首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sugi (Cryptomeria japonica D. Don) lumber is known to have a large variability in final moisture content (MCf) and is difficult to dry. This study investigated the variability in MCf of sugi in relation to wood properties. The wood property variables included initial moisture content (MCi), basic density (BD), annual ring orientation (ARO), annual ring width (ARW), heartwood ratio (HR) and CIE L * color (L *). Sugi samples were cut from flat-sawn lumbers and air-dried; a principal component regression (PCR) model for predicting MCf was developed with the wood property variables. The wood properties that contributed to the prediction of MCf were evaluated by PCR analysis. Significant positive regression coefficients of the PCR model were observed in the MCi, BD, ARO and HR, whereas negative ones in the L *. There were no significant regression coefficients in the ARW. These results suggest that the MCi, BD, ARO and HR had a positive influence, the L * had a negative influence, and the ARW had little influence on the MCf of air-dried sugi wood. This finding is in line with the general view on the drying characteristics in relation to these wood properties.  相似文献   

2.
A nondestructive technique for swiftly measuring the stress level of the surface of wood is proposed, which is important for process control in timber drying. Partial least squares (PLS) regression models for predicting surface-released strain (ε) were developed using NIR spectra obtained from Sugi (Cryptomeria japonica D. Don) samples during drying. The predictive ability of the models was evaluated by PLS analysis and by comparing NIR-predicted ε with laboratory-measured values. The PLS regression model using the NIR spectra pre-processed by MSC and second derivatives with a wavelength range of 2,000–2,220 nm showed good agreement with the measurement (R 2 = 0.72). PLS analysis identified the wavelengths around 2,035 nm as making significant contributions to the prediction of ε. Orthogonal signal correction (OSC) was an effective pre-processing technique to reduce the number of factors required for the model using the wavelength range 1,300–2,500 nm. However, the predictive ability of the OSC-corrected model was not improved. Elapsed times to reach the maximum tensile stress (T max) and the stress reversal point (T rev) at the wood surface during drying were detected correctly for 75 % of the samples. The results show that NIR spectroscopy has potential to predict the drying stress level of the timber surface and to detect critical periods in drying, such as T max and T rev.  相似文献   

3.
This study investigated near-infrared spectroscopy (NIRS) to rapidly estimate physical and mechanical properties of No. 2 2 × 4 southern pine lumber. A total of 718 lumber samples were acquired from six mills across the Southeast and destructively tested in bending. From each piece of lumber, a 25-mm-length block was cut and diffuse reflectance NIR spectra were collected from the transverse face using a FOSS 5000 scanning spectrometer. Calibrations were created using partial least squares (PLS) regression and their performance checked with a prediction set. Overall moderate predictive ability was found between NIRS and the properties for the calibration and prediction sets: block specific gravity (SG) (R 2 = 0.66 and R p 2  = 0.63), lumber SG (0.54 and 0.53), modulus of elasticity (MOE) (0.54 and 0.58), and modulus of rupture (MOR) (0.5 and 0.4). Model performance for MOE (R p 2  = 0.70) and MOR (R p 2  = 0.50) improved when performing PLS regression on a matrix containing lumber SG and NIR spectra. Overall NIRS predicted MOE better than linear models using lumber SG (R 2 = 0.46), whereas lumber SG (R 2 = 0.51) predicted MOR better than NIRS. Overall NIRS has reasonably good predictive ability considering the small volume of wood that is scanned with the instrument.  相似文献   

4.
Dielectric spectroscopy of Scots pine   总被引:1,自引:0,他引:1  
Dielectric properties of Scots pine (42 trees) were compared with density, moisture content (MC), and resin acid content (RAC) (of heartwood). The samples were measured in frozen, green, conditioned and non-conditioned dry moisture states to evaluate the potential of dielectric spectroscopy in determining the wood characteristics at different stages of wood processing. Heartwood and sapwood parts of each sample were measured separately, and through-transmission measurement was conducted in longitudinal and tangential direction at frequencies from 1 MHz to 1 GHz. The MC and density correlated significantly with the dielectric parameters in both measurement directions but especially in longitudinal direction. The RAC of the heartwood correlated significantly with tanδ and ε″/(ε′ ? 1) of the green samples measured in the tangential direction at frequencies above 200 MHz. The correlation at 1 GHz was ?0.56 for green samples, ?0.66 for conditioned samples and ?0.61 for non-conditioned samples (P < 0.001, for all). The study suggests that the extractives also affect radio-frequency dielectric responses, which might be used for extractive analyses of pine heartwood.  相似文献   

