首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The deposition of amyloid-beta (Abeta) peptides into amyloid plaques precedes the cognitive dysfunction of Alzheimer's disease (AD) by years. Biomarkers indicative of brain amyloid burden could be useful for identifying individuals at high risk for developing AD. As in AD in humans, baseline plasma Abeta levels in a transgenic mouse model of AD did not correlate with brain amyloid burden. However, after peripheral administration of a monoclonal antibody to Abeta (m266), we observed a rapid increase in plasma Abeta and the magnitude of this increase was highly correlated with amyloid burden in the hippocampus and cortex. This method may be useful for quantifying brain amyloid burden in patients at risk for or those who have been diagnosed with AD.  相似文献   

2.
Soluble oligomers are common to most amyloids and may represent the primary toxic species of amyloids, like the Abeta peptide in Alzheimer's disease (AD). Here we show that all of the soluble oligomers tested display a common conformation-dependent structure that is unique to soluble oligomers regardless of sequence. The in vitro toxicity of soluble oligomers is inhibited by oligomer-specific antibody. Soluble oligomers have a unique distribution in human AD brain that is distinct from fibrillar amyloid. These results indicate that different types of soluble amyloid oligomers have a common structure and suggest they share a common mechanism of toxicity.  相似文献   

3.
Plasma Abeta42 (amyloid beta42 peptide) is invariably elevated in early-onset familial Alzheimer's disease (AD), and it is also increased in the first-degree relatives of patients with typical late-onset AD (LOAD). To detect LOAD loci that increase Abeta42, we used plasma Abeta42 as a surrogate trait and performed linkage analysis on extended AD pedigrees identified through a LOAD patient with extremely high plasma Abeta. Here, we report linkage to chromosome 10 with a maximal lod score of 3.93 at 81 centimorgans close to D10S1225. Remarkably, linkage to the same region was obtained independently in a genome-wide screen of LOAD sibling pairs. These results provide strong evidence for a novel LOAD locus on chromosome 10 that acts to increase Abeta.  相似文献   

4.
Esler WP  Wolfe MS 《Science (New York, N.Y.)》2001,293(5534):1449-1454
The amyloid beta-peptide (Abeta) is a principal component of the cerebral plaques found in the brains of patients with Alzeheimer's disease (AD). This insoluble 40- to 42-amino acid peptide is formed by the cleavage of the Abeta precursor protein (APP). The three proteases that cleave APP, alpha-, beta-, and gamma-secretases, have been implicated in the etiology of AD. beta-Secretase is a membrane-anchored protein with clear homology to soluble aspartyl proteases, and alpha-secretase displays characteristics of certain membrane-tethered metalloproteases. gamma-Secretase is apparently an oligomeric complex that includes the presenilins, which may be the catalytic component of this protease. Identification of the alpha-, beta-, and gamma-secretases provides potential targets for designing new drugs to treat AD.  相似文献   

5.
The incidence of Alzheimer's disease (AD) and that of prion disorders (PrD) could not be more different. One-third of octogenarians succumb to AD, whereas Creutzfeldt-Jakob disease typically affects one individual in a million each year. However, these diseases have many common features impinging on the metabolism of neuronal membrane proteins: the amyloid precursor protein APP in the case of AD, and the cellular prion protein PrPC in PrD. APP begets the Abeta peptide, whereas PrPC begets the malignant prion protein PrPSc. Both Abeta and PrPSc are associated with disease, but we do not know what triggers their accumulation and neurotoxicity. A great deal has been learned, however, about protein folding, misfolding, and aggregation; an entirely new class of intramembrane proteases has been identified; and unsuspected roles for the immune system have been uncovered. There is reason to expect that prion research will profit from advances in the understanding of AD, and vice versa.  相似文献   

