首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Olive (Olea europaea L.) is the major fruit tree in the Mediterranean region, often grown in locations where plants are exposed to increased salinity. To determine the effect of NaCl on shoot and root growth, dry matter allocation, leaf Na+ and K+ concentration, electrolyte (EL) and K+ leakage (KL), seven olive cultivars of different origins were grown in nutrient solution containing 0, 33, 66, 100 or 166 mM NaCl for three months. The general effect of salinity was linear and quadratic decrease of observed plant growth parameters. Different responses of tested cultivars to applied levels of salinity were found for stem dry weight, shoot length and number of leaves. As salinity increased, growth of ‘Manzanillo’ declined sharply, whereas ‘Frantoio’ was the most tolerant to growth reduction in most of the observed growth parameters. Allometric analysis showed that biomass allocation under salinity stress was similar in all cultivars, but the slope between shoot weight and total plant weight decreased as salinity increased. Since the higher allocation in roots was not found, it seems that salinity only slowed the above ground plant canopy growth. Sodium concentration in leaves of all cultivars increased as salinity increased with the highest increment reached when the salinity of nutrient solution was raised from 100 to 166 mM NaCl. Significant differences among genotypes were found in leaf Na+ and K+ concentration and K+:Na+ ratio, but they were not related to the growth rate. Generally, ‘Frantoio’ and ‘Oblica’ accumulated less Na+ and were able to maintain higher K+:Na+ ratios as compared to other genotypes. Electrolyte leakage and KL linearly increased with increasing salinity and the magnitude of the response depended upon the olive cultivar.  相似文献   

2.
A greenhouse experiment was carried out to determine the growth, photosynthetic activity, and mineral composition in two ornamental shrubs [Viburnum lucidum L. (arrow-wood) and Callistemon citrinus (Curtis) Stapf. (red bottlebrush)] that had been treated or not treated with 2.5 mM glycine betaine (GB) or 5.0 mM proline (Pro). Plants were supplied with a non-salinised or salinised nutrient solution containing 200 mM NaCl. Salinity caused reductions in plant growth parameters, shoot biomass production, and net CO2 assimilation in both species. Neither Pro nor GB were able to mitigate the adverse effects of salinity in bottlebrush, whereas GB reduced the deleterious effects of salt stress on arrow-wood, indicating a differential species-specific response to these osmolytes. The application of GB to salt-stressed arrow-wood increased apical and lateral shoot lengths, the number of leaves per plant, and shoot dry biomass by 222%, 113%, 238%, and 49%, respectively, compared to untreated or Pro-treated plants. The improved performance of salt-stressed arrow-wood plants whose roots were treated with 2.5 mM GB was attributed to partial suppression of Na uptake, higher chlorophyll concentrations, and the better nutritional status (higher K) of shoots.  相似文献   

3.
Changes caused by NaCl-induced salinity on several growth parameters and ions accumulation have been measured in five olive (Olea europaea L.) cultivars (‘Chemlali’, ‘Chetoui’, ‘Koroneiki’, ‘Arbequina I18’, and ‘Arbosana I43’) growing in a greenhouse in nutrient solution pot experiment. One-year-old plants were transplanted to sand–perlite (1:1) culture, and were irrigated with half-strength Hoagland nutrient solution containing NaCl at various levels (0.5, 50, 100 and 200 mM). Salinity induced significant decrease in growth parameters, but to a different extent in each cultivar. Leaf growth and total leaf area per plant were significantly affected by all salinity treatments in all studied cultivars, being ‘Arbequina I18’ the most sensitive cultivar. Leaf drop phenomenon was observed from 60 days after salt application at high salinity treatments, mainly in Arbequina I18. Contrary to leaf area, leaf thickness increased progressively during the experiment. ‘Chemlali’ developed thicker leaves at the two highest salinity treatments when compared to the other cultivars. Na+ and Cl concentrations were higher in roots than in shoots and leaves in most of the cultivars investigated. The effectiveness of Na+ exclusion mechanism in the roots differed significantly among studied cultivars, working effectively in ‘Chemlali’ (by inhibiting translocation of Na+ to the aerial part) and being much less efficient in ‘Arbequina I18’. Furthermore, leaf abscission can be considered as an additional tolerance mechanism of olive cultivars allowing the elimination of leaves that had accumulated Na+ and Cl ions. Tolerance to salinity stress was as follows: ‘Chemlali’ > ‘Chetoui’ > ‘Arbosana I43’ > ‘Koroneiki’ > ‘Arbequina I18’. This order of salt tolerance was indicated by lower reduction in plant growth parameters (shoot elongation, trunk diameter, total plant dry weight, internodes length, and total leaf area), the increase of leaf thickness, and by the effectiveness of the exclusion mechanism of Na+ and Cl in the root system.  相似文献   

