首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
With increasing water shortage resources and extravagant nitrogen application, there is an urgent need to optimize irrigation regimes and nitrogen management for winter wheat(Triticum aestivum L.) in the North China Plain(NCP). A 4-year field experiment was conducted to evaluate the effect of three irrigation levels(W1, irrigation once at jointing stage; W2, irrigation once at jointing and once at heading stage; W3, irrigation once at jointing, once at heading, and once at filling stage; 60 mm each irrigation) and four N fertilizer rates(N0, 0; N1, 100 kg N ha~(-1); N2, 200 kg N ha~(-1); N3, 300 kg N ha~(-1)) on wheat yield, water use efficiency, fertilizer agronomic efficiency, and economic benefits. The results showed that wheat yield under W2 condition was similar to that under W3, and greater than that under W1 at the same nitrogen level. Yield with the N1 treatment was higher than that with the N0 treatment, but not significantly different from that obtained with the N2 and N3 treatments. The W2 N1 treatment resulted in the highest water use and fertilizer agronomic efficiencies. Compared with local traditional practice(W3 N3), the net income and output-input ratio of W2 N1 were greater by 12.3 and 19.5%, respectively. These findings suggest that two irrigation events of 60 mm each coupled with application of 100 kg N ha~(–1) is sufficient to provide a high wheat yield during drought growing seasons in the NCP.  相似文献   

2.
The shortage of groundwater resources is a considerable challenge for winter wheat production on the North China Plain. Water-saving technologies and procedures are thus urgently required. To determine the water-saving potential of using micro-sprinkling irrigation(MSI) for winter wheat production, field experiments were conducted from 2012 to 2015. Compared to traditional flooding irrigation(TFI), micro-sprinkling thrice with 90 mm water(MSI1) and micro-sprinkling four times with 120 mm water(MSI2) increased the water use efficiency by 22.5 and 16.2%, respectively, while reducing evapotranspiration by 17.6 and 10.8%. Regardless of the rainfall pattern, MSI(i.e., MSI1 or MSI2) either stabilized or significantly increased the grain yield, while reducing irrigation water volumes by 20–40%, compared to TFI. Applying the same volumes of irrigation water, MSI(i.e., MSI3, micro-sprinkling five times with 150 mm water) increased the grain yield and water use efficiency of winter wheat by 4.6 and 11.7%, respectively, compared to TFI. Because MSI could supply irrigation water more frequently in smaller amounts each time, it reduced soil layer compaction, and may have also resulted in a soil water deficit that promoted the spread of roots into the deep soil layer, which is beneficial to photosynthetic production in the critical period. In conclusion, MSI1 or MSI2 either stabilized or significantly increased grain yield while reducing irrigation water volumes by 20–40% compared to TFI, and should provide water-saving technological support in winter wheat production for smallholders on the North China Plain.  相似文献   

3.
目的明确云南玉溪烟区烤烟大田生育期适宜滴灌定额。方法2017年通过田间控水试验,以作物蒸散量(ET0)为基础,设置4个参考需水量水平(50% ET0、60% ET0、80% ET0和100% ET0)和3个设计湿润比(P,0.4、0.5和0.6),共12个滴灌定额处理,考察不同滴灌定额对烤烟生长发育和水肥利用效率的影响。结果参考需水量水平对烤烟株高、茎干物质量以及氮肥和钾肥利用率有显著影响(P<0.05),对除株高以外的农艺性状、叶和全株干物质量以及灌溉水利用率有极显著影响(P<0.01);设计湿润比对烤烟叶干物质量、根冠比和灌溉水利用率有显著影响(P<0.05),对烤烟主要农艺性状、茎和全株干物质量有极显著影响(P<0.01);两者对烤烟叶片和全株干物质量以及灌溉水利用率的影响存在显著交互效应(P<0.05),对烤烟叶片数和株高的影响存在极显著交互效应(P<0.01)。不同灌溉定额处理中,以80% ET0-0.5P处理烤烟成熟期生物量和农艺性状表现较优,氮、磷和钾肥及灌溉水利用率相对较高;与其他处理相比,其成熟期烤烟叶片和全株干物质量分别增加了14.6%~97.5%和4.3%~72.8%,氮肥和磷肥利用率分别提高了9.4%~84.2%和11.3%~178.1%。结论本试验条件下,该区域较为适宜的烤烟大田生育期滴灌灌溉定额为200 mm。  相似文献   

