首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the influence of vesicular-arbuscular mycorrhizal (VAM) inoculation on growth and nutrient relationships in two alley-cropping trials, one at the top and the other at the base of a hillslope. Each trial involved three woody hedgerow legumes with cassava (Manihot esculenta Crantz) as the sole intercrop. The hedgerow trees at the base of the slope showed greater survival and higher leaf dry weights than those at the top of the slope, although these parameters were not affected by VAM inoculation, either at the top or the base of the slope. In contrast to survival, the uptake of nutrients, particularly P and N, was higher for inoculated than uninoculated hedgerow trees, both at the top and at the base of slope. Increases in stem and leaf biomass and the uptake of nutrients by the trees were strongly correlated with increases in P uptake, indicating that the improvements were attributable to VAM inoculation. Cassava tuber yields at the base of the slope, from inoculated or uninoculated plants, were significantly greater than the corresponding cassava yields at the top of the slope. These increases at the base of the slope compared to the top of the slope were not attributed to available soil nutrients but to greater VAM spore density. Higher available soil moisture may have been another factor. Increasing the VAM spore density of effective mycorrhiza through proper agronomic practices at the top of a slope may bring about comparable yields on different parts of the slope.  相似文献   

2.
Summary The effect of inoculation with a selected isolate of Glomus etunicatum Becker and Gerdemann and one of G. intraradices Schenck and Smith on the growth and nutrient content of Macroptilium atropurpureum Urb. cv. Siratro and Aeschynomene americana L., at applied P levels of 10, 30, 60, and 120 kg ha-1, was studied under field conditions. At all P levels and for all harvests, the shoot dry mass of Siratro and A. americana were greater for the plants inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungi than the control plants. Differences between the VAM fungus-inoculated and the control plants were most marked between 30 and 90 kg ha-1 of applied P and diminished at 120 kg ha-1. At the first harvest of Siratro, the plants inoculated with G. etunicatum had a greater shoot dry mass than those inoculated with G. intraradices, for all levels of applied P. However, for subsequent harvest of Siratro and for the one harvest of A. americana the response of shoot dry mass to the two VAM fungi was equivocal. Fungal inoculation gave at least a 30% saving in the amount of P fertilizer required (40 kg ha-1) for the maximum yield. The plants inoculated with VAM fungi had a greater tissue concentration and total content of P and N than the control plants at low and intermediate levels of applied P. The percentage of root colonized by VAM fungi for the inoculated plants of the two legumes increased linearly with P additions up to 60 kg ha-1. The conclusion is that under amended (limed and fertilized) soil conditions, inoculation with selected VAM fungi can improve the establishement and growth of forage legumes in fields that contain ineffective populations of native VAM fungi.  相似文献   

3.
This study focuses the inter-relationships among the men, the use, and the intra-specific cassava diversity, under the perspective of this crop evolutionary dynamics. The origin, the use and the current local management of varieties with high and low cyanogenic potential are important questions around cassava domestication. We collected 169 local varieties identified as “sweet” or “bitter” cassava by traditional farmers from Atlantic Forest and Amazon (Medium Negro River Basin), Brazil. Using a population genetics and an ethnobotany approach, the diversity and the genetic structure of cassava were evaluated. We found a total of 115 vernacular names, and in the Atlantic Forest sample the average genetic diversity (H S = 0.654) was higher for the sweet varieties than for bitter ones (0.582). The genetic differentiation coefficient (R ST), used to estimate the diversity among groups, was 0.057 (P < 0.001), indicating that the divergence between the two groups is low. We obtained a low correlation between the morphological and genetic distances, and the congruence was high when the ethnoclassification and the genetic structure were considered. We discuss the adaptive advantages of the sweet varieties use, the current socio-economic changes in bitter varieties use, and the ecological history of these variety groups.  相似文献   