6.
Amyloid beta peptide (Abeta), the pathogenic agent of Alzheimer's disease (AD), is a physiological metabolite in the brain. We examined the role of neprilysin, a candidate Abeta-degrading peptidase, in the metabolism using neprilysin gene-disrupted mice. Neprilysin deficiency resulted in defects both in the degradation of exogenously administered Abeta and in the metabolic suppression of the endogenous Abeta levels in a gene dose-dependent manner. The regional levels of Abeta in the neprilysin-deficient mouse brain were in the distinct order of hippocampus, cortex, thalamus/striatum, and cerebellum, where hippocampus has the highest level and cerebellum the lowest, correlating with the vulnerability to Abeta deposition in brains of humans with AD. Our observations suggest that even partial down-regulation of neprilysin activity, which could be caused by aging, can contribute to AD development by promoting Abeta accumulation.  相似文献   

7.
A subset of nonsteroidal anti-inflammatory drugs (NSAIDs) has been shown to preferentially reduce the secretion of the highly amyloidogenic, 42-residue amyloid-beta peptide Abeta42. We found that Rho and its effector, Rho-associated kinase, preferentially regulated the amount of Abeta42 produced in vitro and that only those NSAIDs effective as Rho inhibitors lowered Abeta42. Administration of Y-27632, a selective Rock inhibitor, also preferentially lowered brain levels of Abeta42 in a transgenic mouse model of Alzheimer's disease. Thus, the Rho-Rock pathway may regulate amyloid precursor protein processing, and a subset of NSAIDs can reduce Abeta42 through inhibition of Rho activity.  相似文献   

8.
Gene dosage of the amyloid beta precursor protein in Alzheimer's disease   总被引:16,自引:0,他引:16  
The progressive deposition in the human brain of amyloid filaments composed of the amyloid beta protein is a principal feature of Alzheimer's disease (AD). Densitometric analysis of Southern blots probed with a complementary DNA for the amyloid protein has been carried out to determine the relative dosage of this gene in genomic DNA of 14 patients with AD, 12 aged normal subjects, and 10 patients with trisomy 21 (Down syndrome). Whereas patients in the last group showed the expected 1.5-fold increase in dosage of this gene, none of the patients with AD had a gene dosage higher than that of the normal controls. These results do not support the hypothesis that the genetic defect in AD involves duplication of a segment of chromosome 21 containing the amyloid gene. Alternative mechanisms for the brain-specific increase in amyloid protein deposition in AD should be considered.  相似文献   

9.
The possibility that Alzheimer's disease (AD) is caused by overexpression or duplication of one or more genes on chromosome 21 has been raised by the observation of AD-like neuropathologic changes in individuals with Down syndrome and by the mapping of both the defect for familial AD and the amyloid beta protein gene to this autosome. Possible duplication on chromosome 21 was investigated in both familial and sporadic AD by means of restriction fragment length polymorphisms for the amyloid and SODI loci, as well as for DNA markers in the vicinity of the familial AD defect and in the critical Down syndrome region of chromosome 21. No evidence of increased DNA dosage was observed in either brain or leukocytes of patients with inherited or sporadic forms of AD. Duplication of these regions is therefore not a frequent event in either form of AD. Furthermore, no significant allelic association was detected between AD and any of the loci, including the amyloid and SODI genes, providing no support for the hypothesis that defects in these specific genes are the primary cause of AD.  相似文献   

10.
Mitochondrial dysfunction is a hallmark of beta-amyloid (Abeta)-induced neuronal toxicity in Alzheimer's disease (AD). Here, we demonstrate that Abeta-binding alcohol dehydrogenase (ABAD) is a direct molecular link from Abeta to mitochondrial toxicity. Abeta interacts with ABAD in the mitochondria of AD patients and transgenic mice. The crystal structure of Abeta-bound ABAD shows substantial deformation of the active site that prevents nicotinamide adenine dinucleotide (NAD) binding. An ABAD peptide specifically inhibits ABAD-Abeta interaction and suppresses Abeta-induced apoptosis and free-radical generation in neurons. Transgenic mice overexpressing ABAD in an Abeta-rich environment manifest exaggerated neuronal oxidative stress and impaired memory. These data suggest that the ABAD-Abeta interaction may be a therapeutic target in AD.  相似文献   

