首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal stability of phosphatidylcholine (PC) liposomes (colloidal dispersions of bilayer-forming polar lipids in aqueous solvents) in the presence and absence of the antimicrobial polypeptide nisin was evaluated using differential scanning calorimetry (DSC) and low-intensity ultrasonic spectroscopy (US). PC liposome mixtures with varying acyl chain lengths (C16:0 and C18:0) were formed in buffer with or without entrapped nisin. Gel-to-liquid crystalline phase transition temperatures (T(M)) of liposomes determined from DSC thermograms were in excellent agreement with those determined by ultrasonic velocity and attenuation coefficient measurements recorded at 5 MHz. The dipalmitoylphosphatidylcholine (DPPC) T(M) measured by DSC was approximately 41.3 and approximately 40.7 degrees C when measured by ultrasonic spectroscopy. The T(M) of distearoylphosphatidylcholine (DSPC) and DPPC/DSPC 1:1 liposomes was 54.3 and 54.9 degrees C and approximately 44.8 and approximately 47.3 degrees C when measured by DSC and US, respectively. The thermotropic stability generally increased upon addition of nisin. Analysis of the stepwise decrease in ultrasonic velocity with temperature indicated an increased compressibility corresponding to a loss of structure upon heating.  相似文献   

2.
棕榈酸甲酯(C16:0)、硬脂酸甲酯(C18:0)和油酸甲酯(C18:1)是生物柴油的主要组成部分。为了深入探究生物柴油的结晶行为,该文基于差示扫描量热法(differential scanning calorimetry,DSC)分析了这3种脂肪酸酯的物性参数,研究发现饱和脂肪酸甲酯C16:0和C18:0的熔点和熔化焓远远高出不饱和脂肪酸甲酯C18:1的值,C16:0和C18:0的熔点分别为301.57、310.92 K,C18:1的熔点为255.01 K。对脂肪酸酯组成的二元溶液进行DSC扫描,DSC曲线出现了2个放热峰,并且溶液的结晶点要低于首先析出的饱和脂肪酸酯纯物质时的熔点;随着饱和脂肪酸酯质量分数的增加溶液的结晶点温度也相应提高。将生物柴油当作由多元脂肪酸甲酯的混合溶液时,C16:0和C18:0等饱和脂肪酸甲酯作为溶质,C18:1等不饱和脂肪酸甲酯作为溶剂,建立了热力学模型计算溶液的结晶点温度。将脂肪酸甲酯的混合溶液近似为理想溶液时对此模型进一步简化,并利用简化模型计算得到4种生物柴油的结晶温度,与实测值进行比较得到了很好的验证效果。该研究可为优化生物柴油低温流动性的技术措施提供参考。  相似文献   

3.
Summary Changes in the physicochemical properties of three kinds of litter (Prunus serotina leaves, Carpinus betulus leaves, and Pinus sylvestris needles) were analyzed by differential scanning calorimetry and differential thermogravimetry after decomposition for 12 to 27 months under field conditions. As expected, holocellulose was always decomposed to a larger extent than the corresponding lignin components, leading to an enrichment of lignin in the residue. These lignins were more or less modified depending on the plant species. Moreover, the results suggest that energy-rich crystalline cellulose accumulates during decomposition at the expense of easier degradable amorphous cellulose and hemicelluloses. The quotient Q, from the corresponding calorimetry and thermogravimetry values, was introduced to estimate the specific energy content as a measure for the decomposition of litter components.Dedicated to the late Prof. Dr. W. Kühnelt  相似文献   

4.
Effect of freezing and frozen storage of doughs on bread quality   总被引:3,自引:0,他引:3  
The effects of freezing and storage in frozen conditions on bread quality, crumb properties, and aggregative behavior of glutenins were analyzed. The effect of different additives on bread quality was also studied. The results obtained showed that freezing and storage at -18 degrees C decreased the bread quality. Samples stored in frozen conditions supplemented with diacetyl-tartaric acid ester of monoglycerides, gluten, and guar gum produced breads of greater volume and more open crumb structure than those prepared with the base formulation (without additives). All additives analyzed increased the proof time. Crumb firmness increased with dough frozen storage and bread aging time at 4 degrees C. A decrease in the amount of glutenin subunits of high molecular mass was observed by electrophoresis analysis of the SDS-soluble proteins aggregates extracted from the frozen dough. This result suggested that the protein matrix of bread underwent depolymerization during storage in frozen conditions.  相似文献   