5.
Sugi (Cryptomeria japonica D. Don) lumber is known to have a large variability in final moisture content (MCf) and is difficult to dry. This study assessed the capability of artificial neural networks (ANNs) to predict the MCf of individual wood samples. An ANN model was developed based on initial moisture content, basic density, annual ring orientation, annual ring width, heartwood ratio and lightness (L * in the CIE L * a * b * system). The performance of the ANN model was compared with a principal component regression (PCR) model. The ANN model showed good agreement with the experimentally measured MCf with a higher correlation coefficient (r) and a lower root mean square error (RMSE) than the PCR model, demonstrating the importance of nonlinearity of the variables and the higher capability of the ANN model than the PCR model. By adding redness (a * ) and yellowness (b * ) and drying time to the input variables of ANNs, r and RMSE values were improved to 0.98 and 1.2 % for the training data set, and 0.85 and 2.2 % for the testing data set, respectively. Although the developed ANNs are available under the limited conditions of this study, our results suggest that the ANNs proposed offer reliable models and powerful prediction capability for the MCf, even though wood properties vary considerably and their complex interrelations are not fully elucidated.  相似文献   

6.
To investigate the effect of CO2 laser incising under five drying methods on drying characteristics of Sugi lumber, the squares (120 mm × 120 mm) of Sugi lumber with length of 650 mm were used. A half of samples were incised by CO2 laser with incising density of 2,500 holes/m2. Five types of drying methods were used: microwave drying, steam injection drying, and three combinations of microwave heating and steam injection drying. Steam injection drying was conducted by injecting superheated steam of 120 °C through a perforated plate heated to 140 °C of an injection press. Microwave was irradiated with the power of 3 kW at frequency of 2.45 GHz. The results indicated that incising helps heat through a specimen and thus the whole temperature raised rapidly, which was up to threefolds compared to that of no-incised one. Incised specimens dried by a combination of microwave heating for 1 h and steam injection showed the highest drying rate, which was up to 5.3 %/h. Incising and microwave heating contributed positively to dry lumber under more uniform distribution of moisture content and to reduce surface and internal checks. Incised specimen dried by microwave showed the most uniform distribution of moisture content without surface and internal checks.  相似文献   

7.
8.
Binderless boards are composite boards that rely on self-bonding mechanisms for inter-fibre bonding. Quercus acutissima and Quercus serrata logs degraded by Lentinula edodes (shiitake fungi) were used in this study to investigate whether physical and chemical changes induced by shiitake fungi can enhance board mechanical properties. Binderless boards were manufactured with 0.8 g/cm3 target density, 220 °C pressing temperature, 5 MPa pressure, and pressing duration of 10 min. Boards made from logs degraded for ≥?26 months were stronger than control boards and met modulus of rupture (MOR) and internal bonding (IB) requirements for fibreboards. Chemical composition and particle size distribution of the wood powder used to make the boards were determined to elucidate the drivers of board mechanical properties. The proportion of small particles (<?150 µm) showed a strong positive correlation with MOR for both species and hot water extractives showed a strong positive correlation with IB for Q. acutissima boards. Introduction of shiitake fungi pre-treatment to the production process may enhance the mechanical strength of binderless boards.  相似文献   

9.
Five Populus x euramericana wood samples representing three different sites were selected and nearinfrared (NIR) spectra were obtained. For these sections, basis weight, brightness and three mechanical properties (tensile index, tearing index and bursting index) were determined by standard analytical methods. Calibrations were developed for each paper property using the NIR spectra, data on paper properties, using partial least squares (PLS) regression. The results show that the coefficients of correlation of calibration and validation for basis weight were 0.8824 and 0.8299, respectively; the standard error of calibration (SEC) and prediction (SEP) were 1.150 and 1.170, respectively. In testing for brightness, the correlation coefficient of calibration was 0.9621 and for validation 0.9612, while the SEC and SEP were 0.997 and 1.300, respectively; paper brightness and NIR spectroscopy were highly correlated. NIR spectroscopy can be used to predict tensile, tearing and bursting indices of paper samples rapidly. We found that the paper properties fitted by NIR and GB methods were highly correlated. The coefficients of correlation of calibration and validation for basis weight exceeded 0.8000, while the SEC and SEP were very small. These results reveal that the five paper properties of Populus x euramericana and those predicted by the NIR model were highly correlated. We conclude that the NIR models can be used for the prediction of paper properties.  相似文献   