4.
The effects of NaCl stress on plant growth, gas-exchange, activity of superoxide dismutase (SOD), rate of lipid peroxidation, and accumulation of Na+ ion and sugar were investigated in leaves and fruits of pepper plants (Capsicum annuum L.). Especially, the gene expression of l-galactono-1,4-lactone dehydrogenase (GalLDH), which is the last enzyme of ascorbic acid (AsA) biosynthesis, and the relationships between AsA level and Na+ concentration in plant tissue were investigated with increasing salinity. Plants were treated with three treatments: the control (0 mM NaCl) and two salinity levels (50 and 100 mM NaCl) for 21 days under greenhouse conditions. Plant growth was markedly restricted due to the reduction of photosynthetic rate and the increase of Na+ accumulation in leaves with the increasing intensity of NaCl stress. Salinity had more effect on fruit growth comparing to leaf growth, suggesting that fruits could be more sensitive to salinity than leaves. In comparison with the control, salt stress significantly increased lipid peroxidation (as measured as malondialdehyde content) but decreased SOD activity in both fruits and leaves although the effect was larger in fruits; and the rate of the decrease in SOD activity was greater than that of the increase in lipid peroxidation. The AsA concentration transiently increased first 7 days but it slightly decreased from the initial level in the end of treatment day 21. The change in GalLDH gene expression was similar to AsA concentration. The accumulation of Na+, the reduction of AsA level at severe salinity stress were greater in fruits than in leaves; and AsA level had a negative relationship with Na+ concentration in both leaves and fruits. These results suggest that the difference in salt sensitivity between fruits and leaves in pepper plants can be related to the difference in inhibition of AsA synthesis, which in turn is probably due to the toxicity of extreme accumulation of Na+.  相似文献   

5.
To investigate the feasibility of using salt tolerant rootstock to increase fruit yield and quality of cucumber under NaCl stress, a greenhouse experiment was carried out to determine fruit yield, leaf relative water content, fruit quality, and mineral composition of cucumber plants (Cucumis sativus L. cv. Jinchun No. 2), either self-grafted or grafted onto the commercial salt tolerant rootstock Figleaf Gourd (Cucurbita ficifolia Bouche) and Chaofeng Kangshengwang (Lagenaria siceraria Standl). Plants were grown in a substrate culture (peat:vermiculite:perlite = 1:1:1, v/v) and irrigated with half-strength Hoagland solutions containing 0, 30, or 60 mM NaCl. The results showed that salinity significantly reduced fruit yield of cucumber owing to a decrease both in mean fruit weight and fruit number. Rootstock had no significant effect on leaf relative water content. Plants grafted onto Figleaf Gourd and Chaofeng Kangshengwang had higher fruit number, marketable and total fruit yield than those of self-grafted plants under 0, 30, and 60 mM NaCl, which could be attributed to, at least in part, the higher K+ but lower Na+ and/or Cl contents in the leaves. Salinity improved fruit quality by increasing fruit dry matter, soluble sugar, and titratable acidity contents of all the plants, but had no significant effect on vitamin C content. In comparison to the self-grafted plants, plants grafted onto Figleaf Gourd and Chaofeng Kangshengwang had an overall improved fruit quality under NaCl stress owing to an increase in contents of soluble sugar, titratable acidity, and vitamin C, and a decrease in the percentage of non-marketable fruit and Na+ and/or Cl contents of fruits in comparison to the self-grafted plants, mainly under 60 mM NaCl. Overall, it is suggested that the use of salt tolerant rootstock could provide a useful tool to improve fruit yield and quality of cucumber under NaCl stress.  相似文献   