5.
The crystallization of fats has been extensively studied because of its importance in the processing of food and food ingredients. Differential scanning calorimetry (DSC) is widely used in such studies. The aim of this study was to examine the determination of kinetic parameters from nonisothermal DSC crystallization of a model fat, 1,3-dipalmitoyl-2-oleoylglycerol. We applied peak and isoconversional methods to determine activation energies and compared these techniques with a nonparametric method, which separates the temperature dependence and degree of crystallization dependence of the crystallization rate. The Johnson-Mehl-Avrami-Erofeyev-Kolmogorov (JMAEK) model provided the best fit to the data, while the temperature dependence of the rate constant was best explained by a Vogel-Fulcher relationship, where the reference temperature was the melting point of the crystallizing species.  相似文献   

6.
The effect of various sourdoughs and additives on bread firmness and staling was studied. Compared to the bread produced with Saccharomyces cerevisiae 141, the chemical acidification of dough fermented by S. cerevisiae 141 or the use of sourdoughs increased the volume of the breads. Only sourdough fermentation was effective in delaying starch retrogradation. The effect depended on the level of acidification and on the lactic acid bacteria strain. The effect of sourdough made of S. cerevisiae 141-Lactobacillus sanfranciscensis 57-Lactobacillus plantarum 13 was improved when fungal alpha-amylase or amylolytic strains such as L. amylovorus CNBL1008 or engineered L. sanfranciscensis CB1 Amy were added. When pentosans or pentosans, endoxylanase enzyme, and L. hilgardii S32 were added to the same sourdough, a greater delay of the bread firmness and staling was found. When pentosans were in part hydrolyzed by the endoxylanase enzyme, the bread also had the highest titratable acidity, due to the fermentation of pentoses by L. hilgardii S32. The addition of the bacterial protease to the sourdough increased the bread firmness and staling.  相似文献   

7.
Multienoic fatty acids, such as linolenic acid, show their ability to interact with and to penetrate into model biomembranes by biomimetic experiments performed to support the absorption route followed by n-3 fatty acid in cells. The thermotropic behavior of model biomembranes, that is, dimyristoylphosphatidylcholine multilamellar or unilamellar vesicles, interacting with linolenic acid was investigated by differential scanning calorimetry. When dispersed in liposomes during their preparation, the examined biomolecule was found to interact with the phospholipid bilayers by modifying the gel to liquid-crystal phase transition of lipid vesicles; this modification is a function of the fatty acid concentration. Calorimetric analysis was also performed on samples obtained by leaving the pure n-3 acid in contact with lipid aqueous dispersions (multilamellar or unilamellar vesicles) and then examining the thermotropic behavior of these systems for increasing incubation times at temperatures higher than the transitional lipid temperature. Linolenic acid (LNA) was able to migrate through the aqueous medium and successively to interact with the vesicle surface and to penetrate into the model membranes, following a flip-flop mechanism, with a faster and higher effect for unilamellar vesicles, caused by the larger lipid surface exposed, compared to the multilamellar ones, although due to the lipophilic nature of LNA, such a transfer is hindered by the aqueous medium. The relevance of the medium in LNA absorption has been well clarified by other biomimetic transfer experiments, which showed the LNA transfer from loaded multilamellar vesicles to empty vesicles. Taken together, the present findings support the hypothesis of a passive n-3 acid transport as the main route of absorption into cell membranes.  相似文献   