4.
不同降雨和灌溉模式对作物产量及农田氮素淋失的影响   总被引:3,自引:1,他引:3  
【目的】定量化不同降雨和灌溉条件下农田氮素的淋失和作物产量,为不同降雨量年份的灌溉决策提供科学依据。【方法】在中国农业大学河北曲周实验站,依据该地40年(1966—2005)的气象资料,结合当地农民的习惯,设定了5种灌溉方式,即冬小麦季灌水3次,分别在越冬期、起身到拔节期和灌浆期,灌水量分别为:(A)无灌溉,(B)50 mm +50 mm +50 mm,(C)70 mm +70 mm +70 mm,(D)90 mm +90 mm +90 mm,(E)120 mm+ 120 mm +90 mm;夏玉米季灌水2次,分别在苗期和乳熟期,灌水量分别为:(A′)无灌溉,(B′)80 mm +0 mm,(C′)80 mm +70 mm,(D′)90 mm +80 mm,(E′)100 mm +100 mm。利用校验后的水氮管理模型,分析了不同降雨量和灌溉对氮素淋失和作物产量的影响。【结果】冬小麦产量随降雨和灌溉量的增加而增加。在综合考虑氮素淋失风险和作物产量的条件下,当降雨量<200 mm(发生概率87.2%)时,可采用D灌溉方式,相应氮淋失量为0—30.9 kg N•hm-2;当降雨量>200 mm(发生概率12.8%),可采用C灌溉方式,相应氮素淋失量为0.06—41.2 kg N•hm-2。夏玉米产量也随灌水量的增加而增加,但降雨和灌溉总量超过600 mm时,产量下降;按降雨量可分为<250 mm(发生概率17.9%)、250—450 mm(发生概率64.2%)、>450 mm(发生概率17.9%),分别采用D′、C′和B′的灌溉模式,相应的氮素淋失为0—7.3 kg N•hm-2,0—82.2 kg N•hm-2(其中84.2%的淋失水平为I级,淋失水平III级只有5.3%)和0—61.6 kg N•hm-2(其中I级概率为86.8%,III级只有2.6%)。【结论】不同降雨量采用不同的灌溉模式,既可以保证产量,又可以减少氮淋失。普通年份冬小麦季建议采用越冬期、起身到拔节期和灌浆期3次灌溉,每次灌水90 mm的模式。夏玉米季采用苗期和乳熟期灌溉,分别灌水80 mm和70 mm的模式。  相似文献   

5.
为了解黄淮海平原冬小麦水分渗漏和氮淋失特征,以优化小麦生产灌溉制度,降低农田水肥施用后土壤氮淋失对环境的影响,本试验于2020—2022年在设置不同灌水处理(充分灌溉、亏缺灌溉)和雨养处理的大田试验基础上,利用土壤-作物系统水热碳氮耦合(WHCNS)模型,通过优化土壤水力学和作物参数,评价模型适用性,并使用校验后的模型定量化分析不同水分管理条件下的农田氮淋失、水分渗漏及特征。结果表明:土壤含水率和硝态氮(以N计)的均方根误差范围分别为0.01~0.07 cm3·cm-3和3.37~6.39 mg·kg-1;叶面积指数和干物质量模拟R2≥0.9,一致性指数均≥0.7,模型模拟达到预期效果。使用校验后的模型对0~100cm土层水分渗漏和氮淋失进行动态模拟的结果显示,硝态氮淋失与水分渗漏动态一致,二者均表现为单日量小且持续时间较长,产生渗漏的累计天数占全生育期天数的59.2%~69.4%。与充分灌溉相比,亏缺灌溉在两季冬小麦产量无显著差异的情况下,日氮淋失和水分渗漏量分别减少3.88%~66.94%和37...  相似文献   

