首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We investigated the tolerance to weed harrowing of four spring barley varieties and examined the possible interactions between varietal weed suppressive ability and two nutrient levels. Tolerance was defined as the combined effect of crop resistance (ability to resist soil covering) and crop recovery (the ability to recover in terms of yield). The weed harrowing strategy was a combination of one pre‐ and one post‐emergence weed harrowing. In terms of yield, the four varieties responded significantly differently to weed harrowing and the response depended on nutrient level. At the lower nutrient level, weed harrowing caused an increase in yield of 4.4 hkg ha−1 for a strong competitor (cv. Otira), while there was no effect on yield at the higher nutrient level. For a weaker competitor (cv. Brazil), weed harrowing caused no change in yield at the lower nutrient level, whereas yield decreased by 6.0 hkg ha−1 at the higher nutrient level. There were marked differences between the weed suppressive ability of the four varieties when not harrowed, with less pronounced but significant differences when harrowed. Weed harrowing did not change the weed suppressive ability of a variety. Varieties that are tall at post‐emergence harrowing and have increased density after pre‐emergence harrowing, are the ones that benefit most from weed harrowing.  相似文献   

2.
Objective assessment of crop soil cover, defined as the percentage of leaf cover that has been buried in soil because of weed harrowing, is crucial to further progress in post‐emergence weed harrowing research. Up to now, crop soil cover has been assessed by visual scores, which are biased and context‐dependent. The aim of this study was to investigate whether digital image analysis is a feasible method to estimate crop soil cover in the early growth stages of cereals. Two main questions were examined: (i) how to capture suitable digital images under field conditions with a standard high‐resolution digital camera and (ii) how to analyse the images with an automated digital image analysis procedure. The importance of light conditions, camera angle, size of recorded area, growth stage and direction of harrowing were investigated, in order to establish a standard for image capture and an automated image analysis procedure based on the excess green colour index was developed. The study shows that the automated digital image analysis procedure provided reliable estimations of leaf cover, defined as the proportion of pixels in digital images determined to be green, which were used to estimate crop soil cover. A standard for image capture is suggested and it is recommended that digital image analysis be used to estimate crop soil cover in future research. The prospects of using digital image analysis in future weed harrowing research are discussed.  相似文献   

3.
Two experiments were conducted in 14 spring barley cultivars to investigate if crop tolerance to post‐emergence weed harrowing is related to morphological traits that reflect competitiveness. The experiments were carried out in organically grown fields where low weed densities and biomass production were assumed to be without significant influence on crop growth. The experiments showed that different cultivars responded differently to post‐emergence weed harrowing in terms of yield reduction. Taller and higher yielding cultivars with high leaf area index (LAI) tended to be less tolerant to post‐emergence weed harrowing than shorter and lower yielding cultivars with low LAI. This conclusion, however, is only valid for 13 of 14 cultivars because one very tall cultivar was tolerant to harrowing. Although the tallest and highest yielding cultivars were damaged the most, they remained the highest yielding cultivars after weed harrowing. This study is the first attempt to relate competitiveness of cereal cultivars to tolerance to harrowing, and it is thought provoking that competitiveness and tolerance is found to be counterproductive.  相似文献   

4.
A LUNDKVIST 《Weed Research》2009,49(4):409-416
To assess the effects of timing and frequency of weed harrowing on weed abundance and crop yield, different pre- and post-emergence weed harrowing sequences were applied to spring cereals and peas in field experiments performed during 2003 and 2004 in Sweden. Post-emergence harrowing was performed at crop growth stages 2–3 and 5–6 true leaves respectively. The best weed control was obtained by a combination of pre- and post-emergence harrowing, but these treatments also caused yield losses of 12–14% in spring cereals, while no yield losses were observed in peas. Pre-emergence weed harrowing treatments alone or combined with weed harrowing shortly after crop emergence proved to be most effective against the early emerging annual weed species Sinapis arvensis and Galeopsis spp. Post-emergence harrowing alone in peas had no effect on S. arvensis . The late emerging annual weed species Chenopodium album and Polygonum lapathifolium were most effectively controlled when pre-emergence weed harrowing was combined with one or two weed harrowing treatments after crop emergence.  相似文献   