6.
Summary

The responses of leaf water status, growth, and ion concentrations to water or to saline stresses were compared in olive cuttings of different Ca2+ status. Mist-rooted ‘Picual’ olive cuttings were grown in a greenhouse in 2 l plastic pots containing perlite. A nutrient solution with or without 2.5 mM CaCl2 was initially used to irrigate the plants. When the Ca2+-starved plants differed in height from the Ca2+-treated plants, water or saline stress (i.e., no irrigation or 75 mM NaCl, respectively) were applied. The results indicated that Ca2+ increased growth in saline-treated plants, but not in water-stressed plants. After 98 d growth, the stresses were relieved and the plants were irrigated again with or without Ca2+. Growth increased and leaf water status was increased during this recovery period, but no direct effects of Ca2+ were observed in the response of plants to stress-relief. We suggest that the beneficial effect of Ca2+ on tolerance to salt stress in olive plants was related to protection against Na+ toxicity, because there was no response of water-stressed plants to the supply of Ca2+.  相似文献   

7.
‘Picual’ olive cuttings were grown in a greenhouse under saline conditions in 2 L plastic pots containing perlite. Plants were irrigated with a nutrient solution plus 75 mM NaCl and 0, 2.5, 10 or 40 mM CaCl2. Vegetative growth, leaf and root Na+ and Ca2+ concentrations were measured. Na+ toxicity symptoms were observed in plants non-treated with Ca2+. Shoot length was higher in Ca2+ treated plants, although shoot growth was reduced at 40 mM CaCl2, probably due to the high total ion concentration reached in the external solution. Ca2+ supply linearly increased leaf and root Ca2+ concentration and decreased leaf Na+ concentration. However, there were no differences in root Na+ concentration. Results indicate Ca2+ may take part in the Na+ exclusion mechanism, mainly preventing Na+ transport to the shoot, that may be an important ability for survival under saline conditions.  相似文献   

8.
Plant production under salinity requires increased capacity for K+ homeostasis. For this purpose, supplementary K2SO4 in the nutrient solution and grafting on a tolerant rootstock were employed in two experiments to test whether grafting, potassium and their interactions can alleviate salinity stress in tomato (Solanum lycopersicum L.). In Exp-ion, plants were cultivated for 122 days to compare different ionic compositions: EC 9 dS m−1 in ECall (by macro-nutrients) and in ECNaCl (by 64.2 mM NaCl), EC 12 dS m−1 in ECK (ECNaCl + 25.8 mM K+). Exp-K+ was established to compare K+ concentrations of 6, 16 and 36 mM at 150 mM NaCl. In both Experiments, ‘ZS-5’, selected as a salt sensitive cultivar, was either self-grafted or grafted onto the cultivar ‘Edkawi’, reported as salt tolerant. Yield and growth, minerals, gas exchange, soluble sugars, and proline were analyzed. Different ionic treatments affected almost all characteristics considered while differences between rootstocks were rarely observed. No pronounced differences were found in shoot growth, yield and gas exchange between ECall and ECNaCl. ECK did not show any salinity alleviative effects but inhibited even growth compared with the other treatments. In Exp-K+, 16 mM K+ increased plant growth, leaf soluble sugars and proline concentrations. 36 mM K+ did not further reduce upper leaf Na+ although leaf K+ concentration increased significantly. The results indicated that the response of tomato plant to NaCl stress was principally attributed to the osmotic component in Exp-ion, excessive K+ showed no mitigating effect on fruit yield and shoot growth. However, 16 mM K+ in the root environment enhanced the salt adaptive capacity of plants stressed at 150 mM NaCl. The use of the tolerant rootstock resulted in no ameliorative effects, owing to its susceptibility to blossom-end rot, failure in enhancing photosynthesis, and ineffectiveness of restraining the long-distance transport of Na+.  相似文献   

9.
This study investigated the effects of arbuscular mycorrhizal (AM) colonisation by Glomus clarum on growth and fruit yield of pepper (Capsicum annum cv. 11B 14) grown at high salinity. The experiment was conducted in pots containing a mixture of perlite and sand (1:1, v/v) under glasshouse conditions. Treatments were: (1) no added NaCl without arbuscular mycorrhizae (NS-AM), (2) no added NaCl with arbuscular mycorrhizae (NS + AM), (3) added 50 mM NaCl without arbuscular mycorrhizae (S1-AM) and (4) added 100 mM NaCl without arbuscular mycorrhizae (S2-AM), (5) added 50 mM NaCl with arbuscular mycorrhizae (S1 + AM) and (4) added 100 mM NaCl with arbuscular mycorrhizae (S2 + AM). The NaCl treatments reduced pepper shoot and root dry matter, and fruit yield compared with the non-saline treatments. The concentrations of N, P and K, in the leaves were significantly reduced by salinity stress, however, mycorrhizal colonisation of the salt-stressed plants restored leaf nutrient concentrations to the levels in non-stressed plants in most cases. AM inoculation improved pepper growth under salt or saltless conditions and reduced cell membrane leakage.  相似文献   