6.
目的分析晚播对弱筋小麦氮素积累与利用的影响。方法以弱筋小麦品种扬麦13和宁麦13为材料,在不同氮素水平下(N210:210 kg/hm2、N270:270 kg/hm2)设置适播与晚播处理,分析弱筋小麦氮素积累与利用情况。结果弱筋小麦开花期植株氮素积累量主要来源于土壤氮(70.48%~85.51%);成熟期籽粒氮素积累量主要来源于土壤氮(74.35%~86.86%);成熟期营养器官氮素积累主要来源于肥料氮(52.88%~82.12%)。与适期播种相比,晚播显著增加了小麦成熟期单株氮素积累量、开花期来源于土壤氮的积累量、成熟期营养器官和籽粒来源于土壤氮及肥料氮的积累量。弱筋小麦花前营养器官积累氮素向籽粒的转运率为55.52%~79.78%,氮素积累转移的贡献率为38.91%~77.99%。适期播种处理下,花前营养器官氮素积累转运量、转运率与贡献率分别为23.47 mg/株、75.23%和71.46%,而晚播显著降低花前营养器官氮素积累转运量、转运率与贡献率(分别为19.87 mg/株、59.74%和50.31%)。各处理小麦氮肥生产效率为25.25~44.27 kg/kg,氮素利用效率为15.75%~41.43%,氮素收获指数为0.730~0.844。同一因素下不同水平比较表明:晚播显著降低籽粒产量、氮肥生产效率、氮素利用效率及氮素收获指数,但播期对籽粒蛋白质含量无显著影响。在相同品种和氮水平处理下,晚播较适期播种籽粒产量降低。结论弱筋小麦晚播不利于籽粒产量的提高和氮素利用效率的提高,因此为获得较高产量水平与氮素利用效率,应尽量保证弱筋小麦适宜播种期。  相似文献   

7.
High yields of wheat are mainly obtained through a high level of nitrogen and irrigation supplementation.However,excessive nitrogen and irrigation supplication increase the risk of lodging.The main objectives of this work were to clarify the capacity of lodging resistance of wheat in response to nitrogen and irrigation,as well as to explore the effective ways of improving lodging resistance in a high-yield wheat cultivar.In this study,field experiments were conducted in the 2015–2016 and 2016–20...  相似文献   

8.
Excessive application of nitrogen (N) fertilizer is the main cause of N loss and poor use efficiency in winter wheat (Triticum aestivum L.) production in the North China Plain (NCP).  Drip fertigation is considered to be an effective method for improving N use efficiency and reducing losses, while the performance of drip fertigation in winter wheat is limited by poor N scheduling.  A two-year field experiment was conducted to evaluate the growth, development and yield of drip-fertigated winter wheat under different split urea (46% N, 240 kg ha–1) applications.  The six treatments consisted of five fertigation N application scheduling programs and one slow-release fertilizer (SRF) application.  The five N scheduling treatments were N0–100 (0% at sowing and 100% at jointing/booting), N25–75 (25% at sowing and 75% at jointing and booting), N50–50 (50% at sowing and 50% at jointing/booting), N75–25 (75% at sowing and 25 at jointing/booting), and N100–0 (100% at sowing and 0% at jointing/booting).  The SRF (43% N, 240 kg ha–1) was only used as fertilizer at sowing.  Split N application significantly (P<0.05) affected wheat grain yield, yield components, aboveground biomass (ABM), water use efficiency (WUE) and nitrogen partial factor productivity (NPFP).  The N50–50 and SRF treatments respectively had the highest yield (8.84 and 8.85 t ha–1), ABM (20.67 and 20.83 t ha–1), WUE (2.28 and 2.17 kg m–3) and NPFP (36.82 and 36.88 kg kg–1).  This work provided substantial evidence that urea-N applied in equal splits between basal and topdressing doses compete economically with the highly expensive SRF for fertilization of winter wheat crops.  Although the single-dose SRF could reduce labor costs involved with the traditional method of manual spreading, the drip fertigation system used in this study with the N50–50 treatment provides an option for farmers to maintain wheat production in the NCP.  相似文献   