5.
Kurstjens  Perdok  Goense 《Weed Research》2000,40(5):431-447
Uprooting by weed harrowing and the potential of the uprooting process for selective weed control at early crop growth stages was studied. Effects of working depth, seed depth, soil moisture content and working speed on uprooting of Lolium perenne L., Lepidium sativum L. and Chenopodium quinoa Willd. were investigated in laboratory harrowing experiments on a sandy soil. Harrowing uprooted on average 51% of the emerging plants and 21% of the plants in the seedling stage. Seventy per cent of all uprooted plants were completely covered by soil. An increase in working depth from 10 mm to 30 mm doubled the average fraction of uprooted plants. Uprooting was also promoted by higher soil moisture contents and higher working speeds. Average uprooting selectivity (=fraction of uprooted emerging plants/fraction of uprooted seedlings of the same species) varied between 2.0 (deep tillage and high speed) and 5.6 (dry soil). If tines could keep a distance of more than 3 mm from the crop and weed plants, the average selectivity of all treatments would improve from 2.4 to 5.5 and the average fraction of uprooted seedlings would decrease from 21% to 8%. This study indicates that uprooting may be a more important weed control mechanism than commonly believed. If working depth and the path of the harrow tines in relation to crop rows could be accurately controlled, uprooting could be a relatively selective weed control mechanism at early crop growth stages.  相似文献   

6.
Rasmussen  Rasmussen 《Weed Research》2000,40(2):219-230
Two field experiments investigated the influences of crop seed vigour on the effect of weed harrowing and crop:weed interactions in spring barley. Artificially reduced seed vigour, which was similar to the variation within commercial seed lots, caused a reduction in germination rate, delayed time of emergence and, consequently, caused reduced competitive ability against weeds. During both years, the reduced seed vigour increased the average weed biomass by 169% and 210%, and reduced the average crop yield by 16% and 21%. Without the influence of weeds, the yield reduction was estimated to be 8% and 10%. A three‐times harrowing strategy reduced the weed biomass by 75% and 72% on average. However, it also caused damage to the crop and reduced yield. There was no clear interaction between barley seed vigour and weed harrowing in the experiments but, in one year, reduced seed vigour tended to decrease the effect of weed harrowing and also increased crop damage. Results in both years, however, indicate potential possibilities for successful integrated weed control by adding the use of high seed quality to a weed harrowing strategy.  相似文献   

7.
In six field experiments on post‐emergence weed harrowing in spring barley, the effects of row spacing, timing, direction and orientation on crop/weed selectivity were investigated. The efficacies of increasing intensities of harrowing generated either by increasing number of passes or increasing driving speed were also tested. Selectivity was defined as the relationship between crop burial in soil immediately after treatment and weed control. To estimate crop burial, digital image analysis was used in order to make objective estimations. The study showed that narrow row spacing decreased selectivity in a late crop growth stage, whereas row spacing in the range 5.3–24 cm had no effects at an early growth stage. Harrowing across rows decreased selectivity in one out of two experiments. Whether repeated passes with the harrow were carried out in the same orientation along the rows or in alternative orientations forth and back was unimportant. There were indications that a high harrowing intensity produced by a single pass at high speed gave a lower selectivity than a similar intensity produced by several passes at a low speed. Impacts on selectivity, however, were small and only significant at high degrees of weed control. Timing had no significant impact on selectivity.  相似文献   

8.
A model for prediction of yield response in weed harrowing   总被引:1,自引:0,他引:1  
J. RASMUSSEN 《Weed Research》1991,31(6):401-408
A model is presented to describe crop yield response in weed harrowing. The selectivity of harrowing, crop yield response to soil covering, and the competitive strength of the weeds are all variables in the model, which is derived from the hyperbolic yield-density relationship, and therefore accounts for the effects of weed density. An advantage of the modelling approach is that the yield response can be separated into two parts, one derived from the positive weed-killing effect of harrowing, and the other derived from the negative crop-covering effect. Simulation runs based on experimental data showed that crop damage, when it occurs, cannot be ignored, and may sometimes even dominate the positive weed-killing effect. Possible scientific and practical applications of the model are discussed.  相似文献   

9.
The objective of this study was to obtain detailed information on the long‐term weed suppression potential of four winter soil cover types included in an arable crop system managed at various input levels. We used weed seedbank size and composition to assess weed suppression potential. A field experiment was established in 1993 as a split‐split‐plot design with four replications, including two tillage systems [a conventional system (CS) including ploughing in the cover crops and a low‐input system (LIS) including no tillage with surface mulching of the cover crops] in the main plots, three mineral nitrogen fertilization rates for the main crop in the sub‐plots and four soil cover types (main crop residue, rye, crimson clover and subterranean clover) in the sub‐sub‐plots. Seedbank sampling took place in winter 2000/01. The weed seedbank was analysed with the seedling emergence method. Data were analysed using anova and multivariate techniques. Results indicated that the seedbank density in the LIS was about five times higher than in the conventional input system. In the CS, use of a rye cover crop resulted in a lower seedbank density with respect to the crop residue treatment (?25%), whereas in the LIS the subterranean clover cover crop decreased weed seedbank density as compared with the other cover crops and the crop residue treatment (?22% on average). Differences in species composition were mainly related to tillage system. Implications for cover crop management and the development of sustainable cropping systems are discussed.  相似文献   