10.
The effects of nickel in combination with salicylic acid (SA) and sodium nitroprusside (SNP), a donor of nitric oxide (NO) on 21-day-old canola plants were evaluated. Exposure to 0.5 mM NiCl2·6H2O for 10 days resulted in toxicity symptoms such as chlorosis and necrosis at leaves. Addition of 0.2 mM SA or 0.2 mM SNP slightly reduced the toxic effects of nickel. After application of both SA and NO, these symptoms considerably decreased. Treatment with Ni resulted in a decrease in dry weight of roots and shoots and chlorophyll content of leaves. In Ni-treated plants, level of lipoxygenase activity and malondialdehyde (MDA), H2O2 and proline contents significantly increased, while the activities of the antioxidant enzymes such as catalase, guaiacol peroxidase and ascorbate peroxidase decreased in leaves. The results indicated that Ni caused an oxidative stress in canola plants. The Ni-stressed plants exposed to SA or NO, especially to SA + NO, exhibited an improved growth as compared to Ni-treated plants. SA or NO, especially both together considerably reduced root-to-shoot translocation of Ni and increased the activities of the antioxidant enzymes in leaves of Ni-stressed plants. Interaction of SA and NO improved the chlorophyll content and decreased the level of lipid peroxidation, H2O2 and proline accumulation in leaves. These results suggest that SA or NO in particular their combination counteract the negative effects of Ni on canola plants.  相似文献   

11.
Drought and salinity are two of the most important factors limiting the lemon yield in south-eastern Spain. The effects of drought and salt stress, applied independently, on water relations, osmotic adjustment and gas exchange in the highest evapotranspiration period were studied to compare the tolerance and adaptive mechanisms of 13-year-old ‘Fino 49’ lemon trees, in immature and mature leaves. The study was carried out in an experimental orchard located in Torre Pacheco (Murcia). Three treatments were applied: Control, well-irrigated; drought-stress (DS), non-irrigated from 15th May to 7th July and salinity, irrigated with 30 mM NaCl from 1st March to 7th July. At the end of the experiment, only DS trees showed a decreased leaf stem water potential (Ψmd). Under DS conditions, both types of leaf lost turgor and did not show any osmotic or elastic mechanism to maintain leaf turgor. Osmotic adjustment was the main tolerance mechanism for maintenance of turgor under salt stress, and was achieved by the uptake of Cl ions. Gas-exchange parameters were reduced by DS but not by salinity, stomatal closure being the main adaptive mechanism for avoidance of water loss and maintenance of leaf turgor. Salinity gave rise to greater Cl accumulation in mature than in immature leaves. The increase of proline in immature leaves due to DS indicates greater damage than in mature leaves.  相似文献   

12.
Irrigation with saline water is one of the major problems in citrus crop in arid and semi-arid regions. Because rootstock and fertilization play an important role in citrus salt tolerance, we investigated the influence of the nitrogen fertilization and rootstock on salt tolerance of 2-year-old potted Fino 49 lemon trees. For that, trees grafted on Citrus macrophylla (M) or Sour orange (SO) rootstocks were watered for 12 weeks with complete nutrient solution containing either 0 mM NaCl (control, C), 50 mM NaCl (S), 50 mM NaCl with an additional 10 mM potassium nitrate (S + N), or 50 mM NaCl with a 1% KNO3 (S + Nf) foliar spray application. Trees on M were more vigorous than trees on SO and saline treatments reduced leaf growth similarly in trees on both rootstocks. Trees on SO had a lower leaf Cl and Na+ concentration than those on M. Additional soil nitrogen (S + N) decreased leaf Cl concentration and increased leaf K+ concentration in salinized trees on both rootstocks. However, the salinity-induced reduction leaf growth was similar in S + N and S trees. This was due to osmotic effect, beside leaf Cl and Na+ toxicity, played an important role in the growth response of Fino 49 lemon to the salt stress. Additional foliar nitrogen in the S + Nf treatment also reduced leaf Cl concentration relative to the S treatment but trees from S + Nf treatment had the lowest leaf growth. Net assimilation of CO2 (ACO2ACO2), stomatal conductance (gs) and plant transpiration were reduced similarly in all three salt treatments, regardless rootstock. Salinity reduced leaf water and osmotic potential such that leaf turgor was increased. Thus, the salinity-induced ACO2ACO2 reductions were not due to loss of turgor but rather due to high salt ion accumulation in leaves.  相似文献   

