首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
菊粉在酸性条件下的凝胶特性   总被引:1,自引:0,他引:1  
为了得出菊粉在酸性条件下的成胶规律、凝胶稳定性和质构特性,考察了pH值对不同菊粉含量形成的凝胶性能的影响。试验发现,随pH值降低,菊粉成胶能力减弱,成胶时间延长,而凝胶指数随菊粉含量的增加而增大,随pH值的降低而减小;当pH值为1时,60%的菊粉溶液也不能形成凝胶。随菊粉含量的升高,其凝胶持水力增加,其增加幅度随pH值的降低而减弱,pH值分别为7、5和3时,60%的菊粉凝胶持水力较40%的凝胶分别增加了9.4%、5.75%和5.47%;菊粉含量越高,凝胶对酸的稳定性越强,当pH值为3和水解时间为24 h时,40%菊粉凝胶的水解速率分别是50%和60%的1.35倍和2.97倍。质构仪分析发现,pH值高低与菊粉凝胶的硬度、强度、黏着性、凝聚性、咀嚼性等呈正相关。差示扫描量热仪分析发现,当pH值由7下降到3时,50%菊粉凝胶的可冻结水含量增加程度最大,达到26.0%。  相似文献   

2.
复合酶法改善大豆分离蛋白乳化性的试验   总被引:4,自引:0,他引:4  
运用配料试验设计解决了多酶复配的比例优化问题.采用米曲霉蛋白酶、木瓜蛋白酶、胰蛋白酶对大豆分离蛋白进行水解,建立复合酶配合比例与乳化性之间的数学模型.确定最佳比例为:米曲霉蛋白酶11.79%、胰蛋白酶32.93%、木瓜蛋白酶55.28%.最佳水解条件为:复合酶温度40℃、底物质量分数9%、酶添加量3%、pH值7.5、水解时间3 h,乳化能力比原料提高了50.86%.  相似文献   

3.
以大豆分离蛋白和花青素为原料,制备热处理大豆分离蛋白-花青素复合乳液,研究添加花青素对复合乳液特性的影响规律。利用动态光散射从宏观角度评价花青素复合对复合乳液粒径大小以及分布上的影响,采用乳化稳定性、乳层析指数和ζ-电位分析,分别从不同的角度评价复合乳液的稳定性,结果表明:花青素复合后,复合乳液的粒径变小,乳层析指数显著降低,ζ-电位的绝对值增加,说明乳液液滴间的静电斥力大,不易发生聚集。蛋白与花青素的质量比为40的样品具有最低的CI值(41%)和最大的电位绝对值,说明在所有花青素复合的热处理SPI-花青素复合乳液中,其具有最好的乳液稳定性。氧化稳定性实验结果表明:随着花青素浓度的增加,乳液DPPH自由基和ABTS+·清除率先上升后略有下降,其中蛋白与花青素的质量比为40时,乳液抗氧化性最佳。因此在大豆分离蛋白中添加花青素可以有效提高复合乳液氧化稳定性。  相似文献   

4.
为了制备高乳化活性的大豆分离蛋白(SPI),以豆粕为原始材料,采用微波辅助SPI磷酸化改性,以SPI质量分数、三聚磷酸钠(STP)添加量、微波功率和微波处理时间4个试验条件为影响因子,以乳化活性为响应值,采用中心组合旋转设计法,建立微波辅助SPI磷酸化对乳化活性影响的二次回归模型.结果表明:利用响应面法优化出制备高乳化活性大豆分离蛋白的最适工艺条件为:SPI质量分数10%、STP添加量16%、微波功率480W、微波时间4 min;所得模型拟合度高,试验误差小,可将该模型应用于对微波辅助磷酸化SPI的乳化活性进行分析和预测.在最适工艺条件下,改性后SPI的乳化活性为66.8,乳化稳定性为29.80 min,分别较原粉提高了134.4%和61.6%.  相似文献   