10.
Weed competition and nutrient scarcity often restrict organic cereal production, especially where the availability of livestock manure is limited. While harrowing of annual weeds and legume cover crops can be used, these methods are both executed in early spring and may hinder each other. Two cycles of a 2‐year crop rotation were carried out in south‐east Norway (60°42′N, 10°51′E, altitude 250 m) with weed harrowing and undersown cover crops (WHCC) at two fertiliser rates (40 and 100 kg nitrogen ha?1). The effect of the WHCC treatments was measured by weed density and species, weed biomass, changes in weed seedbank and grain yield. The weed density depended on the interaction between WHCC, fertiliser and year. On average, pre‐emergence weed harrowing reduced weed density by 32% and weed biomass by 49%, while pre‐ and post‐emergence weed harrowing reduced weed density by 59% and weed biomass by 67% compared with the untreated control. Spergula arvensis became more abundant at low rather than at high fertiliser rates. On average, white clover cover crop sown after pre‐emergence weed harrowing resulted in the highest yields for both oat (+12.1%) and wheat (+16.4%) compared with the untreated control. Despite differences in weed population density and biomass among WHCC treatments within years, the weed biomass, weed density and seedbank increased for all WHCC treatments over the 4‐year period. More research is required into improving the efficacy of mechanical and cultural weed suppression methods that organic systems rely on.  相似文献   

11.
Weeds are a perennial problem in coconut plantations and cause significant losses in the nut yield. The occurrence of a wide range of weeds also causes difficulties in their eradication. The influence of five different weed management practises on the distribution and composition of the soil weed seed bank in coconut plantations in the low-country dry zone of Sri Lanka was evaluated. The treatments imposed included the application of glyphosate (N-[phosphonomethyl]-glycine), cover cropping with Pueraria phaseoloides , tractor harrowing, tractor slashing, and tractor plowing. All the treatments were applied twice per year, except for the cover cropping treatment. In terms of a reduction in the weed biomass, the application of glyphosate and cover cropping ( Pueraria ) were more efficient in reducing the ground weed population. These methods were very effective in reducing the weed seed density in the top soil layers. Plowing and harrowing significantly reduced the seed bank in the top soil layers and shifted significant numbers of weed seeds to deeper soil profiles. However, the total germinated weed seed count increased by 123.5, 691.4, 1133.1, and 1216.5% in the 10–15, 15–20, 20–25, and 25–30 cm soil depths, respectively, compared with the initial germinated weed seed count in the plowing treatment. Considering all the soil layers, the decline in the germinating weed seed count was very high in the treatment plots with cover cropping and the application of glyphosate; thus, these are considered to be the best practises to reduce the germinating weed seed count in the soil of coconut plantations.  相似文献   

12.
Cover crops grown in the period between two main crops have potential as an important component of a system‐oriented ecological weed management strategy. In late summer and autumn, the cover crop can suppress growth and seed production of weeds, whereas the incorporation of cover crop residues in spring may reduce or retard weed emergence. Based on these two criteria, six cover crop species were evaluated for their weed suppressive potential in 2 years of experimentation in the Netherlands. Fodder radish, winter oilseed rape and winter rye had the strongest competitive ability in autumn; the competitive strength of Italian ryegrass was intermediate and white lupin and lucerne were poor competitors. Competitiveness was strongly correlated to early light interception. Surprisingly, doubling the recommended sowing density did not increase weed suppressive ability. Although a poor competitor in the fall, after incorporation in spring, lucerne had the strongest inhibitory effect on seedling establishment, followed by winter oilseed rape and white lupin. Winter rye and fodder radish did not affect seedling establishment, whereas Italian ryegrass was not evaluated because of re‐growth after incorporation. Competition in autumn and subsequent residue‐mediated suppression of weed establishment in spring varied among the cover crop species, with winter oilseed rape offering relatively strong effects during both periods.  相似文献   