11.
The amyloid-beta peptide (Abeta) plays a central pathophysiological role in Alzheimer's disease, but little is known about the concentration and dynamics of this secreted peptide in the extracellular space of the human brain. We used intracerebral microdialysis to obtain serial brain interstitial fluid (ISF) samples in 18 patients who were undergoing invasive intracranial monitoring after acute brain injury. We found a strong positive correlation between changes in brain ISF Abeta concentrations and neurological status, with Abeta concentrations increasing as neurological status improved and falling when neurological status declined. Brain ISF Abeta concentrations were also lower when other cerebral physiological and metabolic abnormalities reflected depressed neuronal function. Such dynamics fit well with the hypothesis that neuronal activity regulates extracellular Abeta concentration.  相似文献   

12.
Amyloid fibrils commonly exhibit multiple distinct morphologies in electron microscope and atomic force microscope images, often within a single image field. By using electron microscopy and solid-state nuclear magnetic resonance measurements on fibrils formed by the 40-residue beta-amyloid peptide of Alzheimer's disease (Abeta(1-40)), we show that different fibril morphologies have different underlying molecular structures, that the predominant structure can be controlled by subtle variations in fibril growth conditions, and that both morphology and molecular structure are self-propagating when fibrils grow from preformed seeds. Different Abeta(1-40) fibril morphologies also have significantly different toxicities in neuronal cell cultures. These results have implications for the mechanism of amyloid formation, the phenomenon of strains in prion diseases, the role of amyloid fibrils in amyloid diseases, and the development of amyloid-based nano-materials.  相似文献   

13.
Protein aggregation is an established pathogenic mechanism in Alzheimer's disease, but little is known about the initiation of this process in vivo. Intracerebral injection of dilute, amyloid-beta (Abeta)-containing brain extracts from humans with Alzheimer's disease or beta-amyloid precursor protein (APP) transgenic mice induced cerebral beta-amyloidosis and associated pathology in APP transgenic mice in a time- and concentration-dependent manner. The seeding activity of brain extracts was reduced or abolished by Abeta immunodepletion, protein denaturation, or by Abeta immunization of the host. The phenotype of the exogenously induced amyloidosis depended on both the host and the source of the agent, suggesting the existence of polymorphic Abeta strains with varying biological activities reminiscent of prion strains.  相似文献   

14.
Many potential treatments for Alzheimer's disease target amyloid-beta peptides (Abeta), which are widely presumed to cause the disease. The microtubule-associated protein tau is also involved in the disease, but it is unclear whether treatments aimed at tau could block Abeta-induced cognitive impairments. Here, we found that reducing endogenous tau levels prevented behavioral deficits in transgenic mice expressing human amyloid precursor protein, without altering their high Abeta levels. Tau reduction also protected both transgenic and nontransgenic mice against excitotoxicity. Thus, tau reduction can block Abeta- and excitotoxin-induced neuronal dysfunction and may represent an effective strategy for treating Alzheimer's disease and related conditions.  相似文献   

15.
In situ hybridization was used to assess total amyloid protein precursor (APP) messenger RNA and the subset of APP mRNA containing the Kunitz protease inhibitor (KPI) insert in 11 Alzheimer's disease (AD) and 7 control brains. In AD, a significant twofold increase was observed in total APP mRNA in nucleus basalis and locus ceruleus neurons but not in hippocampal subicular neurons, neurons of the basis pontis, or occipital cortical neurons. The increase in total APP mRNA in locus ceruleus and nucleus basalis neurons was due exclusively to an increase in APP mRNA lacking the KPI domain. These findings suggest that increased production of APP lacking the KPI domain in nucleus basalis and locus ceruleus neurons may play an important role in the deposition of cerebral amyloid that occurs in AD.  相似文献   