5.
乳清分离蛋白—多糖乳状液制备与乳化稳定性研究   总被引:1,自引:0,他引:1  
在pH值7.0时以乳清分离蛋白为乳化剂制备初级乳状液,利用静电自组装技术,通过加入具有不同电性的阴离子型果胶、中性瓜尔豆胶、阳离子型壳聚糖制备具有良好稳定性的乳清分离蛋白-多糖的二级乳状液,并考察pH值、乳清分离蛋白与多糖的比例对乳状液稳定性的影响.结果表明:瓜尔豆胶与乳清蛋白乳状液粒子间无静电作用;在pH值5.0 ~6.0条件下,壳聚糖能够吸附到乳状液粒子表面,但形成的乳状液稳定性较差;在pH值3.0~5.0、果胶质量分数为0.2%~0.5%条件下,乳清分离蛋白-果胶为乳化界面构建的二级乳状液,稳定性最高.  相似文献   

6.
7.
以大豆分离蛋白(SPI)为原料,采用碱性蛋白酶(Alcalase)进行酶解(0~180min),通过凝胶电泳、傅里叶红外光谱(FT-IR)和内源荧光光谱等方法探究酶解产物的结构变化;通过表面张力、界面蛋白吸附量等指标说明酶解产物的界面行为,并分析结构变化和界面行为对泡沫性质的影响。经酶解后,蛋白中7S和11S典型条带消失并有新条带产生(约24ku);与SPI相比,水解物中α 螺旋含量减少,β转角和无规则卷曲含量增加;荧光波长发生红移。以上结果说明蛋白结构展开,进而促进蛋白功能性的改变。结果发现,酶解90min时样品起泡性最好(起泡性指数143.20%),可能由于此时水解物平均粒径最低(208.10nm),溶解度较高(90.44%),表面张力最低,有利于提升水解物在空气-水界面的吸附速率,但由于酶解作用产生较小的肽段失去了蛋白质网络结构的能力,因而对泡沫稳定性有负面的影响。此外,酶解作用大大提高了蛋白抗氧化性。通过酶解可以有效地改善SPI的起泡性,拓宽了酶解后的SPI作为一种有效的起泡剂在食品中的应用范围。  相似文献   

8.
为改善大豆分离蛋白/海藻酸钠复合膜的耐水性,通过添加不同添加量(0、2%、4%、6%、8%、10%)硬脂酸制备大豆分离蛋白/海藻酸钠/硬脂酸三元复合膜,探究硬脂酸对大豆分离蛋白/海藻酸钠复合膜的机械性能、阻水性能和微观结构的影响,最终明确不同硬脂酸添加量对耐水性变化的影响规律。结果表明:与大豆分离蛋白/海藻酸钠二元复合膜相比,添加6%和8%硬脂酸后,复合膜的断裂伸长率、水蒸气透过率显著下降,并且对其含水率及水溶性也有显著影响。当硬脂酸添加量为8%时,三元复合膜的水蒸气渗透性最低,水蒸气透过系数为(2.95±0.49) g·mm/(m2·h·kPa),接触角最大,为91.68°±9.02°。通过傅里叶变换红外光谱和扫描电子显微镜分析可知,大豆分离蛋白和海藻酸钠通过共价交联形成网络结构,加入的硬脂酸则分布在网络结构的缝隙中,当硬脂酸添加量为8%时,膜的表面较为光滑平整,内部结构致密,能够形成良好的网络结构,键与键之间结合较强,能有效提高复合膜的阻水性能。  相似文献   

9.
以豌豆分离蛋白(PPI)为原料,添加卡拉胶(CGN)制备豌豆蛋白—卡拉胶(PPI-CGN)复合膜,并研究超声处理对复合膜性能的影响。结果表明:超声处理显著提高了PPI-CGN复合粒子的Zeta电位绝对值和复合膜的机械性能、阻隔性及溶胀度(p<0.05);降低了复合粒子的粒径和复合膜的厚度、溶解度及水分含量(p<0.05)。与豌豆蛋白膜相比,经超声处理的PPI-CGN复合膜的粒径、Zeta电位绝对值、机械性能、水分含量、阻隔性均显著提高(p<0.05);水溶性显著降低(p<0.05)。  相似文献   