13.
Small unmanned aerial systems (UAS) with cameras have not been adopted in weed research, but offer low‐cost sensing with high flexibility in terms of spatial resolution. A small rotary‐wing UAS was tested as part of a search for an inexpensive, user‐friendly and reliable aircraft for practical applications in UAS imagery weed research. In two experiments with post‐emergence weed harrowing in barley, the crop resistance parameter, which reflects the crop response to harrowing, was unaffected by image capture altitude in the range from 1 to 50 m. This corresponded to image spatial resolution in the range from 0.3 to 17.1 mm per pixel. This finding is important because spatial resolution is inversely related to sensing capacity. We captured 20 plots comprising a total of about 0.2 ha in one image at 50 m altitude without losing information about the cultivation impacts on vegetation compared with ground truth data. UAS imagery also gave excellent results in logarithmic sprayer experiments in oilseed rape, where we captured 37 m long plots in each image from an altitude of 35 m. Furthermore, perennial weeds could be mapped from UAS images. These first experiences with a small rotary‐wing UAS show that it is relatively easy to integrate as a tool in weed research and offers great potential for site‐specific weed management.  相似文献   

14.
Spring-planted raspberries (Rubus idaeus L. cv. Malling Jewel) were exposed to competition from annual weeds for various lengths of time during the first growing season. Weeds germinating following crop planting in late March had no effect on numbers of new canes produced provided weed removal occurred by early June. The importance of preventing competition from these weeds during the critical period of cane emergence (June/July) was demonstrated. Dense weed cover reduced cane growth and, if weeds were left beyond late June, caused considerable mortality of planting material. Weed growth also frequently reduced cane height. In the second year, all plots were maintained free of weeds. Fruit yields showed effects of weeds similar to or greater than those indicated by total cane growth in the previous year. Height of new canes was unaffected by previous weeding treatments, but the numbers of new canes produced continued to show severe effects of initial competition from weeds. Allowing further weed growth to develop after initial weeding had no additional effect on crop survival or cane numbers in the first year. In one experiment, however, a reduction in cane height due to weeds germinating in June was followed in the second year by a reduction in the numbers of new canes produced.  相似文献   

15.
K Rasmussen 《Weed Research》2002,42(4):287-298
Summary Injection of liquid manure (slurry) into the soil is an alternative to the traditional surface application. By the injection method, it is possible to place nutrients closer to the crop sown, thus offering the crop a competitive advantage over weeds. This study compares the response in crop yield, weed density and weed biomass to injection vs. surface application of liquid manure through three growing seasons in barley and oats. The manure applications were combined with treatments of weed harrowing or herbicide spraying or no treatment at all. The levels of weed control and crop yield obtained by harrowing and herbicides were larger when slurry was injected compared with surface application. Without any weed control treatments, the injection method decreased the final weed biomass in barley. The influence of nutrient injection on yield and weed control seemed to be modulated by the time of emergence and the early growth rate of the crop relative to weeds. Thus, because of its early root growth and development, barley responded more quickly to the injection treatment than oats. Consequently, barley became a more competitive crop.  相似文献   

16.
The effects of cover crops on weeds and the underlying mechanisms of competition, physical control and allelopathy are not fully understood. Current knowledge reveals great potential for using cover crops as a preventive method in integrated weed management. Cover crops are able to suppress 70–95% of weeds and volunteer crops in the fall‐to‐spring period between two main crops. In addition, cover crop residues can reduce weed emergence during early development of the following cash crop by presenting a physical barrier and releasing allelopathic compounds into the soil solution. Therefore, cover crops can partly replace the weed suppressive function of stubble‐tillage operations and non‐selective chemical weed control in the fall‐to‐spring season. This review describes methods to quantify the competitive and allelopathic effects of cover crops. Insight obtained through such analysis is useful for mixing competitive and allelopathic cover crop species with maximal total weed suppression ability. It seems that cover crops produce and release more allelochemicals when plants are exposed to stress or physical damage. Avena strigose, for example, showed stronger weed suppression under dry conditions than during a moist autumn. These findings raise the question of whether allelopathy can be induced artificially. © 2019 Society of Chemical Industry  相似文献   

17.
Annual weeds germinating after planting strawberry (Fragaria chiloensis (L.) Duch. cv. Cambridge Favourite) in late March had no effect on crop growth if removed by late May. Dense weed cover thereafter severely inhibited stolon growth, virtually eliminating it if allowed to remain beyond mid-August. Shading by weeds inhibited leaf production and caused etiolation of existing leaves. New leaves appeared shortly after weed removal and few plants died unless weed cover persisted for most of the growing season. Further weed germination was allowed on some plots. Although not removed until late autumn, these weeds only had adverse effects on crop growth where initial weeding had occurred before mid-June. In one experiment, delaying weed removal until 6 July, 31 August or 2 November in the first year reduced fruit yield in the second (weed-free) year by 34%, 54% and 67% respectively. In a later experiment, competition from weeds until July or later in the first growing season gave fruit yields similar to those in the first experiment, but totally weed-free plots and those kept clean after weeding in mid-June produced less fruit than plots which remained weedy between mid-June and mid-August. It is suggested that competition from uncontrolled stolon growth in this experiment severely inhibited crown and hence truss production on plots which did not suffer weed competition. Unless left untouched until early September, weeds had less adverse effect on truss production than the stolons which they displaced. The results are interpreted in relation to improving the efficiency of weed control techniques.  相似文献   