13.
Effects of arbuscular mycorrhizal fungi (AMF) alone or in combination with bacterial consortium (AMF+BC) inoculation prior to induced salinity (NaCl @ 150 or 250 mM) were studied on root growth; plant biomass; leaf area; Na+ and K+ contents; leaf water potential (Ψw); osmotic potential (Ψπ); photosynthesis rate (Pn); and contents of chlorophyll, phytohormones, and polyamines in the grape rootstock ‘Dogridge’, popular among Indian vine growers. AMF inoculation in the NaCl untreated rootstocks plants increased root growth, root and shoot biomass, and leaf area and improved leaf Ψw, Ψπ, Pn, and chlorophyll content, and also countered the stress-induced decline in the NaCl treated plants. The abscisic acid (ABA), cytokinins, and polyamine-spermidine and spermine contents in the leaves of NaCl untreated or treated were significantly increased by the AMF inoculation. Among the treatments, AMF with BC was relatively more effective than AMF alone with respect to changes in above morpho-physiological characters. The results depicted that AMF (AMF alone or AMF+BC) inoculation significantly improved salinity tolerance of grape rootstock and tolerance is induced by improvements in plant water balance, K+:Na+ ratio, and Pn, besides distinct accumulations in ABA and polyamines-spermine and spermidine. The above findings have potential in suggesting the AMF usefulness in improving the efficacy of ‘Dogridge’ rootstock in grape cultivation under salt affected soils.  相似文献   

14.
The objective of this work was to evaluate the effect of selected biologicals on direct seeded and transplanted squash plant growth and mineral content under salinity stress. The study was conducted in pot experiments using a mixture of sandy loam soil:vermiculite (1:1, v:v) under controlled greenhouse conditions. Biologicals tested included AgBlend, SoilBuilder, Yield Shield, PlantShield, Inoculaid and Equity. Salinity treatments were established by adding 0, 50 and 100 mM of NaCl to a base complete nutrient solution (Hydro-Sol + Ca(NO3)2). Pots were irrigated with NaCl solutions and biological treatments were included in the water. Yield Shield was applied as a seed treatment. Salinity negatively affected growth of squash; however, biological treatments significantly increased fresh weight compared to non-treated plants that were challenged with salt stress. Furthermore, biological treatments tested increased the uptake of potassium compared to the non-treated control in both direct seeded and transplanted squash. Sodium concentration was not affected by biologicals in directed seeded squash except for SoilBuilder, Yield Shield and Equity at 100 mM, while AgBlend, SoilBuilder, Inoculaid and Equity decreased sodium uptake in transplants under salt stress. The most effective biologicals increased the K+/Na+ ratio, which was positively correlated with plant growth. Alteration of mineral uptake may be one mechanism for the alleviation of salt stress. Based on the results of the experiment reported herein, the use of biological treatments may provide a means of facilitating plant growth under salt stress.  相似文献   

15.
The effect of scion on Cl and Na accumulation and the transport properties of rootstocks was investigated using grafted plants. The combinations of Navel orange (C. sinensis (L.) Osb.) and Clementine (C. clementine Hort. ex Tan) scions on Cleopatra mandarin (C. reticulata Blanco) and Troyer citrange (C. sinensis X P. trifoliata) rootstocks, were used in all experiments. Plants were grown under glasshouse conditions for 14 weeks supplied with nutrient solution containing 0-60 mM NaCl. Relative growth and defoliation were studied. The reduction in relative growth caused by salt, treatments was more scion- dependent, whereas defoliation was more rootstock-dependent. Changes in leaf and root ionic contents were measured. Scions on Cleopatra mandarin accumulated less Cl in their leaves and roots than did scions on Troyer citrange. The distribution of Cl in the whole plant showed that Clementine had a reduced ability to transport Cl from roots to leaves. However, sodium content was lower in scions on Troyer citrange than Cleopatra mandarin. The distribution of Na in the whole plant showed that Troyer citrange restricted the transport of Na to the scion. There was little difference in P content in all combinations. Salinity decreased sharply the N content of leaves and roots in plants on Troyer citrange, but there was only a slight effect in plants on Cleopatra mandarin. The pattern of N accumulation was inversely correlated with the pattern of Cl accumulation. Salinity decreased K, Ca and Mg contents in leaves and roots of all combinations.  相似文献   

