsynch (P-OV) protocol for synchronization of ovulation and timed artificial insemination (TAI) in female buffaloes. The OV group (n = 40) received gonadotrophin-releasing hormone (GnRH) on day 0 (random day of the estrous cycle), prostaglandin ( PGF2a ) \left( {{\hbox{PG}}{{\hbox{F}}_{2\alpha }}} \right) on day 7 and a second GnRH administration on day 9 followed by a single artificial insemination (AI) 16-20 h later. The P-OV group (n = 40) received two PGF2a {\hbox{PG}}{{\hbox{F}}_{2\alpha }} injections 14 days apart, with the second injection administered 14 days before starting the OV protocol. Progesterone (P4) was measured at the time of PGF2a {\hbox{PG}}{{\hbox{F}}_{2\alpha }} administration (within the OV protocol) and AI. Neither ovulation rate ((24 h after TAI) OV 90%-36/40 vs. P-OV 85%-34/40) nor pregnancy rates ((day 60 after TAI) OV 35%-14/40 vs. P-OV 45%-18/40) differed between the two protocols. Pregnant buffaloes had lower concentrations of P4 at AI compared with non-pregnant animals in the OV group (0.7 ± 0.1 vs. 1.1 ± 0.1 ng/ml); but in the P-OV group, differences did not reach statistical significance (0.8 ± 0.1 vs. 1.0 ± 0.1 ng/ml). This apparent trend reached statistical significance when the analysis was carried out in animals from both protocols (0.7 ± 0.1 (pregnant) vs. 1.1 ± 0.1 (non-pregnant) ng/ml). In conclusion, both protocols synchronize ovulation effectively with no significant differences in conception rates. High concentrations of P4 at AI seem to be detrimental for the establishment of pregnancy in lactating buffalo cows.  相似文献   

16.
The Girolando breed is used in pasture-based dairy production systems in Brazil to associate the high production of Bos taurus to the rusticity and thermal adaptation of Bos indicus. This study was designed to evaluate the physiological response to a gonadotropin-releasing hormone (GnRH)–prostaglandin F (PGF)–GnRH protocol to synchronize the ovulation in 40 Girolando heifers of a pasture-based dairy production system and its relationships with the temperature and humidity index (THI) during the dry (DS) and rainy season (RS) in the tropical savannah—Brazil's cerrado biome. Responses were characterized by follicular and corpus luteum number and diameter, ovulation (D9), and pregnancy rates after first AI. Total follicle number (8.1?±?0.3?×?8.8?±?0.3), D9 ovulatory follicle diameter (11.9?±?0.4?×?10.1?±?0.4 mm), corpus luteum diameter (8.6?±?1.3?×?3.9?±?1.5 mm), corpus luteum score (3.7?±?0.8?×?1.8?±?1.0), corpus luteum diameter after AI (9.6?±?1.6?×?3.9?±?1.5 mm), and corpus luteum score after AI (3.2?±?0.4?×?0.9?±?0.6) in DS and RS differed (P?<?0.01). D9 ovulation rate was 40 % (DS) and 20 % (RS), without differences (P?>?0.05). Pregnancy rate was 45 % (DS) and 11 % (RS), with differences (P?<?0.01). THI differed between DS and RS (P?<?0.01). THI may interfere in the follicular and luteal dynamics and in the response of Girolando heifers to the GnRH–PGF protocol in the tropical savannah, thus reducing the chances of pregnancy at the first artificial insemination.  相似文献   

17.
The present study was designed to determine the effect of estradiol benzoate (EB) on reproductive response following a controlled internal drug release (CIDR) protocol in crossbred (Sahiwal × Friesian) dairy heifers. In the first trial, a total of 100 crossbred dairy heifers were treated with CIDR protocol for 7 days and injected with the PGF on day 6. After 24 h of CIDR removal, one group (EB?=?50) was injected with estradiol benzoate whereas the other (control?=?50) remained untreated. Estrus intensity and response were recorded visually and ovulation rate was recorded by ultrasonography. All heifers were artificially inseminated at 48 and 60 h following CIDR removal. Heifers were scanned for pregnancy within days 30–40 of artificial insemination (AI). In the second trial, two subgroups of heifers were included to observe the estrus and ovulatory events. The results of the first trial revealed that estrus response was achieved 100% in both the treatment groups. Estrus intensity (2.9?±?0.1 vs. 2.0?±?0.7) and ovulation rate (100 vs. 88%) differed significantly (P?<?0.05) between the EB and control groups. However, a tendency for higher pregnancy per AI was observed (54 vs. 36%; P?=?0.07) in EB than that in control groups. The results of the second trial revealed that a significantly (P?<?0.05) shorter estrus and earlier ovulatory events were observed in EB-treated heifers. It is concluded that the incorporation of estradiol benzoate to the CIDR protocol is helpful to improve the estrus signs and enhance the ovulation and the pregnancy per AI in crossbred dairy heifers.  相似文献   

