首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
甘薯茎腐病症状及其病原鉴定   总被引:5,自引:2,他引:3  
 甘薯茎腐病是危害甘薯的一种严重病害,甘薯茎、叶柄、叶片和块根均可被害。该病典型症状是茎基部发黑和变软腐烂,叶发黄,茎和块根维管束黑褐色,引起块根腐烂、有臭味。通过对甘薯茎腐病典型症状样本的采集、病原菌的分离和纯化以及致病性测定,明确该病害是一种细菌病害。通过对甘薯茎腐病菌的菌体形态和培养特性观察发现,病原菌是革兰氏阴性细菌,菌体短杆状,大小约为2.36 μm×0.4 μm, 周生鞭毛,可在烟草上激发过敏性反应(HR)。Biolog测定、脂肪酸分析、16S rDNA序列分析、MALDI-TOF质谱鉴定和8个看家基因(dnaX、rplB、fusA、gapA、gyrA、purA、recArpoS)的序列系统发育分析,发现该病原菌与达旦提狄克氏菌Dickeya dadantii高度一致。这些结果说明,浙江省发生的小番薯病害是甘薯茎腐病,病原为D. dadantii。  相似文献   

2.
为提高当归茎线虫病(Ditylenchus destructor)田间抽样的准确度,用7种聚集指标判断了当归茎线虫病的田间分布型.结果表明,当归茎线虫病在田间呈聚集分布,其中奈曼分布(核心分布)的适合率为100%,嵌纹分布(负二项分布)的适合率为77.8%.理论抽样数量约820株.4种抽样方法差异均不显著,在保证抽样数量合理的情况下,4种方法均可采用.  相似文献   

3.
Infection of pea roots by soil-borne pathogens causes foot and root rot. In 1985 research was started to develop a method to predict the root rot likely to occur in prospective pea fields. In a bioassay the pea cultivar Finale was sown in a composite soil sample from each field in pots under standardized conditions in the greenhouse. The plants were removed at the green bud stage and the severity of root rot recorded. Between 1985 and 1988 approximately 200 field pea crops were monitored for root rot development. Forty-eight fields were bioassayed in 1986, 51 in 1987 and 30 in 1988. Each year, root rot readings in the bioassay and disease severity readings at field sampled plants at flowering and green pod were linearly correlated (P<0.001). As the degree of root rot in the field crop increased, there was a proportional lower yield. In heavily infested fields, up to a 50% yield reduction occurred.The bioassay in pots proved to be a reliable method for predicting root rot severity in sampled pea fields.  相似文献   

4.
为搞清杭州小麦上一新发生病害的病原,从病区获得6份小麦病株样本的症状,经初步的植物细菌学特性分析,鉴定为细菌病害。6个分离细菌经32项生理生化反应、茵落形态、致病性、Biolog、脂肪酸分析及与6个标准菌株比较,证实了这种小麦叶鞘褐腐病是由Pseudomonasfuscovaginae.,Miyajima,Tanii&Akita引起,与水稻细菌性叶鞘褐腐病为同一病原。  相似文献   

5.
Erwinia chrysanthemi (biovars 5 and 6) was isolated from unusual symptoms on witloof chicory, both in the field and in hydroponic culture, in Brittany in 1989 and 1990. Symptoms included a greyish-brown soft rot on the lower part of the root and the destruction of the cortical tissues. The cribrovascular and the medullary part of the bottom of the root sometimes became slimy. A few cases of vascular transmission were observed, which resulted in a red coloration of the infected vessels and a soft rot of the leaves.  相似文献   

6.
大豆疫霉病发生危害及影响其发生因素的探讨   总被引:5,自引:0,他引:5  
经1995~1998年对黑龙江省大部分大豆产区调查明确,大豆疫霉病在黑龙江大豆产区的发生面积及危害程度有逐年扩大和加重趋势,田间发病率一般为3%~5%,严重达75%,甚至绝产。其发病严重原因除受品种抗病性的因素影响外,主要取决于降水的多少及土壤积水时间的长短。此外,耕作、栽培方式、茬口等因素也不同程度影响发病。大豆在整个生育期间都可受到疫霉菌的侵染。  相似文献   

7.
Pyrenochaeta lycopersici is the causal agent of corky root rot, which is a serious disease worldwide that attacks the roots of tomato. A total of 139 isolates were sampled from eight locations in Italy and Israel and assigned to two molecular types (type 1 and type 2) based on internal transcribed spacer (ITS) sequences. These isolates were genotyped using amplified fragment length polymorphisms (AFLPs) to decipher the population structure. Based on this population structure analysis, three groups of P. lycopersici were identified. One group correlated to ITS type 1, while the other two correlated to ITS type 2. amova indicated high genetic divergence (FST = 0·40) between the Italian types 1 and 2. These data support the view that the two ITS types represent significant evolutionary entities, although there might be incomplete lineage sorting present. Some isolates of different ITS type were observed to have very similar multilocus AFLP profiles, and some genotypes were intermediate between the two ITS types. This suggests that parasexual hybridization between the two types has had a significant role in shaping the population structure of P. lycopersici. Finally, the average divergence among the populations within the ITS types was very high (FSC = 0·710, < 10?5), probably due to strong genetic drift and founder effects combined with restricted migration.  相似文献   