9.
农肥和化肥对黑土氮素淋溶的影响   总被引:3,自引:0,他引:3  
采用树脂袋法,研究了培肥措施对黑土氮素淋溶的影响。结果表明,①2006年和2007年施化肥的3个处理土壤NO3--N淋失量显著高于施农肥处理,其中2006年化肥高量、化肥低量和农化1:1的3个处理分别是对照的36.88、28.91和27.06倍,是农肥高量处理的8.29、6.49和6.08倍;2007年不同培肥处理总体表现为化肥高量化肥低量农肥高量农化1:1农肥低量对照,各处理60 cm土层NO3--N淋溶量均大于30 cm土层NO3--N淋溶量;②不施肥处理比施肥处理土壤NO3--N淋溶量低,在施用等量氮素条件下,农肥施用处理的淋失率要远远小于化肥施用处理,玉米氮的平均淋失损失占所施氮肥的1.4%~13.6%,单施用农肥NO3--N淋失率才只有1.4%~5.2%,而使用化肥的处理NO3--N淋失率则高达12.5%~15%;大豆氮的平均淋失损失占所施氮肥的0.5%~4.3%,单施用农肥NO3--N淋失率只有0.5%~0.81%,而使用化肥的处理NO3--N淋失率则高达2.97%~4.3%;③土壤pH与土壤NO3--N淋失量呈负相关;④土壤NO3--N含量与土壤NO3--N淋溶量呈正相关,随着土层的加深,土壤NO3--N含量降低,深层土壤NO3--N含量对土壤NO3--N淋溶影响更显著;⑤土壤NO3--N淋溶量随土壤硝化强度的增强而增加,硝化作用强度是影响土壤NO3--N淋溶主要因素。  相似文献   

10.
To improve efficiency in the use of water resources in water-limited environments such as the North China Plain(NCP), where winter wheat is a major and groundwater-consuming crop, the application of water-saving irrigation strategies must be considered as a method for the sustainable development of water resources. The initial objective of this study was to evaluate and validate the ability of the CERES-Wheat model simulation to predict the winter wheat grain yield, biomass yield and water use efficiency(WUE) responses to different irrigation management methods in the NCP. The results from evaluation and validation analyses were compared to observed data from 8 field experiments, and the results indicated that the model can accurately predict these parameters. The modified CERES-Wheat model was then used to simulate the development and growth of winter wheat under different irrigation treatments ranging from rainfed to four irrigation applications(full irrigation) using historical weather data from crop seasons over 33 years(1981–2014). The data were classified into three types according to seasonal precipitation: 100 mm, 100–140 mm, and 140 mm. Our results showed that the grain and biomass yield, harvest index(HI) and WUE responses to irrigation management were influenced by precipitation among years, whereby yield increased with higher precipitation. Scenario simulation analysis also showed that two irrigation applications of 75 mm each at the jointing stage and anthesis stage(T3) resulted in the highest grain yield and WUE among the irrigation treatments. Meanwhile, productivity in this treatment remained stable through different precipitation levels among years. One irrigation at the jointing stage(T1) improved grain yield compared to the rainfed treatment and resulted in yield values near those of T3, especially when precipitation was higher. These results indicate that T3 is the most suitable irrigation strategy under variable precipitation regimes for stable yield of winter wheat with maximum water savings in the NCP. The application of one irrigation at the jointing stage may also serve as an alternative irrigation strategy for further reducing irrigation for sustainable water resources management in this area.  相似文献   