8.
The effect of frozen storage (-10 and -30 degrees C), formaldehyde, and fish oil on collagen, isolated from cod muscle, was investigated. Salt- and acid-soluble collagen fractions as well as insoluble collagen indicated changes in solubility on frozen storage. Differential scanning calorimetry (DSC) showed a highly cooperative transition at 28.2 degrees C for isolated collagen. Changes in the thermodynamic properties of collagen were observed on frozen storage at -10 degrees C compared with the control at -30 degrees C because of changes in structure. In the presence of formaldehyde, there were no changes in the DSC collagen transition; however, in the presence of fish oil there was an increase in enthalpy and an extra peak was observed at 44.6 degrees C, indicating collagen-fish oil interaction. Structural changes resulted in a decrease in the solubility of collagen in salt and acid solution. FT-Raman spectra obtained for collagen at -10 degrees C and -30 degrees C confirmed the alteration of the conformation of collagen not only at -10 degrees C but also in the presence of formaldehyde and fish oil.  相似文献   

9.
To verify the paradigm that organic matter (OM) quality (q) decreases with decomposition it is necessary to define q in strictly chemical, operational terms. We suggest defining q as the result of a balance between the energy stored in OM and the external supply of energy needed to release it. We apply this concept to the study of litter decomposition in four European pine forests: boreal, cool Atlantic, Mediterranean and warm Atlantic. Intact litter cores were taken and transported to the laboratory, where needles were sorted into six classes that summarize the main facts of the decomposition: melanisation, fragmentation and perforation by mesofauna. Each class was analyzed by both differential thermogravimetry and differential scanning calorimetry to obtain its spectra of weight loss and energy release.In the non-decomposed needles, two peaks of weight loss and energy release appear: a labile peak at about 350 °C, and a recalcitrant peak at about 450 °C. During decomposition, both peaks (but especially the recalcitrant one) move to lower temperatures, and their shapes change from well defined to flattened. In Mediterranean litters, a third peak appears at about 500 °C, due probably to refractory products of neoformation. There is a continuous increase in the energy stored in the remaining litter (in Joules per unit OM): this increase is concentrated in both the most thermolabile fractions (lost at temperatures <350 °C) and the most thermostable ones (>450 °C). With decomposition OM becomes more recalcitrant (i.e., it is lost at higher temperatures), but its stored energy becomes more available (i.e., it is released at lower temperatures). Overall, the energetic benefit/cost ratio increases. Thus, our results to date do not agree with the current paradigm that q decreases with decomposition; rather, they suggest that, at least in the first phases we studied, q is maintained or even increases.  相似文献   

10.
The interaction of resveratrol (trans-3,5,4'-trihydroxystilbene) and two of its derivatives (3,5,4'-tri-O-methylresveratrol and 3,5,4'-tri-O-triacetylresveratrol) with biomembrane models, represented by dimyristoylphosphatidylcholine (DMPC) multilamellar vesicles (MLV), has been studied by differential scanning calorimetry (DSC). The analysis of MLV prepared in the presence of increasing molar fraction of such compounds has been carried out to reveal their maximum interaction with biomembrane models. The results from these studies have been compared with kinetic experiments results, in order to detect the entity and rate of compound absorption by the biomembrane models. The findings indicate that the compounds affected the thermotropic properties of DMPC MLV by suppressing the pretransition peak and broadening the DMPC main phase transition calorimetric peak and shifting it to lower temperatures. The order of effectiveness found was resveratrol > trimethylresveratrol > triacetylresveratrol. The kinetic experiments reveal that in an aqueous medium the absorption of resveratrol by the biomembranes models is allowed, whereas the absorption of its derivatives is hindered; in contrast when a lipophilic medium is employed, all three compounds are easily absorbed.  相似文献   