8.
豌豆根腐病研究进展   总被引:2,自引:0,他引:2  
根腐病是豌豆根部的重要病害之一,在世界各地豌豆产区均有发生,是制约豌豆产业持续健康发展的因素之一。世界上尚未发现对根腐病完全免疫的豌豆品种,防治方法主要以农业防治和化学防治为主。本文从豌豆根腐病的发生与分布、病原菌的分类及特点、抗性鉴定及评价标准、种质资源、分子标记及防治策略等方面对国内外豌豆根腐病研究现状进行综述。并提出抗病育种和未来豌豆根腐病综合防治的研究方向。  相似文献   

9.
甘薯根腐病抗性在不同环境条件下的表现及遗传趋势   总被引:1,自引:0,他引:1  
结果表明,甘薯根腐病发病轻重与环境条件有很大关系,表现为干旱少雨的年份发病较重,降雨量较多的年份发病较轻;土壤瘠薄的发病较重,肥力条件较好的则发病较轻;通常情况下,年份间品种的抗性表现较为一致,但遇特殊气候则年份间品种的抗性有一定的差异。对1150份甘薯品种资源及育种材料的根腐病抗性鉴定结果表明,高抗型材料占14.6%,抗病型占15.7%,感病型占26.0%,高感型占43.7%。对754份材料及亲本的抗性分析表明,不同的抗性组合后代中均可分离出高抗至高感类型的材料,杂交后代的抗性强弱随双亲抗性水平的提高而提高。中国自1970年以来采用品种间杂交和种间杂交育种技术,先后育成了一批高产、优质的高抗型优良品种。  相似文献   

10.
Root and crown rot of raspberry (Rubus idaeus L.) was observed in a plantation at the experimental station of small fruits in Kostinbrod, Bulgaria. Isolates ofPhytophthora spp. were obtained from diseased plants. Colony morphology, growth rates, features of asexual and sexual structures were studied and as a result twoPhytophthora species were identified:Phytophthora citricola Saw. andPhytophora citrophthora (R.E. Sm. & E.H. Sm.) Leonian. Their pathogenicity was confirmed in artificial inoculation experiments. The isozyme (-esterase) patterns ofP. citrophthora andP. citricola isolates from raspberry and from the collection of the CBS, Baarn the Netherlands were compared, using micro-gel electrophoresis. Both species are reported for the first time as pathogens of raspberry in Bulgaria. This is only the second report in phytopathological literature ofP. citrophthora on raspberry, the first being from Chile [Latorre and Munoz, 1993].  相似文献   

11.
Phytophthora root rot of sweet pepper   总被引:1,自引:0,他引:1  
Phytophthora capsici proved to be the causal agent of a root and crown rot of sweet pepper in the Netherlands.P. capsici was pathogenic on sweet pepper, tomato and sometimes on eggplant but not on tobacco Xanthi. Of these test plants only tomato was infected byP. nicotianae.No different symptoms in plants infected with eitherP. capsici orP. nicotianae were found. Dipping the roots of tomato and sweet pepper plants in a suspension ofP. capsici resulted in a more severe attack than pouring the suspension on the stem base.Resistance in tomato toP. nicotianae did not include resistance toP. capsici. A method to distinguishP. capsici fromP. nicotianae after isolation from soil is described. Both species were able to infect green fruits of tomato and sweet pepper.p. capsici survived in moist soil in the absence of a host for at least 15 months.Samenvatting Phytophthora capsici bleek de oorzaak te zijn van een voet-en wortelrot in paprika op twee bedrijven in 1977 in Nederland.P. capsici was pathogeen op paprika, tomaat en soms op aubergine maar niet op tabak Xanthi.P. nicotianae tastte van deze toetsplanten alleen tomaat aan. Verschillen in symptomen tussenP. nicotianae enP. capsici werden bij tomaat niet waargenomen.Het dompelen van de wortels in eenP. capsici suspensie gaf een ernstiger aantasting dan het begieten van de wortelhals met deze suspensie.Resistentie in tomaat tegenP. nicotianae bleek geen resistentie tegenP. capsici in te houden. P. capsici kan in grond worden aangetoond door groene paprikavruchten als vangsubstraat te gebruiken.P. capsici enP. nicotianae kunnen beide zowel vruchten van tomaat als paprika aantasten. P. capsici overleefde een periode van 15 maan den in vochtige grond waarop geen waardplant werd geteeld.  相似文献   