10.
The effectiveness of air injection for preventing the blowout of particleboards manufactured using a radio-frequency hot press was investigated by evaluating the board properties under artificially created conditions that were conducive to blowout. For evaluation, 10-mm-thick boards with densities of 0.7 and 0.8 g/cm3 and 20-mm-thick boards with a density of 0.7 g/cm3 were manufactured. Pressing times for the 10-mm-thick boards were 2, 4, 6, and 8 min, and those for the 20-mm-thick boards were 4, 6, 8, and 10 min. Without air injection, blowout occurred in all manufactured boards. With air injection, however, blowout did not occur in the 10-mm-thick boards with a density of 0.7 g/cm3. Moreover, air injection prevented blowout even when the board density and board thickness were increased to 0.8 g/cm3 (for 10-mm-thick boards) and 20 mm (the density was kept at 0.7 g/cm3), respectively. Air-injection radio-frequency pressing reduced the pressing time from 4 to 2 min for 10-mm-thick boards, and from 6 to 4 min for 20-mm-thick boards. Moreover, this reduction in the pressing time was achieved without a large reduction in the internal bond strength of the boards.  相似文献   

11.
A use of near-infrared (NIR) spectroscopy for rapidly predicting the longitudinal growth strain (LGS), as a detector of growth stress, was described. NIR spectra and LGS were measured from peripheral locations of three Sugi (Cryptomeria japonica) green logs. Partial least squares regression model for predicting LGS was developed using the spectral range spanning 770–1200?nm. The predicted LGS was correlated with that measured by the strain gauge method. The coefficient of determination and the root mean square error of prediction were 0.61 and 0.013%, respectively. The predicted peripheral LGS distribution moderately fitted with the measured one. Our results indicate that NIR spectroscopy has a potential to evaluate the magnitude of longitudinal growth stresses on green logs.  相似文献   

12.
The aim of this study was to evaluate the potential of visible and near infrared spectroscopy (Vis/NIRS) in predicting the chemical, physical and mechanical behavior of single-piece natural corks stoppers used for sealing wine bottles. Two training sets of 90 and 150 cork stoppers were used to obtain four spectra per sample in different positions: two of the stopper bases (transversal section) and two of the stopper sides (tangential section and radial section). The samples were scanned in the range of 400–2,500 nm using a Foss-NIRSystems 6500 SY II spectrophotometer equipped with a remote reflectance fiber-optic probe. On each training set, two-thirds of the samples were used to develop modified partial least square (MPLS) calibration equations, and the remaining one-third of the sample for the external validation of these MPLS equations. The best equations were obtained for the transversal section, which is the recommended one when applying Vis/NIRS technology to cork. The best results for the chemical composition were obtained for waxes and total polyphenols, showing coefficient of determination of the cross validation (r cv 2 ) values of 0.64 and 0.56 and coefficient of determination of the external validation (r EV 2 ) values of 0.53 and 0.55, respectively. The best equation for the physical and mechanical parameters was obtained for moisture content (r cv 2  = 0.86 and r EV 2  = 0.85), with somewhat lower results for density, compression force and extraction force (r cv 2  = 0.66, 0.72, 0.52 and r EV 2  = 0.52, 0.49, 0.51, respectively). The SECV (standard error of cross validation) and SEP (standard error of external validation) were similar for all the physical and mechanical parameters, thus confirming the robustness of the equations. MPLS model for moisture content fulfills the requirements for screening (RPD >2.5), but MPLS models obtained for waxes, total polyphenols, density, compression force and extraction force are not good enough for routine analysis or quality control. The results obtained from the MPLS models based on Vis/NIRS technology would permit the continuous quality control of humidity in the production line as well as obtaining information about certain chemical components (extractives contents) and some physical and mechanical parameters (density, extraction force and compression force).  相似文献   