18.
The investigations were carried out on a total of 70 cows with puerperal endometritis. In addition to intrauterine antibiotic treatment, 30 experimental animals were administered 20 μg GnRH analogue, buserelin, between days 10 and 12 post‐partum followed by 500 μg PGF analogue, cloprostenol, 10 days later. Forty control cows were treated only with intrauterine antibiotics. Blood samples for progesterone determination were collected from the tail vein twice weekly until day 70 post‐partum. The first rise in progesterone level above 3.18 nmol/l occurred significantly earlier in the experimental than in control cows (21.6 ± 9.2 versus 27.8 ± 12.3 days; p ≤ 0.05). The duration of the first cycle post‐partum was 15.0 ± 4.3 days in experimental and 19.7 ± 7.3 days in control animals (p ≤ 0.05). However, no significant differences were observed in the occurrence of first oestrus post‐partum. The involution of the uterus was improved after hormone treatment. At day 42 post‐partum, completion of uterine involution was found in 93.3% of hormone‐treated cows and in 82.5% of those treated with antibiotic only (p ≤ 0.05). Clinical recovery was 96.6% in the experimental and 82.5% in the control group (p ≤ 0.05). First service pregnancy rate was significantly better in hormone‐treated than control cows (51.7 versus 36.4%; p ≤ 0.05). Total pregnancy rate and insemination index values were not significantly improved following GnRH and PGF treatment. The average service period was 89.8 ± 21.2 days in cows after hormone treatment, and 112.6 ± 24.5 days in control cows. The difference was statistically significant (p ≤ 0.05). These results indicate, that the sequential GnRH and PGF application in cows with puerperal endometritis positively affected ovarian function and uterine involution, resulting in improved fertility performance.  相似文献   

19.
The study evaluated, in early post‐partum anoestrous Nelore cows, if the increase in plasma oestradiol (E2) concentrations in the pre‐ovulatory period and/or progesterone priming (P4 priming) preceding ovulation, induced by hormonal treatment, reduces the endogenous release of prostaglandin PGF2αand prevents premature lysis of the corpus luteum (CL). Nelore cows were subjected to temporary calf removal for 48 h and divided into two groups: GPE/eCG group (n = 10) and GPG/eCG group (n = 10). Animals of the GPE/eCG group were treated with a GnRH agonist. Seven days later, they received 400 IU of eCG, immediately after PGF2α treatment, and on day 0, 1.0 mg of oestradiol benzoate (EB). Cows of the GPG/eCG group were similarly treated as those of the GPE/eCG group, except that EB was replaced with a second dose of GnRH. All animals were challenged with oxytocin (OT) 9, 12, 15 and 18 days after EB or GnRH administration and blood samples were collected before and 30 min after OT. Irrespective of the treatments, a decline in P4 concentration on day 18 was observed for cows without P4 priming. However, animals exposed to P4 priming, treated with EB maintained high P4 concentrations (8.8 ± 1.2 ng/ml), whereas there was a decline in P4 on day 18 (2.1 ± 1.0 ng/ml) for cows that received GnRH to induce ovulation (p < 0.01). Production of 13,14‐dihydro‐15‐keto prostaglandin F2α (PGFM) in response to OT increased between days 9 and 18 (p < 0.01), and this increase tended to be more evident in animals not exposed to P4 priming (p < 0.06). In conclusion, the increase in E2 during the pre‐ovulatory period was not effective in inhibiting PGFM release, which was lower in P4‐primed than in non‐primed animals. Treatment with EB promoted the maintenance of elevated P4 concentrations 18 days after ovulation in P4‐primed animals, indicating a possible beneficial effect of hormone protocols containing EB in animals with P4 priming.  相似文献   

20.
This review considers recently developed methods to control estrous cycles of postpartum beef cows with melengestrol acetate (MGA®, Pharmacia Animal Health, Kalamazoo, MI). Melengestrol acetate is an orally active progestin that will suppress estrus and prevent ovulation in cattle if consumed on a daily basis. The duration of feeding may vary among the various protocols that are available, but the level of feeding (0.5 mg/d per animal) is consistent and critical to success. Feeding MGA® for 14 d followed by injection of prostaglandin F (PGF) 17 to 19 d after MGA® withdrawal was developed as an effective method of estrous cycle control for heifers. Studies in postpartum beef cows identified significant improvements in specific reproductive endpoints among cows that received MGA® prior to the administration of PGF compared with cows that received PGF only, including increased estrous response and improved synchronized conception (CR) and pregnancy (PR) rates. Recently, an improvement in synchrony of estrus was reported, without compromising fertility, in postpartum beef cows that were pretreated, either short- or long-term, with MGA® prior to gonadotropin-releasing hormone (GnRH) and PGF. We proposed the general hypothesis that progestin (MGA®) treatment prior to the GnRH-PGF estrus synchronization protocol would successfully 1) induce ovulation in anestrous postpartum beef cows; 2) reduce the incidence of a short luteal phase among anestrous cows induced to ovulate; 3) increase estrous response, synchronized CR, and PR; and 4) increase the likelihood of successful fixedtime insemination. Protocols that utilize this sequential approach to control the estrous cycle include the MGA® Select and 7-11 Synch protocols. The flexibility in matching specific protocols with the particular management system involved is a major advantage in using MGA® to control estrous cycles in cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号