16.
Summary

We investigated the ability of interstocks to increase salt tolerance in lemon trees. We compared 2-year-old ‘Verna’ lemon trees [Citrus limon (L.) Burm.; VL] grafted on Sour Orange (C. aurantium L.; SO) rootstock either without an interstock (VL/SO), or interstocked with ‘Valencia’ orange (C. sinensis Osbeck; VL/V/SO), or with ‘Castellano’ orange (C. sinensis Osbeck; VL/C/SO). Trees were grown under greenhouse conditions and supplied with nutrient solutions containing 0, 30, or 60 mM NaCl. Reductions in leaf growth caused by salt treatment were greatest in non-interstocked (VL/SO) trees, followed by VL/C/SO trees, and were the least in VL/V/SO trees. Although the levels of Cl? and Na+ ions in the roots and stems were not affected by either interstock, leaf concentrations of Cl? and Na+ were higher in VL/SO trees than in VL/C/SO or VL/V/SO trees, suggesting that an interstock in Citrus trees could limit the uptake and transport of such ions to the shoots. Saline-treated VL/SO trees also tended to have the lowest shoot:root (S:R) ratios; so, overall, there was a negative relationship between S:R ratio and leaf Cl- ion concentration. Leaf transpiration (Eleaf) may also be involved in the reduction in leaf Cl? concentration, as interstocked trees had lower Eleaf values at mid-day than non-interstocked trees. Salinity increased leaf concentrations of Ca2+ in VL/C/SO trees and increased both leaf K+ and N concentrations in all trees, regardless of interstock. Salinity reduced leaf water potentials and osmotic potentials, such that leaf turgor was increased in all trees.  相似文献   

17.
One of the most important factors limiting agricultural expansion and production is the restricted supply of good quality water. The present study examines the effects of K+ and Ca2+ fertilization on sweet pepper production, blossom-end rot (BER) incidence and fruit quality of pepper plants (Capsicum annuum L.) grown under moderate saline conditions. Pepper plants were grown in a controlled-environment greenhouse under hydroponic conditions with different nutrient solutions obtained by modifying the Hoagland solution. The experiment consisted on four K+ treatments (0.2, 2, 7 and 14 mM) +30 mM NaCl, and four Ca2+ treatments (0.2, 2, 4 and 8 mM) +30 mM NaCl, having in common a control without salt with 7 mM K+/4 mM Ca2+. Salinity decreased total fruit yield and marketable fruit yield by 23% and 37%, respectively. The marketable fruit yield reduction by salt treatment was mainly due to the increase in the number of fruit affected by BER. This typical physiopathy of the pepper fruits occurred between 18 and 25 days after anthesis (DAA), when the highest fruit growth rate was reached. Fruit quality parameters were also affected by salt treatment where the fruit pulp thickness and firmness were decreased, and fructose, glucose and myo-inositol fruit concentrations increased with salinity relative to fruits from control treatment. Under saline conditions an increased supply of K+ reduced the fruit fresh weight, the percentage of BER and the marketable yield although promoted the vegetative growth. However, increasing Ca2+ concentration in the nutrient solution increased the fruit production, and the marketable yield as consequence of decreasing the percentage of fruit affected with BER. Fruit quality parameters also were affected by the K+ and Ca2+ treatments.  相似文献   