13.
Measuring coarse woody debris (CWD) respiration (R CWD) may have advantages over other approaches in determining CWD decomposition rates to accurately estimate forest carbon budgets and effects of warm temperatures on decomposition; however, studies on R CWD are insufficient. The R CWD from Quercus variabilis logs of different sizes (e.g., different surface area to weight ratios or weights) was measured under homogeneous conditions by using a closed-chamber system with a non-dispersive infrared sensor. The size effect on R CWD measured on a weight or volume basis was not significant, but it was significant on a surface area basis. This indicates that R CWD on a weight or volume basis would be a reliable measure, regardless of the size and cross-sectional area effects, while R CWD on a surface area basis must vary geometrically according to the change in sample size. R CWD did not change significantly over time until 122 h after sampling. An exponential model with a Q 10 of 2.34 was fitted only at temperatures below 22.6 °C because R CWD was suppressed at high temperatures due to constantly decreasing moisture. Instead, a logistic model was applied for all temperatures. The annual R CWD and the decay rate constant were estimated to be 53.4 g C kg?1 year?1 and 0.107 year?1, respectively. The decomposition rate estimate through R CWD might not correspond to that using the mass loss approach. It remains uncertain whether the methodological differences may lead to potential errors in measuring the actual CWD decomposition rate; therefore, a multiple approach study for CWD decomposition should be conducted.  相似文献   

14.
The purposes of this study were to accumulate fundamental data on wood properties within large Sugi logs and to take applicable variations in wood properties into consideration for sorting logs and sawing patterns. The characteristics of basic density, moisture content, growth ring width, and microfibril angle (MFA) were measured and the relationship with log and lumber quality was examined. It was considered reasonable to estimate the lumber moisture content based on the moisture content of heartwood rather than that of whole logs, especially when producing large-sized lumber. The MFA reached a constant value before the 15th ring, and within a distance of 10 cm or less from the pith. Since the E fr of lumber correlated with that of the log affected by MFA, it would be possible to produce lumber with a higher E fr from the outer position of the log, based on selecting a log above the E fr . Since the MFA would also affect the lumber warp, a sawing pattern avoiding the area around the pith or enlarging the rough sawn size when a large warp was expected could be effective in improving the lumber quality. To improve the lumber quality, not only one but also multiple wood properties must be applied to the sawing pattern.  相似文献   

15.
A duration of load study representing 13 years of testing was recently terminated. Preliminary results have been published over the years. This paper represents the final account of the study, which was focused on the influence of moisture content on time to failure for structural timber subjected to bending under constant load conditions. Two constant moisture conditions (MC = 11 and 20%) and one condition of varying moisture (MC between 11 and 20%) were applied. A total of 816 Norway spruce boards of dimensions 44 × 95 × 1,800 mm3 were included. Eight groups of non-destructively matched samples were formed. Four groups were subjected to short-term strength tests, and four groups were subjected to long-term tests. Creep and time to failure were monitored. Time to failure as a function of stress level was established and the reliability of stress level assessment was discussed. A significant mechanosorptive effect was demonstrated both in terms of increased creep and shortening of time to failure. The test results were employed for the calibration of four existing duration of load models. The effect of long-term loading was expressed as the stress level SL50 to cause failure after 50 years of loading. SL50 was found to be of the order 0.60 for MC = 11%, 0.50 for MC = 20% and 0.44 for MC varying between 11 and 20%. The test results revealed no evidence of a threshold stress level. A reliability based calibration of load-duration factors was performed using probabilistic models of loads and of the short-term and long-term strengths. For permanent and imposed library loads, reliability-based estimation of the load duration factor gave almost the same results as direct, deterministic calibration.  相似文献   

16.
In this study, molding moso bamboo strips to a curved shape using hot-press molding operation was explored. Bamboo strips with different thickness and moisture content (MC) were subjected to press molding under 120–210 °C for different time. Changes in the chemical components of bamboo were analyzed by Fourier-transform infrared spectroscopy (FTIR). Effect of MC on thermal mechanical behavior of bamboo was investigated using dynamic mechanical analysis (DMA). Results showed that the influencing degree of four variables on compression and recovery ratios decreased as: temperature?>?time?>?thickness?>?MC. Compression ratio increased and recovery ratio decreased dramatically when pressing temperature exceeded 180 °C. FTIR analysis indicated that polysaccharide (especially hemicelluloses) underwent a progressive thermal degradation during compression at 180 and 210 °C for 40 min, whereas relative content of lignin increased. DMA results showed that bamboo samples with a higher MC had a lower storage modulus value, confirmed water had a plasticizing effect. The loss factor of bamboo with higher MC (12 and 16%) exhibited two major transitions centred around 100 °C (α1) and 50 °C (α2), respectively. The temperature of these α transitions kept almost unchanged as moisture level increased from 12 to 16%. These findings provide fundamental information for the future preparation of curved bamboo as profiled components in engineered products.  相似文献   