4.
Summary The effects of P, N and Ca+Mg fertilization on biomass production, leaf area, root length, vesiculararbuscular mycorrhizal (VAM) colonization, and shoot and root nutrient concentrations of pretransplant rice (Oryza sativa L.) plants were investigated. Mycorrhizal plants generally had a higher biomass and P, N, K, Ca, Mn, Fe, Cu, Na, B, Zn, Al, Mg, and S shoot-tissue nutrient concentrations than non-mycorrhizal plants. Although mycorrhizal plants always had higher root-tissue nutrient concentrations than non-mycorrhizal plants, they were not significantly different, except for Mn. N fertilization stimulated colonization of the root system (colonized root length), and increased biomass production and nutrient concentrations of mycorrhizal plants. Biomass increases due to N were larger when the plants were not fertilized with additional P. P fertilization reduced the colonized root length and biomass production of mycorrhizal plants. The base treatment (Ca+Mg) did not significantly affect biomass production but increased the colonized root length. These results stress the importance of evaluating the VAM rice symbiosis under various fertilization regimes. The results of this study suggest that pretransplant mycorrhizal rice plants may have a potential for better field establishment than non-mycorrhizal plants.  相似文献   

5.
Summary This study examined the response of rice (Oryza sativa L.) plants at the pretransplant/nursery stage to inoculation with vesicular-arbuscular mycorrhizal (VAM) fungi and fluorescent Pseudomonas spp., singly or in combination. The VAM fungi and fluorescent Pseudomonas spp. were isolated from the rhizosphere of rice plants. In the plants grown in soil inoculated with fluorescent Pseudomonas spp. alone, I found increases in shoot growth, and in root length and fine roots, and decreases in root growth, and P and N concentrations. In contrast, in the plants colonized by VAM fungi alone, the results were the reverse of those of the pseudomonad treatment. Dual inoculation of soil with VAM fungi and fluorescent Pseudomonas spp. yielded plants with the highest biomass and nutrient acquisition. In contrast, the plants of the control treatment had the lowest biomass and nutrient levels. The dual-inoculated plants had intermediate root and specific root lengths. The precentages of mycorrhizal colonization and colonized root lengths were significantly lower in the dual-inoculated treatment than the VAM fungal treatment. Inoculation of plants with fluorescent Pseudomonas spp. suppressed VAM fungal colonization and apparently reduced photosynthate loss to the mycorrhizal associates, which led to greater biomass and nutrient levels in dual-inoculated plants compared with plants inoculated with VAM fungi alone. Dual inoculation of seedlings with fluorescent Pseudomonas spp. and VAM fungi may be preferable to inoculation with VAM alone and may contribute to the successful establishment of these plants in the field.  相似文献   

6.
 The effect of inoculating wheat (Triticum aestivum L.) with the PO4 3–-solubilizing microorganisms (PSM) Bacillus circulans and Cladosporium herbarum and the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus sp. 88 with or without Mussoorie rock phosphate (MRP) amendment in a nutrient-deficient natural sandy soil was studied. In the sandy soil of low fertility root colonization by VAM fungi was low. Inoculation with Glomus sp. 88 improved root colonization. At maturity, grain and straw yields as well as N and P uptake improved significantly following inoculation with PSM or the VAM fungus. These increases were higher on combined inoculation of PSM and the VAM fungus with MRP amendment. In general, a larger population of PSM was maintained in the rhizosphere of wheat in treatments with VAM fungal inoculation and MRP amendment. The results suggest that combined inoculation with PSM and a VAM fungus along with MRP amendment can improve crop yields in nutrient-deficient soils. Received: 4 September 1997  相似文献   