11.
The different interactions of p-hydroxybenzoic acid (1), a simple biophenol (BP) found in olives and their food products, and its substitute analogues, benzoic (2), anisic (3), and toluic (4) acids, with a model membrane represented by dimyristoylphosphatidylcholine (DMPC) multilamellar vesicles (MLV) was studied by differential scanning calorimetry (DSC). The influence of their different lipophilic character on transfer and absorption processes through an aqueous medium into a lipid bilayer was also investigated. DSC experiments allowed monitoring of the interaction of BP with biomembranes by considering the effects exerted on the thermotropic behavior of DMPC multilamellar and unilamellar vesicles at different pHs (4 and 7.4). The examined compounds affect the transition temperature (T(m)) of phospholipid vesicles, causing a shift toward lower values, which is modulated by the molecular fraction entering into the lipid bilayer, as well as by their molecular interaction with the lipids. Kinetic calorimetric measurements were performed on suspensions of blank liposomes immediately after being added to fixed weighed amounts of powdered compounds and after increasing incubation periods at 37 degrees C. T(m) shifts, due to molecular dissolution and transfer of the compounds into the membrane surface occurring during the incubation time, were compared with those determined by a fixed molar fraction of free compounds directly dispersed in the membrane. The results show that the kinetic process, involved in molecular release, transfer through aqueous medium, and uptake by the model membrane surface, is influenced by lipophilicity as well as by pH, acting on the acid solubility and membrane disorder, allowing us to gather useful information on the BP intake process of olive derived foodstuffs.  相似文献   

12.
The firming and carbohydrate fractions of concentrated starch gels supplemented with four alpha-amylases from different sources were evaluated. Correlations were found between the firmness data and results for the carbohydrate fractions extracted from the gels. The thermostable (TBA) and intermediate temperature stability (ISBA) bacterial alpha-amylases were most effective in decreasing the rate of firming. The cereal alpha-amylase at the high level (CAH) was also effective. The CAH produced the largest quantity of dextrins at storage time zero and the thermostable bacterial alpha-amylase at the high level (TBAH) after storage for 5 days. None of the maltooligosaccharides appeared to be responsible for the decreased rate of firming of the gels. The results indicated that the TBA and ISBA most effectively inhibited firming because they degraded the external branches and the intercluster regions of amylopectin during storage. Consideration of previously reported differential scanning calorimetry and X-ray crystallography results leads to the conclusion that the antifirming action of the TBA and ISBA is due to their ability to degrade the amylopectin and amorphous regions of the gels during storage, which inhibits the formation of double helices and decreases the strength of the starch gel matrix. Gels supplemented with the TBA and ISBA were most crystalline but firmed to a lesser extent. These results are similar to those previously reported by other researchers for bread and strongly suggest that starch retrogradation plays a primary role in bread staling.  相似文献   

13.
Concentrated starch gels were supplemented with four alpha-amylases from different sources. The retrogradation and recrystallization of the gels were evaluated using differential scanning calorimetry (DSC) and X-ray crystallography. Correlations between the retrogradation data and the carbohydrate fractions extracted from these gels were determined. The thermostable (TBA) and intermediate temperature stability (ISBA) bacterial alpha-amylases were most effective in decreasing the rate of retrogradation of the starch in the gels. The cereal alpha-amylase at the high level (CAH) was also effective. Supplementation with the alpha-amylases increased the crystallinity of the gels. Gels supplemented with TBA or ISBA were most crystalline and retrograded to a lesser extent. The results indicated that DSC gives not only a measure of recrystallized amylopectin but also a measure of total order (recrystallized amylopectin and double-helical content). The maltooligosaccharides produced by the enzymes did not appear to be responsible for the reduced rates of retrogradation, but they appeared to be an expression of the degree of starch modification that was responsible for the inhibition of retrogradation. The crystallinity and retrogradation data were similar to results reported for bread and strongly suggest that bread staling is caused by the retrogradation of starch. The results also indicate that alpha-amylases decrease the rate and extent of retrogradation of starch gels by inhibiting the formation of double helices.  相似文献   

14.
The glass transition of pure and diluted honey and the glass transition of the maximally freeze-concentrated solution of honey were investigated by differential scanning calorimetry (DSC). The glass transition temperature, of the pure honey samples accepted as unadulterated varied between -42 and -51 degrees C. Dilution of honey to 90 wt % honey content resulted in a shift of the glass transition temperature by -13 to -20 degrees C. The concentration of the maximally freeze-concentrated honey solutions, as expressed in terms of honey content is approximately 102-103%, i.e., slightly more concentrated in sugars than honey itself. The application of DSC measurements of and in characterization of honey may be considered, but requires systematic study on a number of honeys.  相似文献   