17.
A drying experiment with 36 mm thick softwood boards having an average initial moisture content of approximately 1.2 (dry basis) was performed. Drying temperatures of 40, 60 and 80°C were used. Relative humidity and superficial air velocity were maintained at 40% and 3.0 m s?1, respectively. Internal moisture content was monitored along the process in the single direction of the internal flux of water. Loss in mass of the entire timber board was also determined. An effective coefficient of mass transfer was tuned to internal experimental profiles of moisture content by involving the Fick’s second law. An explicit finite difference method for the numerical solution of the mass balance represented by the Fick’s equation was combined with the simplex method of optimization to obtain a mass transport parameter in the magnitude of 1.5–3.5 × 10?9 m2 s?1. A positive and significant effect of temperature on the effective diffusion coefficient, which was well described by an Arrhenius type expression, was deduced from this investigation. Although a negative effect of the average moisture content on the internal resistance to mass transfer was also observed, it was much less evident; mainly above the wood fiber saturation point. A negligible influence of the local moisture content on the investigated transport parameter was noticed when either a linear or a nonlinear model correlating these variables was adopted.  相似文献   

18.
To determine the independent decomposition rates of lignin and cellulose of decayed woody debris, a technique for the rapid analysis of lignin and cellulose is required. We applied a near-infrared spectroscopy (NIRS) technique to measure the lignin and holocellulose content in decayed wood. We succeeded in creating partial least-squares (PLS) models to estimate the lignin and holocellulose content in the decayed wood of five species using NIR spectra. Although the accuracy was acceptable for the estimation of a five-species mixed model (R 2 = 0.970 for lignin and R 2 = 0.962 for holocellulose), it was further improved when the model was applied to each species independently. This combination of NIRS and a PLS model is a valuable tool for the determination of the lignin and holocellulose content in decayed wood. The technique is time efficient (3 min per sample) and non-hazardous (no acid treatment is required).  相似文献   

19.

The aim of the study was to investigate the possibility of strength grading Norway spruce [Picea abies (L.) Karst.] saw logs on the basis of simulated X-ray LogScanner measurements and to evaluate the potential accuracy of X-ray LogScanner measurements of green heartwood density and percentage of heartwood. The study was based on 272 logs for strength grading and 29 logs for measurements of green heartwood density and percentage of heartwood. The logs were scanned using computed tomography (CT). After sawing, the modulus of elasticity (MOE) of the centre boards was measured using a strength-grading machine. The CT images were used for simulations of an X-ray LogScanner, resulting in simulated measurements of different variables such as diameter, taper, percentage of heartwood, density and density variations. Multivariate models for prediction of MOE were then calibrated using partial least squares (PLS) regression. The MOE of a log was defined as the mean value of the MOE of the two centre boards. The study showed that the simulated X-ray LogScanner measured the percentage of heartwood and green heartwood density with relatively high accuracy (R 2 = 0.94 and R 2 = 0.73, respectively, after removing two outliers) and that these and other variables measured by the simulated X-ray LogScanner could be used to predict the stiffness of the centre boards. These predictions were used to sort the logs according to the predicted MOE. When sorting out 50% of the logs (''high-strength'' logs), the percentage of C30 boards increased from 73% (all logs in the study) to 100% (only ''high-strength'' logs). The rest of the logs could then be divided into two groups, one of them with 100% C24 and C30 boards.  相似文献   

20.
Static bending tests and compressive test parallel to the grain of sugi (Japanese cedar, Cryptomeria japonica) green round timber were conducted to confirm whether its strength would satisfy the referenced strength determined by the Construction Ministry. The strength of green round timber and air-dried round timber were compared for bending and compression parallel to the grain. The strength change ratio in response to a 1 % change in the moisture content of round timber was compared with that of small clear specimens and timber. The results revealed that a 5 % parametric tolerance limit of bending and compressive strength parallel to the grain satisfied the referenced strength, even when using green round timber. The average strength of air-dried round timber was higher than that of green round timber, in both bending and compression parallel to the grain, with significant differences indicated at a 5 % significance level. The relation between the cross-section area that includes round timber, timber and the small clear specimens, and the strength change ratio in response to a 1 % change in moisture content change was fitted to a logarithm curve. Thus, the size of the specimen was considered to affect the strength change ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号