7.
The effect of dual inoculation on three local cultivars (Miss Kelly, Portland Red, Round Red) of red kidney beans (Phaseolus vulgaris, L.) with four strains of Rhizobium leguminosarum bv. phaseoli and three species of vesicular-arbuscular mycorrhizal (VAM) fungi was examined in a clay loam soil. Rhizobial strains B 17 and B 36, each paired with Glomus pallidum or G. aggregatum, were the most effective pairings for cv. Miss Kelly. Inoculation of Miss Kelly with any of these pairings significantly (P=0.05) increased growth, number of nodules, nodule dry weight, mycorrhizal colonization, and shoot N and P content than other pairings. The growth response by cv. Portland Red was significantly improved by pairings of B 36 or B 17 with any of the three VAM fungi. For both cultivars (Miss Kelly and Portland Red), CIAT 652 or T 2 paired with VAM fungi did not give a positive growth response. In contrast, for cv Round Red the T 2 rhizobial strain in combination with any of the three VAM fungi showed a significant (P=0.05) growth improvement in all parameters. Our results suggest that while dual inoculation of VAM fungi and rhizobia significantly improves the growth response by red kidney beans, the best pairings of VAM fungus and rhizobia for each cultivar need to be carefully selected.  相似文献   

8.
We examined the effect of a vesicular-arbuscular mycorrhizal (VAM) fungus Glomus pallidum Hall on the phosphatase activity and cytokinin concentration in cowpea [Vigna unguiculata (L.) Walp] roots at successive stages of plant growth. Both acid and alkaline phosphatase activity were significantly (P=0.05) higher in mycorrhizal than in non-mycorrhizal roots 30 days after inoculation. Similarly, the cytokinin content was significantly increased in mycorrhizal roots compared to non-mycorrhizal roots. Our study suggests that these biochemical changes may improve the growth of mycorrhizal cowpea plants.  相似文献   

9.
Summary Plants of Hedysarum coronarium L. and Medicago sativa L., inoculated with Glomus caledonium, were grown for 6 weeks in soils with increasing amounts of available phosphorus (P). H. coronarium showed no or very low levels of infection even at very low soil P content (4 ppm), while in M. sativa the highest soil P level (20 ppm) was associated with the lowest percentage of infection. Medicago sativa and H. coronarium grown for 16 weeks in a sandy soil showed clear effects of Glomus inoculation on shoot growth and P uptake. In M. sativa inoculation increased shoot growth and P uptake in all treatments considerably, while the P concentration in the shoot was depressed by G. caledonium. In H. coronarium inoculation with G. mosseae and G. occultum had only a modest impact on shoot growth; G. caledonium even depressed shoot growth significantly. Glomus inoculation had a positive impact on the P concentrations in the shoots of H. coronarium. The growth-depressing effect of G. caledonium on H. coronarium is discussed.  相似文献   

10.
Summary The influence of simulated erosion on the abundance and activity of indigenous vesiculararbuscular mycorrhizal (VAM) populations was evaluated in an Oxisol. Surface-soil losses in excess of 7.5 cm were generally associated with significant decreases in the numbers of total and active VAM propagules and in the symbiotic effectiveness of the active propagules. Surface-soil removal not exceeding 7.5 cm was associated with decreased propagule abundance without adverse effects on VAM colonization of roots and symbiotic effectiveness of the fungi. The extent of VAM colonization of roots and the degree of symbiotic effectiveness observed at this level of simulated erosion were significantly higher than those observed in the soil not subjected to simulated erosion. This stimulation is attributed to the removal of antagonistic biotic factors as the top 7.5 cm of soil was removed. It is concluded that propagules lost during erosional soil losses must be replaced before legumes grown on relatively highly weathered and severely eroded tropical soils could appreciably benefit from the VAM symbiosis.Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No. 3234  相似文献   