18.
Cover crops are increasingly being used for weed suppression and to enhance the sustainability of agro‐ecosystems. However, the suitability of cover crops for weed suppression in integrated and organic conservation tillage systems is still poorly investigated. Therefore, a 2‐year field study at eight sites was conducted to test the weed suppressive potential of six legume‐based cover crops, with the aim to reduce herbicide input or mechanical weed management interventions. In all experiments, cover crops were directly sown after cereals before next year's main crop (grain maize or sunflower). The presence of cover crops caused a 96% to 100% reduction of weed dry matter at the four sites managed under integrated production, while effects were lower at the four sited managed under organic production, ranging from 19% to 87%. Cover crops that covered soil quickly and which produced much dry matter had the best weed suppressive potential. However, their weed suppressing effect was difficult to predict, as it depended on the year of the investigation, experimental site, cover crop species, the speed of soil cover in autumn and the density of the resulting mulch layer in spring. The study demonstrated that cover crops are a useful tool to suppress weeds under integrated and organic conservation tillage practices. Our recommendation for supporting weed management in conservation tillage systems is to use locally adapted cover crops that have rapid establishment, good soil coverage and high dry matter production. However, additional weed management measures are required for reliable weed control under on‐farm conditions.  相似文献   

19.
In conservation agriculture, weed seed germination could decrease with the presence of a cover crop, surface weed seed location and temporal drought in summer just after seed shedding. This study simultaneously examined the effects of a cover crop, burial depth (seed location) and hydric stress on weed emergence and early growth. It was hypothesized that drought would reduce weed emergence and the initial growth of weed seeds and that this effect would be greater when the seeds were on the soil surface and in the presence of a cover crop. Four annual weed species were chosen that are frequently found (Anisantha sterilis, Vulpia myuros, Sonchus asper, Veronica persica) and not frequently found (Alopecurus myosuroides, Poa annua, Cyanus segetum, Capsella bursa‐pastoris) in fields that implement conservation agriculture. The unburied seeds had 26% lower emergence, on average, than the buried seeds (significant for six of the eight species), hydric stress reduced emergence by 20% (for seven of the eight species) and the presence of a cover crop reduced the level of emergence by 17% (for all species). The unburied seeds with hydric stress were emerging under the “most stressful” set of factors, with a 45% decrease in emergence, compared with the seeds emerging under the “least stressful” set of factors (buried seeds without hydric stress). All the weed growth measurements (height, dry matter content and number of leaves) decreased with the presence of a cover crop. The species that are found frequently in the fields that implement conservation agriculture, compared with the species that are not frequently found in conservation agriculture fields, had higher rates of germination and a higher tolerance of hydric stress when their seeds were unburied.  相似文献   

20.
Weed control is a major concern for organic farmers around the world and non-chemical weed control methods are now the subject of many investigations. Field studies were conducted in tomato (Solanum lycopersicum L.) from 2004 to 2006 at the Black Sea Agricultural Research Institute experiment field to determine the weed suppressive effects of winter cover crops. Treatments consisted of ryegrass (Lolium multiflorum L.), oat (Avena sativa L.), rye (Secale cereale L.), wheat (Triticum aestivum L.), gelemen clover (Trifolium meneghinianum Clem.), Egyptian clover (Trifolium alexandrinum L.), common vetch (Vicia sativa L.), hairy vetch (Vicia villosa Roth.) and a control with no cover crop. Treatments were arranged in a randomized complete block design with four replications. To determine the weed suppressive effects of the cover crops, weed density and total weed dry biomass were assessed at 14, 28, and 56 days after termination (DAT) of the cover crops from all plots using a 50 × 50 cm quadrat placed randomly in each plot. After cover crop kill and incorporation into soil, tomato seedlings variety ‘H2274’ were transplanted. Broadleaved weed species were the most prominent species in both years. Total weed biomass measured just prior to cover crop incorporation into the soil was significantly lower in S. cereale plots than in the others. The number of weed species was lowest at 14 DAT and later increased at 28 and 56 DAT, and subsequently remained constant during harvest. This research indicates that cover crops such as L. multiflorum, S. cereale, V. sativa and V. villosa could be used in integrated weed management programs to manage some weeds in the early growth stages of organic tomato.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号