12.
Root and stem rot (RSR) is a very detrimental disease of vanilla worldwide. Fusarium oxysporum is frequently associated with the disease but other Fusarium species are also reported. In this international study, 52 vanilla plots were surveyed in three of the most important vanilla producing countries (Madagascar, Reunion Island and French Polynesia) in order to determine the aetiology of RSR disease. Subsets from the 377 single‐spored Fusarium isolates recovered from rotten roots and stems in the surveys were characterized by molecular genotyping (EF1α and IGS gene sequences) and pathogenicity assays on Vanilla planifolia and V. ×tahitensis, the two commercially grown vanilla species. Fusarium oxysporum was shown to be the principal species responsible for the disease, representing 79% of the isolates recovered from the RSR tissues, 40% of which induced severe symptoms on inoculated plantlets. Fusarium oxysporum isolates were highly polyphyletic regardless of geographic origin or pathogenicity. Fusarium solani, found in 15% of the samples and inducing only mild symptoms on plantlets, was considered a secondary pathogen of vanilla. Three additional Fusarium species were occasionally isolated in the study (F. proliferatum, F. concentricum and F. mangiferae) but were nonpathogenic. Histopathological preparations observed in wide field and multiphoton microscopy showed that F. oxysporum penetrated the root hair region of roots, then invaded the cortical cells where it induced necrosis in both V. planifolia and V. ×tahitensis. The hyphae never invaded the root vascular system up to 9 days post‐inoculation. As a whole, the data demonstrated that RSR of vanilla is present worldwide and that its causal agent should be named F. oxysporum f. sp. radicis‐vanillae.  相似文献   

13.
14.
伍晓丽  王钰  刘飞  陈大霞 《植物保护》2024,50(1):97-109
为评价复合木霉制剂对黄连根腐病的防治效果, 并揭示其防病机理, 为黄连根腐病专用微生物农药的研发奠定基础, 本试验将深绿木霉Trichoderma atroviride、长枝木霉T. longibrachiatum、钩状木霉T. hamatum、拟康宁木霉T. koningiopsis等4种木霉配制的复合制剂和尖镰孢Fusarium oxysporum以不同的方式分别施用于黄连, 统计根腐病发生情况, 检测黄连根部防御酶活性, 用高通量测序分析根际土壤真菌群落结构。结果表明, 复合木霉制剂对尖镰孢导致的根腐病具有明显预防效果;复合木霉制剂和尖镰孢分别接种黄连可提高SOD、POD、CAT、PAL、PPO等防御性酶活性, 产生诱导抗性;而它们先后接种黄连可产生强化效应, 从另一个途径提高植株抗病性。复合木霉制剂和尖镰孢都会降低真菌的数量、多样性, 和某些真菌的相对丰度, 而复合木霉制剂的抑菌作用更强烈, 尤其能明显抑制尖镰孢、Ilyonectria sp.等病原真菌的生长, 且能改善土壤真菌群落结构。木霉和尖镰孢都能在土壤中较长期定殖。可见, 复合木霉制剂可以预防尖镰孢导致的黄连根腐病, 防病机理包括诱导黄连植株产生抗性, 接种后再遭受病原菌侵染产生的强化效应, 优化土壤真菌群落结构, 抑制土壤中病原菌等, 且有效期较长。因此复合木霉制剂具有开发为微生物农药防治黄连根腐病的潜力。  相似文献   

15.
花椒是循化县主要经济林支柱产业之一.但是,花椒根腐病在本县发生严重,一直是生产上难以解决的问题.据调查.花椒根腐病常年发生面积占本县种植面积533 hm2的30%以上.且为害程度逐年上升.发病严重时全株枯死.为害轻的减产25%左右,重的减产达40%~60%,椒农损失巨大.为此,笔者对该病的发生特点、发生条件及综合防治技术进行了观察和研究.  相似文献   

16.
In recent years since 2018, the disease of tomato fruit rot has been often noted in Jiangxi province. In order to ascertain the causal agent, common tissue isolation method was used to isolate the pathogen collected from 8 counties and cities of Jiangxi province. A total of 17 isolates was obtained, which exhibited similar phenotype on V8 agar plates with production of antheridia, oogonia and oospore indicating the characteristics of Phytophthora spp.. The pathogenicity test for the isolates showed the similar disease symptoms with that in the field and the pathogen was reisolated from the infected tomato tissues, which fulfilled the Koch’s postulate. BLAST search with rDNA-ITS, partial Ypt1 and β-tubulin gene sequences for 17 isolates showed 99%-100% of identities to Phytophthora capsici that in correspond with the clustering result of phylogenetic analysis for two represented strains. Combined with morphologic characteristic observation, pathogenicity test and sequence ana-lysis, the pathogen causing tomato fruit rot was identified as Phytophthora capsici. This is the first report of P. capsici causing fruit rot on tomato in Jiangxi province, China.  相似文献   