11.
Summary A difference in biomass production between plants grown in autoclaved soil and non-autoclaved soil under N and base (Ca + Mg) treatments was probably caused by soil microbes other than vesicular-arbuscular mycorrhizal fungi. The plants were grown for 70 days in autoclaved soil, autoclaved soil with a vesicular-arbuscular mycorrhizal-free filtrate of non-autoclaved soil added, and non-autoclaved soil. The plants in each substrate received additional N, P, or Ca + Mg (base treatment) weekly. Control plants received no additional nutrients. The plant response to various substrates was a function of nutrient treatment. Colonization of roots by vesicular-arbuscular mycorrhizal fungi in non-autoclaved soil was lowest with the N and P treatments. There were significant negative correlations between vesicular-arbuscular mycorrhizal colonization and all plant growth variates. For all nutrient treatments, there were no differences in total biomass between plants grown in non-autoclaved soil and in the autoclaved-plus-filtrate substrate.  相似文献   

12.
Summary Microbial populations were estimated in four different forest stands at different regenerational stages, two each at higher and lower altitudes. The fungal and bacterial populations showed marked seasonal variations at both altitudes. Quantitatively, the bacterial population was higher than the fungal population. Although 25 fungal species were isolated at the lower altitude, only 15 were obtained at the higher altitude. Penicillium chrysogenum and Trichoderma viride were dominant at the lower and higher altitudes, respectively. In the more degraded forest stand at the lower altitude both the fungal and the bacterial population showed a significant positive correlation with organic C (r=0.658 and 0.735, respectively), whereas in the less degraded forest stand there was a significant correlation only between the fungal population and organic C (r=0.835). At the higher altitude, however, a highly significant correlation (P<0.05) was observed between the fungal population, soil moisture and organic C in both the forest stands. Disturbance to the soil and vegetation adversely affected the microbial population, and also affected endogonaceous spores. At the lower altitude, plants in the more degraded forest stand were more mycotrophic compared to those in the less degraded stand. The level of mycorrhizal infection showed a highly positive correlation with soil moisture, organic C, total N, and available P. The spore population, however, was correlated negatively with these parameters. Three different endogonaceous genera, Glomus, Gigaspora, and Acaulospora, were identified during the course of investigation. Glomus, however, was dominant.  相似文献   

13.
This study evaluated the interactive effect of arbuscular mycorrhizal fungi (AMF) inoculation and exogenous phosphorus supply on soil phosphotases, plant growth, and nutrient uptake of Kandelia obovata (Sheue, Liu & Yong). We aimed to explore the ecophysiological function of AMF in mangrove wetland ecosystems, and to clarify the possible survival mechanism of mangrove species against nutrient deficiency. K. obovata seedlings with or without AMF inoculation (mixed mangrove AMF), were cultivated for six months in autoclaved sediment medium which was supplemented with KH2PO4 (0, 15, 30, 60, 120 mg kg−1). Then the plant growth, nitrogen and phosphorus content, root vitality, AMF colonization and soil phosphatase activity were analyzed. The inoculated AMF successfully infected K. obovata roots, developed intercellular hyphae, arbuscular (Arum-type), and vesicle structures. Arbuscular mycorrhizal fungi colonization ranged from 9.04 to 24.48%, with the highest value observed under 30 and 60 mg kg−1 P treatments. Soil P supply, in the form of KH2PO4, significantly promoted the height and biomass of K. obovata, enhanced root vitality and P uptake, while partially inhibiting soil acid (ACP) and alkaline phosphotase (ALP) activities. Without enhancing plant height, the biomass, root vitality and P uptake were further increased when inoculated with AMF, and the reduction on ACP and ALP activities were alleviated. Phosphorus supply resulted in the decrease of leaf N–P ratio in K. obovata, and AMF inoculation strengthened the reduction, thus alleviating P limitation in plant growth. Arbuscular mycorrhizal fungi inoculation and adequate P supply (30 mg kg−1 KH2PO4) enhanced root vitality, maintained soil ACP and ALP activities, increased plant N and P uptake, and resulted in greater biomass of K. obovata. Mutualistic symbiosis with AMF could explain the survival strategies of mangrove plants under a stressed environment (waterlogging and nutrient limitation) from a new perspective.  相似文献   