18.
The use of saline waters is an option for the irrigation of salt tolerant ornamentals as competition for high quality water increases. However, despite the importance of ornamental shrubs in Mediterranean areas, salt tolerance of such species has received little attention. The aims of our investigation were to quantify the growth response and any injury symptom of 12 widely cultivated ornamental shrubs to irrigation with saline water and to investigate any possible relation with the concentration of Na+ and Cl in the plants. Species were irrigated with different salinities (10, 40, and 70 mM NaCl) for a 120-day period. At the end of salt treatment, plants were sampled and dry biomass recorded; the relative growth rate (RGR) was also calculated. Root and leaf samples from each species were used to evaluate Na+, K+ and Cl concentrations. Growth rates were significantly reduced in Cotoneaster lacteus, Grevillea juniperina and Pyracantha ‘Harlequin’, which also showed the highest percentage of necrotic leaves. The increasing external NaCl lead to an increase of Na+ and Cl in roots and leaves of the different species, although less Na+ was accumulated than Cl: growth reduction well correlated with the concentration of Cl and/or Na+ in the leaves. The most sensitive species (i.e. C. lacteus, G. juniperina and Pyracantha ‘Harlequin’) had high concentrations of Na+ and/or Cl in their leaves and also showed a decrease in their leaf K+/Na+ ratios. Even though other species (i.e. Bougainvillea glabra, Ceanothus thyrsiflorus, Leptospermum scoparium, Leucophyllum frutescens and Ruttya fruticosa) demonstrated a high ion concentration in their leaves, they could be considered relatively salt tolerant as there was little growth reduction and few symptoms of injury in the leaves. In some other cases (i.e. Cestrum fasciculatum, Escallonia rubra and Viburnum lucidum) the observed tolerance was related to higher ion concentration in the roots compared to the leaves, probably indicative of a limited transport to the shoots. Only in Eugenia myrtifolia was the absence of symptoms associated with a limited Na+ and Cl uptake from the rhizosphere.  相似文献   

19.
Summary

Transgenic mannitol-producing (+mtlD) and wild-type (–mtlD) tobacco plants were exposed to water deficit, varying light intensities, low temperatures, and paraquat applications to test whether mannitol was involved in protection against abiotic stresses. In the water deficit experiment, –mtlD and +mtlD plants were fully irrigated [100% evapotranspiration (ET)] or received 25% ET for 40 d. Water deficit reduced the relative water content (RWC) of both types of plant, starting on day 22, and the total stem length (TSL) of –mtlD 25% ET plants after 11 d, whereas the TSL of +mtlD 25% ET plants was reduced only after 34 d. After 30 d of water deficit, a higher percentage of mature foliage was retained by +mtlD 25% ET plants compared to –mtlD 25% ET plants. The mannitol-1-phosphate dehydrogenase activity of +mtlD plants was not affected by water deficit. The photosynthetic rates of +mtlD and –mtlD plants were measured at PPFD levels ranging from 0 to >2,000 μmol m–2 s–1. No differences in quantum yield, saturation and compensation points, or dark respiration were observed between the +mtlD and –mtlD plants. Exposing the leaves of +mtlD and –mtlD plants to 0°C for 24 h caused significant injury to cell membranes and was similar in both types of plant. The application of 0.2 mM paraquat onto expanding –mtlD leaves produced a higher percentage of necrotic leaf area (4.3%) compared to +mtlD leaves (0.48%). The amount of mannitol produced by +mtlD plants could not provide significant osmotic protection, or increases in photosynthesis, whereas it may provide a specific system to protect cells from free radical-induced damage.  相似文献   

20.
Summary

Potted M.26 apple (Mahis domestica) liners were treated with the gibberellin biosynthesis inhibitor prohexadione-Ca (Apogee®) at 0 to 500 mg l”1 as a foliar spray. Apogee inhibited stem elongation, leaf formation, total leaf area and shoot dry weight, while significantly increasing specific leaf weight, root dry weight and root: shoot ratio, regardless of rate. Foliar application of gibberellin A4+7 (GA4+7) at 200 mg l”1 to Apogee-treated plants one day later reversed these effects, especially stem elongation, root dry-matter production and root: shoot ratio. Apogee increased N concentration in stems but not in leaves and roots. There was no effect on the pattern of N allocation amongst organs. GA4+7 increased leaf N concentration but decreased stem and root N concentrations compared with untreated controls, with N allocation shifting from roots to stem. Total nonstructural carbohydrates (TNC), expressed either on a concentration or content basis, increased in all parts of the Apogee-treated plants, due to increased levels of starch rather than soluble sugars, without altering allocation pattern. Conversely, GA4+7 reduced TNC levels (mainly starch levels) in all parts, with the pattern of allocation slightly shifted from roots to stem. The afternoon decline in stomatal conductance occurred earlier in the Apogee treated plants, measured 10 d after stem elongation had ceased. Starch buildup in the Apogee-treated plants appeared to be associated with this effect, suggesting an involvement of a feedback inhibition of photosynthesis in the Apogee-induced stomatal control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号