10.
通过测定大豆分离蛋白的粒径分布、溶解性、乳化性、三级结构及热稳定性等,分析探讨了低压均质处理(0~40 MPa)对大豆分离蛋白的溶解性及其结构的影响。结果显示,低压均质处理能够降低大豆分离蛋白的粒径,显著改善溶解性,并且溶解度与乳化活性指数、乳化稳定性指数呈正相关;得到了溶解度与乳化活性指数、乳化稳定性指数的线性拟合模型函数,其相关系数分别为0. 956 8和0. 962 5。荧光光谱分析表明,随着均质压力的增大,大豆分离蛋白结构展开,最大吸收波长红移,内部色氨酸基团暴露,荧光强度增大; 30 MPa时,荧光强度最大,均质压力进一步增大时,由于蛋白分子发生聚集,之前暴露的活性基团内卷,导致荧光强度略有降低。热稳定性的分析结果验证了上述结论。  相似文献   

11.
为改善美拉德反应改性大豆分离蛋白效率低、反应时间长、能耗高等缺陷,研究了不同射流空化压力对大豆分离蛋白-葡聚糖美拉德反应进程的影响,并进一步研究射流空化压力对产物结构及乳化特性的影响。结果显示:当射流空化压力为1. 5 MPa时,SPI与葡聚糖美拉德反应进程最大,A420达到0. 55,褐变程度提高了17. 02%,增加了中间产物含量(P 0. 05),接枝度从32. 54%增加到57. 89%; SDS-PAGE验证了射流空化促进大豆分离蛋白-葡聚糖美拉德反应;射流空化处理后,SPI的荧光强度和紫外吸收峰升高,表明空化处理改变了蛋白分子空间,表面疏水性增强,但SPI-葡聚糖反应产物的荧光强度和紫外吸收峰降低,说明葡聚糖共价结合到处理后的SPI表面,其亲水基团增多,疏水性降低; SPI-葡聚糖美拉德反应产物的乳化活性、乳化稳定性分别提高了40. 61%和48. 46%。  相似文献   

12.
高压均质对大豆蛋白柔性和乳化性的影响及相关性分析   总被引:2,自引:0,他引:2  
以大豆分离蛋白(Soy protein isolate,SPI)对胰蛋酶的敏感性表征其柔性,研究不同均质压力(0~200 MPa)对SPI柔性和乳化性的影响,并探索SPI结构变化及其柔性与乳化性之间的相关性。结果表明,当均质压力为0~160 MPa时,SPI柔性随着均质压力的增加而增加,160~180 MPa时柔性变化不明显,当均质压力为180~200 MPa时,SPI柔性又呈现下降的趋势。表面疏水性随着均质压力的增大而增大,而浊度则随之减小,柔性随均质压力的变化趋势与乳化性随均质压力的变化趋势一致。相关性分析结果表明:SPI柔性与乳化活性和乳化稳定性呈线性正相关关系,相关系数分别为0.893和0.938。紫外扫描、内源性色氨酸荧光光谱研究发现,随着SPI柔性的增加,其结构变得更加舒展。  相似文献   

13.
物理改性对大豆蛋白柔性与乳化性的影响及其相关性分析   总被引:1,自引:0,他引:1  
通过不同物理改性方法(热处理、超声处理、高压均质处理、微波处理)分别得到不同柔性的大豆分离蛋白(SPI),并利用SPI对胰蛋白酶的敏感性表征柔性,研究物理改性对SPI柔性与乳化性的影响并分析两者之间的相关性。结果表明,各改性方式对SPI柔性和乳化性产生不同的影响且乳化性随柔性的上升而上升。与其他处理条件相比,121℃热处理10 min得到最高的柔性和乳化活性,高压均质处理对SPI柔性影响小但对乳化活性影响大。相关性分析结果表明:热处理、超声处理条件下SPI柔性与乳化活性、乳化稳定性呈极显著正相关,相关系数分别为0.969、0.950和0.942、0.954。超高压均质处理条件下SPI柔性与乳化活性、乳化稳定性呈正相关,相关系数分别为0.771、0.720。微波处理条件下SPI柔性与乳化活性呈极显著正相关,与乳化稳定性呈显著正相关,相关系数分别为0.976、0.862。  相似文献   