11.
【目的】研究泾惠渠灌区不同水氮供应对冬小麦植株氮素吸收运转的影响,为泾惠渠灌区提供合理的灌水施肥运筹方式。【方法】在泾惠渠灌区,通过田间小区试验研究不同灌水(W_(90)和W_(120),即灌水定额为90和120mm)和施氮(底肥60和120kg/hm~2,追肥0,60和120kg/hm~2,即施氮的底追肥处理组合为N_(60/0),N_(60/60),N_(60/120);N_(120/0),N_(120/60),N_(120/120))对冬小麦籽粒产量、各部位氮素积累量、氮素利用效率等的影响。【结果】除净积累量对籽粒氮的贡献率及氮素收获指数外,灌水和施氮对冬小麦籽粒产量、各器官氮素积累量、氮素转移量、氮素利用效率、氮肥农学利用效率均有显著影响。低水处理(W_(90))的籽粒产量、氮素积累量、氮肥农学利用效率显著高于高水处理(W120),其中产量增幅为4.88%~7.44%,植株氮素积累量增幅为6.15%~18.66%,氮肥农学利用效率增幅为19.48%~35.94%。随施氮量的增加,冬小麦籽粒产量、氮素积累量均呈显著增长趋势,其中籽粒产量表现为N_(0/0)(5 653.68kg/hm~2)N_(60/0)(6 777.71kg/hm~2)N_(60/60),N_(120/0)(7 165.63kg/hm~2)N_(60/120),N_(120/60)(7 376.92kg/hm~2)N_(120/120)(7 659.88kg/hm~2);氮素积累量表现为N_(0/0)(188.97kg/hm~2)N_(60/0)(229.49kg/hm~2)N_(60/60),N_(120/0)(275.23kg/hm~2)N_(60/120),N_(120/60)(310.00kg/hm~2)N_(120/120)(327.40kg/hm~2);当施氮量过高时,继续增加施氮量对冬小麦籽粒产量和氮素积累量的调节作用不显著。总施氮量相同的条件下,适当提高追肥的施氮比例,有利于提高产量、各器官氮素积累量及各营养器官氮素转移量,其中N_(60/60)与N_(120/0)处理相比,W_(90)和W_(120)灌水水平下籽粒产量分别提高3.92%和4.44%,各器官氮素积累量提高11.43%~27.99%,各营养器官转移量提高18.37%~71.81%;N_(60/120)与N_(120/60)处理相比,各营养器官转移量提高15.06%~39.63%。【结论】综合考虑籽粒产量、氮肥农学利用效率和氮素利用效率等因素,灌水定额为90mm、底肥施氮量60kg/hm~2、追肥施氮量120kg/hm~2,即W_(90)N_(60/120)为本试验条件下泾惠渠灌区冬小麦的最佳水氮组合。  相似文献   

12.
Water shortage has threatened sustainable development of agriculture globally as well as in the North China Plain(NCP).Irrigation,as the most effective way to increase food production in dry land,may not be readily available in the situation of drought.One of the alternatives is to supply plants with enough nutrients so that they can be more sustainable to the water stress.The objective of this study was to explore effects of irrigation and sulphur(S)application on water consumption,dry matter accumulation(DMA),and grain yield of winter wheat in NCP.Three irrigation regimes including no irrigation(rainfed,I_0)during the whole growth period,once irrigation only at jointing stage(90 mm,I_1),and twice respective irrigation at jointing and anthesis stages(90 mm plus 90 mm,I_2),and two levels of S application including 0(S_0)and 60 kg ha~(–1)(S_(60))were designed in the field experiment in NCP.Results showed that increasing irrigation times significantly increased mean grain yield of wheat by 12.5–23.7%and nitrogen partial factor productivity(NPFP)by 21.2–45.0%in two wheat seasons,but markedly decreased crop water use efficiency(YWUE).Furthermore,S supply 60 kg ha~(–1) significantly increased mean grain yield,YWUE,IWUE and NPFP by 5.6,6.1,23.2,and 5.6%(across two wheat seasons),respectively.However,we also found that role of soil moisture prior to S application was one of important greater factors on improving the absorption and utilization of storage water and nutrients of soil.Thus,water supply is still the most important factor to restrict the growth of wheat in the present case of NCP,supplying 60 kg ha~(–1) S with once irrigation 90 mm at the jointing stage is a relatively appropriate recommended combination to improve grain yield and WUE of wheat when saving water resources is be considered in irrigated wheat farmlands of NCP.  相似文献   