14.
Summary Cucumber was grown in a partially sterilized sand-soil mixture with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum or left uninoculated. Fresh soil extract was places in polyvinyl chloride tubes without propagules of mycorrhizal fungi. Root tips and root segments with adhering soil, bulk soil, and soil from unplanted tubes were sampled after 4 weeks. Samples were labelled with [3H]-thymidine and bacteria in different size classes were measured after staining by acridine orange. The presence of VAM decreased the rate of bacterial DNA synthesis, decreased the bacterial biomass, and changed the spatial pattern of bacterial growth compared to non-mycorrhizal cucumbers. The [3H]-thymidine incorporation was significantly higher on root tips in the top of tubes, and on root segments and bulk soil in the center of tubes on non-mycorrhizal plants compared to mycorrhizal plants. At the bottom of the tubes, the [3H]-thymidine incorporation was significantly higher on root tips of mycorrhizal plants. Correspondingly, the bacterial biovolumes of rods with dimension 0.28–0.40×1.1–1.6 m, from the bulk soil in the center of tubes and from root segments in the center and top of tubes, and of cocci with a diameter of 0.55–0.78 m in the bulk soil in the center of tubes, were significantly reduced by VAM fungi. The extremely high bacterial biomass (1–7 mg C g-1 dry weight soil) was significant reduced by mycorrhizal colonization on root segments and in bulk soil. The incorporation of [3H]-thymidine was around one order of magnitude lower compared to other rhizosphere measurements, probably because pseudomonads that did not incorporate [3H]-thymidine dominated the bacterial population. The VAM probably decreased the amount of plant root-derived organic matter available for bacterial growth, and increased bacterial spatial variability by competition. Thus VAM plants seem to be better adapted to compete with the saprophytic soil microflora for common nutrients, e.g., N and P, compared to non-mycorrhizal plants.  相似文献   

15.
The effects of low temperature and reduced light on a Glycine-Bradyrhizobium-Glomus spp. symbiosis were examined in pot experiments. Soybean plants, Glycine max L. Merr. cv. Tachiyutaka, were grown with N fertilization or inoculation with Bradyrhizobium japonicum plus P fertilization or inoculation with Glomus mosseae in the glasshouse. After the flowering stage, half the pots with soybean plants were subjected to low temperature (15°C 14h/13°C 10 h) with light reduced by shading. At 0, 7, 16, and 28 days after the application of the treatments, the growth, nodulation, vesicular-arbuscular mycorrhizal (VAM) infection and the N and P contents of the soybean plants were measured. In all symbiont-fertilization combinations, the low-temperature treatment reduced the production of dry matter by the soybeans. Nodulation (weight and number) was slightly reduced by this treatment but the proportion of larger nodules was increased. The root length infected by the VAM fungus was little affected by the low-temperature treatment. Both the nodule weight and the infected root length were linearly related to shoot dry weight regardless of treatment and of the symbiont-fertilization combination used. These results suggest that the growth of the symbionts on the root was in balance with the shoot growth of the host, irrespective of climatic conditions, and imply a considerable degree of host control. P inflows to root systems were greatly affected by low-temperature treatment regardless of the symbiont-fertilization combination. This suggests that a simple comparison of P inflows between mycorrhizal and non-mycorrhizal plants may give misleading information on the effects of low temperature or reduced light conditions on P uptake by mycorrhizal plants.  相似文献   

16.
Summary Strains of Bradyrhizobium influenced root colonization by a species of vesicular-arbuscular mycorrhizae (VAM), and species of VAM influenced root nodulation by strains of Bradyrhizobium in pot experiments. In a field experiment, the effects of VAM on competition amongst inoculated bradyrhizobia were less evident, but inoculation with Bradyrhizobium strains increased root colonization by VAM. Certain VAM/Bradyrhizobium inoculum strain combinations produced higher nodule numbers. Plants grown without Bradyrhizobium and VAM, but supplied with ammonium nitrate (300 g ml–1) and potassium phosphate (16 g ml–1), produced higher dry-matter yields than those inoculated with both symbionts in the pot experiment. Inoculation with either symbiont in the field did not result in higher pod and haulm yields at harvest.ICRISAT Journal Article No. 886  相似文献   