16.
Alzheimer's disease (AD) has a substantial inflammatory component, and activated microglia may play a central role in neuronal degeneration. CD40 expression was increased on cultured microglia treated with freshly solublized amyloid-beta (Abeta, 500 nanomolar) and on microglia from a transgenic murine model of AD (Tg APPsw). Increased tumor necrosis factor alpha production and induction of neuronal injury occurred when Abeta-stimulated microglia were treated with CD40 ligand (CD40L). Microglia from Tg APPsw mice deficient for CD40L demonstrated reduction in activation, suggesting that the CD40-CD40L interaction is necessary for Abeta-induced microglial activation. Finally, abnormal tau phosphorylation was reduced in Tg APPsw animals deficient for CD40L, suggesting that the CD40-CD40L interaction is an early event in AD pathogenesis.  相似文献   

17.
Recent studies suggest that insulin-degrading enzyme (IDE) in neurons and microglia degrades Abeta, the principal component of beta-amyloid and one of the neuropathological hallmarks of Alzheimer's disease (AD). We performed parametric and nonparametric linkage analyses of seven genetic markers on chromosome 10q, six of which map near the IDE gene, in 435 multiplex AD families. These analyses revealed significant evidence of linkage for adjacent markers (D10S1671, D10S583, D10S1710, and D10S566), which was most pronounced in late-onset families. Furthermore, we found evidence for allele-specific association between the putative disease locus and marker D10S583, which has recently been located within 195 kilobases of the IDE gene.  相似文献   

18.
Alzheimer's disease is characterized by widespread deposition of amyloid in the central nervous system. The 4-kilodalton amyloid beta protein is derived from a larger amyloid precursor protein and forms amyloid deposits in the brain by an unknown pathological mechanism. Except for aged nonhuman primates, there is no animal model for Alzheimer's disease. Transgenic mice expressing amyloid beta protein in the brain could provide such a model. To investigate this possibility, the 4-kilodalton human amyloid beta protein was expressed under the control of the promoter of the human amyloid precursor protein in two lines of transgenic mice. Amyloid beta protein accumulated in the dendrites of some but not all hippocampal neurons in 1-year-old transgenic mice. Aggregates of the amyloid beta protein formed amyloid-like fibrils that are similar in appearance to those in the brains of patients with Alzheimer's disease.  相似文献   

19.
The formation of clusters of altered axons and dendrites surrounding extracellular deposits of amyloid filaments (neuritic plaques) is a major feature of the human brain in both aging and Alzheimer's disease. A panel of antibodies against amyloid filaments and their constituent proteins from humans with Alzheimer's disease cross-reacted with neuritic plaque and cerebrovascular amyloid deposits in five other species of aged mammals, including monkey, orangutan, polar bear, and dog. Antibodies to a 28-amino acid peptide representing the partial protein sequence of the human amyloid filaments recognized the cortical and microvascular amyloid of all of the aged mammals examined. Plaque amyloid, plaque neurites, and neuronal cell bodies in the aged animals showed no reaction with antibodies to human paired helical filaments. Thus, with age, the amyloid proteins associated with progressive cortical degeneration in Alzheimer's disease are also deposited in the brains of other mammals. Aged primates can provide biochemically relevant models for principal features of Alzheimer's disease: cerebrovascular amyloidosis and neuritic plaque formation.  相似文献   

20.
In prion and Alzheimer's diseases, the roles played by amyloid versus nonamyloid deposits in brain damage remain unresolved. In scrapie-infected transgenic mice expressing prion protein (PrP) lacking the glycosylphosphatidylinositol (GPI) membrane anchor, abnormal protease-resistant PrPres was deposited as amyloid plaques, rather than the usual nonamyloid form of PrPres. Although PrPres amyloid plaques induced brain damage reminiscent of Alzheimer's disease, clinical manifestations were minimal. In contrast, combined expression of anchorless and wild-type PrP produced accelerated clinical scrapie. Thus, the PrP GPI anchor may play a role in the pathogenesis of prion diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号