13.
Tillage represents an important practice that is used to dynamically regulate soil properties,and affects the grain production process and resource use efficiency of crops.The objectives of this 3-year field study carried out in the Huang-Huai-Hai(HHH) Plain of China were to compare the effects of a new deep vertical rotary tillage (DVRT) with the conventional shallow rotary tillage (CT) on soil properties,winter wheat (Triticum aestivum L.) grain yield and water and nitrogen use efficiency at different productivity levels,and to identify a comprehensive management that optimizes both grain yield and resource use efficiency in the HHH Plain.A split-plot design was adopted in field experiments in the winter wheat growing seasons of 2016–2017 (S1),2017–2018 (S2) and 2018–2019 (S3),with DVRT (conducted once in June 2016) and CT performed in the main plots.Subplots were treated with one of four targeted productivity level treatments (SH,the super high productivity level;HH,the high productivity and high efficiency productivity level;FP,the farmer productivity level;ISP,the inherent soil productivity level).The results showed that the soil bulk density was reduced and the soil water content at the anthesis stage was increased in all three years,which were due to the significant effects of DVRT.Compared with CT,grain yields,partial factor productivity of nitrogen (PFP_N),and water use efficiency (WUE) under DVRT were increased by 22.0,14.5 and 19.0%.Path analysis and direct correlation decomposition uncovered that grain yield variation of winter wheat was mostly contributed by the spike numbers per area under different tillage modes.General line model analysis revealed that tillage mode played a significant role on grain yield,PFP_N and WUE not only as a single factor,but also along with other factors(year and productivity level) in interaction manners.In addition,PFP_N and WUE were the highest in HH under DVRT in all three growth seasons.These results provided a theoretical basis and technical support for coordinating the high yield with high resource use efficiency of winter wheat in the resource-restricted region in the HHH Plain of China.  相似文献   

14.
为揭示有机肥替代化肥条件下华北平原不同轮作体系土壤-作物系统氮素表观平衡,布置田间试验,定量研究了不同施肥方式[化肥表施(C)、固态粪肥表施替代50%化肥氮(S)、液态粪肥注射施用替代50%化肥氮(L)]和不同轮作方式[籽粒玉米-小麦(T1)、青贮玉米/豇豆间作-填闲黑麦草(T2)、甜高粱-黑麦草(T3)、青贮玉米-黑麦草(T4)、高丹草-黑麦草(T5)]对作物地上部生物量及其氮携出量、0~200 cm土壤剖面硝态氮残留和土壤-作物系统氮表观损失的影响。结果表明:与轮作方式T1相比,T5夏秋季作物地上部生物量及其氮携出量提高幅度最大,其次为T3和T4,而T2却有所降低;各轮作方式冬春季地上部生物量较T1均有所降低,而对其氮携出量无明显影响。与施肥方式C相比,S和L可显著降低夏秋季作物地上部生物量及其氮携出量,降幅均小于15%,而对冬春季作物地上部生物量及其氮携出量无显著影响。与轮作方式T1相比,T3和T5可显著增加周年作物氮总输出量,且显著降低0~200 cm土层无机氮残留量和系统氮表观损失;与施肥方式C相比,S和L可显著降低周年作物氮总输出量和0~200 cm土层无机氮残留量,增加系统氮表观损失。研究表明,在华北平原农牧生产区,以养殖产生的固态和液态粪肥替代50%化肥氮条件下,甜高粱-黑麦草和高丹草-黑麦草轮作是氮肥偏生产力高、表观损失低的轮作方式。  相似文献   

15.
为了研究根系分区交替灌溉条件下灌水量和氮、磷、钾肥及有机肥用量对番茄果实硝酸盐含量的影响,采用五元二次正交旋转组合设计,通过盆栽试验,建立了番茄果实中硝酸盐含量与水肥因子的数学模型,并对各单一因素的效应及两两因素的耦合效应进行了分析.结果表明,在其他因子为中间水平时,番茄果实中的硝酸盐含量,随灌水量呈先降低后增加的变化规律;随施氮量和施磷量呈先增加后降低的变化趋势;随有机肥用量呈逐渐增加的趋势;但不受钾肥用量的影响.交互效应表现为,施磷量与有机肥用量、施氮量与施磷量间的相互作用会促使番茄果实硝酸盐含量提高;灌水量与施钾量和有机肥量、施氮量与施钾量间的相互作用有利于降低番茄果实硝酸盐累积.耦合效应表现为,除不施有机肥时随灌水量增加番茄果实硝酸盐含量显著增加外,对于其它任何有机肥及钾肥施用水平,果实硝酸盐含量皆随灌水量增加呈先减小后增加趋势;灌水量高于中水平时,番茄果实硝酸盐含量随着钾肥与有机肥用量的增加而减少.不论施磷量与施钾量如何变化,番茄果实硝酸盐含量皆随施氮量呈现先增加后减小的变化趋势,降低氮肥用量同时提高磷肥用量有利于降低番茄果实硝酸盐累积,而提高施钾量仅在施氮量高于中水平时能显著降低番茄果实硝酸盐含量.适当增加磷肥用量、减小有机肥用量能显著降低番茄果实硝酸盐的累积.  相似文献   