17.
苯醚甲环唑等杀菌剂包衣种子防治花生冠腐病和根腐病   总被引:2,自引:0,他引:2  
为筛选能兼治花生冠腐病和根腐病、安全而高效的种子处理药剂,采用室内生测法比较了4种杀菌剂对花生冠腐病菌和根腐病菌的毒力,评价了其包衣种子对花生的安全性,并进行了温室接菌盆栽和田间防治试验。结果显示,苯醚甲环唑、氟啶胺、咯菌腈和氟菌唑对花生冠腐病菌的毒力差异较大,EC_(50)分别为0.05、6.56、0.52和1.43 mg/L;对花生根腐病菌的毒力均较高,EC_(50)分别为0.49、0.31、0.44和0.37 mg/L。氟菌唑2 g(a.i.)/kg种子包衣后,花生出苗率和幼苗的根长、株高和茎叶鲜重均降低,出苗时间延迟1~2 d;而氟菌唑0.5、1 g(a.i.)/kg种子包衣及苯醚甲环唑、氟啶胺、咯菌腈3种杀菌剂的所有剂量处理对花生出苗和幼苗生长均无影响。苯醚甲环唑0.5、1、2 g(a.i.)/kg种子,氟啶胺0.4、0.8、1.6 g(a.i.)/kg种子,咯菌腈0.1、0.2、0.4 g(a.i.)/kg种子和氟菌唑0.5、1 g(a.i.)/kg种子包衣对花生冠腐病、根腐病的温室接菌盆栽防效均在80.19%以上。苯醚甲环唑1、2 g(a.i.)/kg种子和咯菌腈0.4 g(a.i.)/kg种子包衣对花生冠腐病、根腐病的田间防效较高,均在75.30%以上,且对荚果的增产率为5.60%~11.10%。表明苯醚甲环唑和咯菌腈包衣种子对花生安全,且可有效防治花生冠腐病和根腐病,具有开发为兼治药剂的潜力。  相似文献   

18.
枇杷根腐病的发生与防治技术   总被引:1,自引:0,他引:1  
经调查 ,发现枇杷根腐病是由半知菌类 (Cylindrocladium)引起的一种土传病害 ,病菌以细小菌核、菌丝在土壤或病残体中越冬或长期存活 ,主要通过土壤、农具、灌溉和病残体传播 ,防治此病的关键在于从无病菌地引种 ,减少伤根 ,加强栽培管理 ,增强树势 ,药剂防治可选用 2 0 %粉锈宁 (三唑酮 ) 80 0倍 ,4 0 %福星 70 0 0倍 ,绿凡九五 5 0 0倍 ;72 %农用链霉素 4 0 0 0倍 ,进行灌根。 7~ 10 d后再灌淋 1次 ,效果更好  相似文献   

19.
孜然根腐病综合防治技术及应用   总被引:5,自引:0,他引:5  
经 3年调查研究 ,明确孜然根腐病病原菌、田间症状类型、发病部位和传播途径 ,探明了孜然根腐病的发生与栽培方式、气候条件、灌溉时间及品种抗性之间的关系 ;提出了以轮作倒茬、合理密植、抗病品种选育为主 ,杀菌剂防治为辅的综合防治措施  相似文献   

20.
Fusarium crown and root rot of tomatoes in the UK   总被引:1,自引:0,他引:1  
Fusarium crown and root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici was found in the UK in 1988 and 1989 mainly in rockwool-grown tomato crops. Up to 14% of plants were affected in individual crops. In experiments, leaf and stem symptoms did not appear until the time of first fruit harvest even when the plants were inoculated at planting, first flowers or fruit set. Conidial inoculum at 106 spores/plant applied at seed sowing killed 70–83% of tomato seedlings, whereas similar levels of inoculum applied to young plants caused root and basal stem decay, and eventually death but only after fruit harvest began. Disease incidence and symptom severity increased with inoculum concentration. Experimentally, the disease was more severe in peat- or compost-grown plants than in rockwool. Disease spread was only a few centimetres in 50 days in experimental rockwool-grown plants. All tomato cultivars tested were highly susceptible. Prochloraz-Mn was highly effective against the pathogen in vitro and controlled the disease in the glasshouse, but only when applied preventively. Non-pathogenic Fusarium oxysporum isolates and Trichoderma harzianum also reduced FCRR disease levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号