15.
The oxidation of linolenic acid (LNA) and soy lecithin was studied by differential scanning calorimetry (DSC) with linear programmed heating rates (non-isothermal mode). The interpretation of the shape of DSC curves is discussed, and it has been concluded that temperatures of the extrapolated start of heat release are the most reliable data for the rapid estimation of the oxidative stability of lipid materials. The Ozawa-Flynn-Wall method was used to calculate the kinetic parameters of the process: for LNA autoxidation the activation energy, Ea, and pre-exponential factor, Z, are 66 +/- 4 kJ/mol and 1.5 x 10(7) s(-1), respectively, and the autoxidation of lecithin is described by Ea = 98 +/- 6 kJ/mol and Z = 9.1 x 10(10) s(-1). Values of Ea and Z can be applied for calculation of the overall first-order rate constant of autoxidation at various temperatures, k(T). For the two studied lipids the comparison of k(T) values shows the inversion of their oxidative stabilities; that is, below 167 degrees C lecithin is more stable than LNA, k(T)lecithin < k(T)LNA, and above that temperature (termed the isokinetic temperature) k(T)lecithin > k(T)LNA. The calculated inversion of oxidative stabilities can be an explanation of similar observations for other pairs of lipids if the results of accelerated tests measured at temperatures above 100 degrees C are compared with the results obtained at temperatures below 100 degrees C.  相似文献   

16.
The retrogradation of 5, 10, 15, and 25% corn starch gels was measured using differential scanning calorimetry (DSC), rheology, and an array of NMR spectroscopy techniques. During the initial (<24 h) stage of retrogradation, an increase in G' corresponding to an increase in the number of solid protons participating in cross-relaxation (M(B)(0) was observed for all four concentrations studied. During the latter (>24 h) stage of retrogradation, amylopectin recrystallization becomes the dominant process as measured by an increase in deltaH(r) for the 25% starch gel, which corresponded to a further increase in. A decrease in the molecular mobility of the liquid component was observed by decreases in (17)O T(2), (1)H D(0), and T(2A). The value for T(2B) (the solid transverse relaxation time) did not change with concentration or time indicating that the mobility of the solid component does not change over time despite the conversion of the highly mobile starch fraction to the less mobile solid state during retrogradation.  相似文献   

17.
Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) were used to study changes in the conformation of globulin from common buckwheat (Fagopyrum esculentum Moench) (BWG) under various environmental conditions. The IR spectrum of the native BWG showed several major bands from 1691 to 1636 cm(-1) in the amide I' region, and the secondary structure composition was estimated as 34.5% beta-sheets, 20.0% beta-turns, 16.0% alpha-helices, and 14.4% random coils. Highly acidic and alkaline pH conditions induced decreases in beta-sheet and alpha-helical contents, as well as in denaturation temperature (Td) and enthalpy of denaturation (DeltaH), as shown in the DSC thermograms. Addition of chaotropic salts (1.0 M) caused progressive decreases in ordered structures and thermal stability following the lyotropic series of anions. The presence of several protein structure perturbants also led to changes in IR band intensities and DSC thermal stabilities, suggesting protein unfolding. Intermolecular antiparallel beta-sheet (1620 and 1681 cm(-1)) band intensities started to increase when BWG was heated to 90 degrees C, suggesting the initiation of protein aggregation. Increasing the time of the preheat treatment (at 100 degrees C) caused progressive increases in Td and pronounced decreases in DeltaH, suggesting partial denaturation and reassociation of protein molecules.  相似文献   