16.
本试验以京郊冬小麦田为研究对象,采用大田试验设置4个处理:CTF(常规整地+常规施肥)、PF(精准施肥)、LL(激光平地)、PF+LL(精准施肥+激光平地),采用静态箱-气相色谱法分析了不同农业措施下的土壤温室气体(CO_2、N_2O、CH_4)排放特征。结果表明:和CTF相比,LL冬小麦产量显著提高7.10%;降雨、灌溉后表层土壤含水率显著提高,冬小麦季土壤CH_4吸收量显著增加22%,土壤CO_2、N_2O累计排放量分别显著增加27.20%、8.81%。PF产量与CTF无显著差异;土壤N_2O排放峰出现在追肥后,PF排放峰值显著较CTF低15.41%,精准施肥至收获期间PF土壤N_2O显著减排15.05%,但整个冬小麦生长季PF土壤CO_2、N_2O累计排放量和CH_4累计吸收量与CTF均无显著差异。和CTF相比,PF+LL小麦产量显著提高8.2%,同时PF+LL土壤具备较好的持水性,雨季及灌溉后表层土壤含水率分别显著提高8.81%、7.63%,冬小麦生长季土壤CO_2累计排放量显著增加33.53%,CH_4吸收量显著增加31.5%,N_2O累计排放量无显著差异,但在精准施肥至收获期间土壤N_2O显著减排10.22%。综上,激光平地技术可显著增产但综合增温潜势较强,精准施肥技术对产量无显著影响,但降低了N_2O排放峰值,减少了精准施肥后的N_2O累计排放量,表现出一定的N_2O减排潜力。  相似文献   

17.
为探究不同减氮水平下春玉米产量及氮素吸收利用和氮素淋失损失特征,为宁夏引黄灌区春玉米氮肥合理施用提供理论依据,本研究于 2021—2022年在宁夏引黄灌区基于渗漏池进行了连续两年的田间定位试验,以先玉 1225为供试玉米品种,设置了5个氮水平,施氮量分别为常规施氮420 kg·hm-2 (N-420)、减氮14.29%(N-360)、减氮35.71%(N-270)、减氮57.14%(N-180)、不施氮处理(CK),对春玉米产量、氮素吸收利用和氮素淋失损失量进行测定分析。两年数据均表明,农户常规施肥与减氮14.29% 处理籽粒产量没有显著差异(P<0.05),减氮 35.71% 处理较常规施肥处理产量降低。2021年减氮 35.71%、减氮 14.29% 处理较常规施肥处理籽粒产量分别降低了 8.60%和 3.59%,2022年减氮 35.71%处理籽粒产量较常规施肥处理降低 11.46%,而减氮14.29%处理与常规施肥处理相比籽粒产量增加1.42%。氮肥表观利用率、氮肥农学效率、地上部氮素收获指数两年数据均显示减氮 35.71% 处理高于减氮 14.29% 处理和常规施肥处理。氮肥偏生产力随着施氮量的增加逐渐降低,与减氮 57.14% 处理相比,减氮35.71%、减氮14.29%和常规施肥处理分别降低19.57%、33.81%、42.59%。总氮淋失量随施氮量的增加而升高,减氮35.71%、减氮 14.29% 处理总氮淋失损失量较常规施氮处理降低 42.51% 和 18.09%。各处理氮素淋失中,硝态氮是主要形式,占总氮的45.50%~54.68%。相关性分析表明,施氮量与总氮淋失量呈正相关,随着施氮量的增加,总氮淋失量呈指数型增加(R2=0.998 6)。研究表明,与常规施氮量相比,减少35.71%施氮量下,春玉米产量平均减少10.03%,总氮淋失量平均降低42.51%,氮肥表观利用率、农学效率和偏生产力均提高。综合考虑认为,施氮270 kg·hm-2可作为协调引黄灌区春玉米产量和环境安全的合理选择。  相似文献   