17.
A greenhouse experiment was conducted to study the effect of mycorrhizal colonization by Gigaspora margarita, Glomus intraradices, and Acaulospora laevis on nutrient uptake of K, Ca, Mg, Cu, Zn, Fe, and Mn by Astragalus sinicus L. in soils spiked with lanthanum at five rates (0, 1, 5, 10, and 20 mg kg−1). Lanthanum application significantly decreased the concentrations of K, Ca, Mg, Cu, Zn, and Fe in shoots and the concentrations of Cu and Zn in roots. Mycorrhizal treatments markedly improved uptake of nutrients, and these results are important since nutrient deficiency often occurs in contaminated sites.  相似文献   

18.
Summary Pot-culture studies were carried out to examine the response of barley (Hordeum vulgare L.) to inoculation with Azospirillum brasilense and Glomus versiforme, singly and/or in combination, under varying levels of nitrogenous [(15NH4)2SO4] and soluble phosphatic (single superphosphate) fertilizers. The interaction between both the endophytes led to increased growth and nutrition of the barley plants. Roots from plants inoculated with Azospirillum brasilense and Glomus versiforme exhibited very low acetylene reduction activity. N2 fixation in the plants increased with the increase in plant growth but the mycorrhiza alone gave a low level of N2 fixation in the plants compared to combined inoculation with both the endophytes.  相似文献   

19.
Summary Five selected vesicular-arbuscular mycorrhizal (VAM) fungi and the native population of a cambisol were tested in sterilized soil conditions, with Trifolium pratense as host plant. Indigenous fungi were the most effective in enhancing plant growth and P uptake, which were correlated with a higher root colonization. Selected fungi did not spread further in the root after 4 months from sowing, occupying less than 10% at the end of the experiment; inoculation with Glomus fasciculatum E3 yielded a higher dry-matter production than any other VAM species, but did not significantly increase shoot P concentration above that of the non-mycorrhizal control. Interactions between indigenous and introduced VAM fungi were studied in unsterilized soil. Results from fresh and dry weights of shoots and the percentage of fungal infection showed that the native endophytes competed more efficiently in colonizing the root. Inoculation with selected VAM species did not improve plant growth. Sterilization altered the inorganic P fractions of the soil, particularly those extracted with NH4F and NaOH. Sterilized soil contained less inorganic P than unsterilized soil, but more soluble P. By the end of the experiment in sterilized soil, P extracted with NH4Cl, NH4F and NaOH and total inorganic P were significantly different among inoculation treatments, suggesting that VAM fungi may differ in their ability to take up P.  相似文献   

20.
Summary Field experiments were carried out to determine the effects of single and mixed inoculations with Rhizobium and vesicular-arbuscular mycorrhiza (VAM) on nodulation, symbiotic N2 fixation and yield of soybeans in six Taiwan subtropical-tropical sites. Inoculation with Rhizobium alone significantly increased nodulation, nodule weight and nitrogenase activity of nodules in three out of six experimental fields, and affected soybean yields in the range –13% to + 134%. Inoculation with VAM fungi alone did not have a significant effect on nodulation and nitrogenase activity. Mycorrhiza inoculation affected soybean yields in the range –13% to + 65%, but only the yield increases at one out of six sites with N application were statistically significant. Mixed inoculation with Rhizobium and mycorrhiza affected yields in the range –8% to + 145% A synergistic effect from mixed inoculation of Rhizobium-mycorrhiza on soybean yields was found in one out of six experimental fields. The yield response to N application (40 kg N ha–1) in these six paddy-field trials was not significant. These results suggest that single or mixed inoculation of rhizobia can greatly assist soybean grain yields and can replace N fertilizers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号