18.
Fluorescence and differential scanning calorimetry (DSC) were used to study changes in the conformation of red kidney bean (Phaseolus vulgaris L.) protein isolate (KPI) under various environmental conditions. The possible relationship between fluorescence data and DSC characteristics was also discussed. Tryptophan fluorescence and fluorescence quenching analyses indicated that the tryptophan residues in KPI, exhibiting multiple fluorophores with different accessibilities to acrylamide, are largely buried in the hydrophobic core of the protein matrix, with positively charged side chains close to at least some of the tryptophan residues. GdnHCl was more effective than urea and SDS in denaturing KPI. SDS and urea caused variable red shifts, 2-5 nm, in the emission λ(max), suggesting the conformational compactness of KPI. The result was further supported by DSC characteristics that a discernible endothermic peak was still detected up to 8 M urea or 30 mM SDS, also evidenced by the absence of any shift in emission maximum (λ(max)) at different pH conditions. Marked decreases in T(d) and enthalpy (ΔH) were observed at extreme alkaline and/or acidic pH, whereas the presence of NaCl resulted in higher T(d) and ΔH, along with greater cooperativity of the transition. Decreases in T(d) and ΔH were observed in the presence of protein perturbants, for example, SDS and urea, indicating partial denaturation and decrease in thermal stability. Dithiothreitol and N-ethylmaleimide have a slight effect on the thermal properties of KPI. Interestingly, a close linear relationship between the T(d) (or ΔH) and the λ(max) was observed for KPI in the presence of 0-6 M urea.  相似文献   

19.
The gluten proteins gliadin and glutenin are important for dough and bread characteristics. In the present work, redox agents were used to impact gluten properties and to study gliadin-glutenin interactions in bread making. In control bread making, mixing increased the extractability of glutenin. The level of SDS-extractable glutenin decreased during fermentation and then further in the oven. The levels of extractable alpha- and gamma-gliadin also decreased during bread baking due to gliadin-glutenin polymerization. Neither oxidizing nor reducing agents had an impact on glutenin extractabilities after mixing. The redox additives did not affect omega-gliadin extractabilities during bread making due to their lack of cysteine residues. Potassium iodate (0.82-2.47 micromol/g of protein) and potassium bromate (1.07-3.17 micromol/g of protein) increased both alpha- and gamma-gliadin extractabilities during baking. Increasing concentrations of glutathione (1.15-3.45 micromol/g of protein) decreased levels of extractable alpha- and gamma-gliadins during baking. The work not only demonstrated that, during baking, glutenin and gliadin polymerize through heat-induced sulfhydryl-disulfide exchange reactions, but also demonstrated for the first time that oxidizing agents, besides their effect on dough rheology and hence bread volume, hinder gliadin-glutenin linking during baking, while glutathione increases the degree of covalent gliadin to glutenin linking.  相似文献   

20.
Crystallization and melting properties of triacylglycerols (TGs) in anhydrous goat's milk fat (AGMF) are investigated by X-ray diffraction as a function of temperature (XRDT) coupled with high-sensitivity differential scanning calorimetry (DSC), using synchrotron radiation and Microcalix. The polymorphic behavior of AGMF was monitored by varying the cooling rates between 5 and 1 degrees C/min from 45 to -20 degrees C with their subsequent melting at 1 degrees C/min. Quenching of AGMF at -20 degrees C was also examined to determine the metastable polymorphic form of AGMF. At intermediate cooling rates, TGs in AGMF crystallize, from about 18 degrees C in two different lamellar structures with triple chain length 3Lalpha stacking of 72 A and a double chain length 2Lalpha stacking of 48 A, which are correlated to two overlapped exothermic peaks recorded by DSC. A reversible transition sub alpha <--> alpha was observed. Subsequent heating at 1 degrees C/min shows numerous structural rearrangements before final melting. At fast cooling of AGMF (5 degrees C/min), similar unstable crystalline varieties are formed while three endotherms are recorded. Several new unstable lamellar structures are observed after quenching. All of these data are compared to those previously reported at slow cooling (0.1 degrees C/min) showing a relative stability of the structures formed. In spite of general similitude, the thermal and structural behavior of the goat's milk is more complex than that of the cow's milk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号