14.
高压均质条件下大豆蛋白热聚集体结构和乳化特性研究   总被引:1,自引:0,他引:1  
以大豆蛋白为原料,采用加热处理(100℃、20min)制备可溶性热聚集体,分别对其进行高压均质(0、30、60、90、120MPa)处理,探究高压均质技术(HPH)对大豆蛋白热聚集体结构特性(粒径分布、浊度、骨架结构、二三级结构、疏水性、电位、巯基)、流变学表征和乳化特性(乳化活性和乳化稳定性)的影响。结果表明:低压力的高压均质处理可以促进热聚体发生再聚集,使粒径和浊度逐渐增大、骨架结构变密、无序结构增多,并且发生再聚集,其疏水性降低,ζ-电位绝对值和二硫键含量升高,进而导致乳化活性提高;而高压力的高压均质处理会导致热聚集体的二硫键和骨架结构发生大量断裂,分子结构展开,疏水性位点大量暴露,导致疏水性增强、蛋白分子链变短、粒径和ζ-电位绝对值降低,进而导致乳化活性降低。本研究可为大豆蛋白功能性质的改性及高压均质在热聚集体行为调控方面的应用提供参考。  相似文献   

15.
为解析黑芸豆分离蛋白(Black kidney bean protein isolate,BKPI)绿原酸(Chlorogenic acid,CA)复合体系中CA对BKPI功能性质的影响,研究了不同CA添加量(0.05、0.15、0.25 g/(100 mL))与BKPI相互作用后对BKPI结构及抗氧化特性和乳化特性的影响。采用动态光散射、荧光光谱和红外光谱等技术,研究流体动力学半径、内部结构特性及蛋白空间结构的变化。结果表明,随着CA添加量增加,复合物中多酚结合量与浊度增加,游离氨基含量减少,其溶液液滴粒径分布更加均匀。CA与BKPI的相互作用可以改变BKPI的空间结构,二级结构中α-螺旋与无规则卷曲的相对含量降低,β-转角的相对含量增加。随着CA添加量的提高,复合物乳化性及抗氧化性显著提高(P<0.05),当CA添加量为0.25 g/(100 mL)时,复合物的乳化性和抗氧化性最优。这表明在乳液食品体系中,CA-BKPI复合物可被用作有效的抗氧化剂和潜在的乳化剂。  相似文献   

16.
大豆分离蛋白(Soybean protein isolate, SPI)对外界环境的变化极其敏感,中和工段中pH值微小的变化就会改变蛋白质的结构和功能性质。通过添加NaOH调控凝乳的pH值,利用红外光谱和内源荧光光谱分析SPI的结构及功能性质,研究发现在中性条件下SPI具有较好的起泡性,碱性条件时SPI具有较好的乳化性,当体系pH值为7时,SPI的起泡性最佳,当体系pH值为8.5时,SPI的乳化性最佳。建立了25 L大豆SPI中和工段pH值精细调控体系,利用Matlab模拟生产过程,通过动态线性与静态非线性拟合,采用模糊自适应控制结合Wiener模型调控中和罐的加碱量,当将中和罐中pH值调控为7时,调节时间为37.4 s,生产的SPI起泡性指数为57.22%,将中和罐中pH值调控为8.5时,调节时间为33.4 s,生产的SPI乳化活性指数为69.35 m2/g,体系无超调量用碱。  相似文献   

17.
大豆-乳清混合蛋白对O/W乳液稳定性及流变性的影响   总被引:2,自引:0,他引:2  
采用大豆分离蛋白-乳清分离蛋白(SPI-WPI)作为乳化剂制备O/W(水包油)乳液,通过测定粒径、Zeta电位、乳化活性指数、乳化稳定性系数、乳液稳定性系数、扫描电镜、流变等指标,探究不同蛋白混合比例及浓度对复合乳液稳定性及流变特性的影响。结果表明:当SPI-WPI乳液蛋白质量分数为2.0%、SPI与WPI质量比为1∶9时,乳液体积平均粒径最小,为288.56nm,Zeta电位绝对值达到最大,为35.0mV,乳化活性指数最大,为108.23m2/g,乳化稳定性指数最大,为3.78471min,稳定性系数最大,为93.59%,此时乳液稳定性最好。当SPI-WPI乳液蛋白质量分数为2.0%、SPI与WPI质量比为9∶1时,乳液的粘度最大,乳液的剪切应力最大,流变特性较好。添加乳清分离蛋白增大了乳液的稳定性,降低了乳液的粘度和剪切力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号