18.
施用生物炭对华北平原冬小麦土壤水分和籽粒产量的影响   总被引:1,自引:0,他引:1  
为探究施用生物炭对华北平原农田土壤水分和冬小麦籽粒产量的影响,于2014—2017年在中国农业大学吴桥实验站设置施用生物炭7 200(BH)、3 600(BM)、1 800(BL)和0kg/hm~2(CK)4个处理。结果表明:与CK处理相比,BH、BM和BL处理3年平均增产分别为1.84%、7.28%和5.03%,并且降低了耗水量,水分利用效率分别提高5.96%~14.86%、9.42%~19.18%和5.96%~13.50%。同时施用生物炭增加了土壤含水量,与CK处理相比,土壤上层0~60cm BM处理增幅最大;中层60~120cm和下层120~200cm均为BL处理增幅最大(P0.05)。综上所述,施用生物炭可以增加土壤含水量和籽粒产量。统计分析表明,当施炭量分别为3 389~3 882和3 500~4 357kg/hm~2,0~60cm土层土壤含水量和籽粒产量均最高,且0~60cm土层土壤含水量与籽粒产量间存在显著的正相关关系(P0.05)。因此,施用生物炭可以增加土壤含水量,降低水分消耗,提高冬小麦籽粒产量和水分利用效率,在本试验条件下以施用3 000~4 500kg/hm~2为宜。  相似文献   

19.
微喷水肥一体化对冬小麦产量和水分利用效率的影响   总被引:2,自引:1,他引:2  
为探明不同微喷灌施氮方式对冬小麦产量及水分利用效率的影响,以‘济麦22’为材料,在底施纯氮105kg/hm~2条件下,2016年春季设置追施纯氮45(N1)、90(N2)和135kg/hm~2(N3),每个追氮量采用微喷灌拔节期一次性追施(JS)和分别在拔节、孕穗、开花和灌浆期4次等量追施(4T)2种方式,测定冬小麦的产量和水分利用效率。结果表明:1)微喷灌条件下,随施氮量的增加,冬小麦产量先增加后降低,以N2处理产量最高;相同施氮量下,分次施氮处理产量显著高于拔节期一次性施氮,产量的增加主要由于显著提高千粒重;2)拔节期一次性施氮提高冬小麦开花期群体叶面积指数,而分次施氮处理灌浆期的叶面积指数显著高于拔节期一次性施氮,相同施氮量下分次施氮延缓灌浆中后期旗叶的衰老,从而有利于花后干物质积累和粒重的提高,但过多施氮导致粒重下降,总干物质积累量减少;3)不同施氮量处理间水分利用效率以N2处理最高,相同施氮量下分次施氮处理水分利用效率显著高于拔节期一次性施氮处理。综上所述,与拔节期一次性施氮相比,微喷灌采用分次施氮显著提高冬小麦的产量和水分利用效率,微喷水肥一体化N2处理下分次施氮为最佳的高产高效氮肥运筹模式。  相似文献   

20.
宁夏银南灌区稻田控制排水条件下氮素淋失的研究   总被引:8,自引:0,他引:8       下载免费PDF全文
为探讨不同排水条件下稻田中氮素的迁移、转化规律,通过大田试验,对宁夏银南灌区稻田土壤中氮素的淋失情况进行了研究。结果表明,排水量越大,NH4+-N下移深度越大;在下渗水流的驱动下,NO3--N的下移深度明显大于NH4+-N;不同排水处理中,土壤剖面NH4+-N浓度呈现随深度增加逐渐降低的趋势,NO3--N浓度在地面以下100 cm内随深度增加逐渐升高,超过100 cm之后逐渐降低;每次施肥后,不同处理的排水中NO3--N和NH4+-N浓度均表现出短期内迅速上升,以后又逐渐下降的趋势;氮素的淋失主要发生在拔节期以前,在此期间,应加强水肥管理,以减少氮素淋失。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号