首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soils were amended with either leaf litter or faeces from pill millipedes fed on the leaf litter, then incubated at 20 °C for 130 days whilst monitoring the respiration rates. Significantly more CO2 was respired from soil containing leaf litter than that amended with an equivalent weight of faecal matter, whilst the unamended soil exhibited a respiration rate similar to soil amended with faecal material. Consideration of these findings with recently observed differences in biochemical compositions of litter and faeces suggests that processing of plant litter by detritivores leads to more stabilised forms of organic matter by removal of biochemical components essential to the nutrient requirements of the invertebrate and the soil microbial biomass.  相似文献   

2.
Dendrobaena octaedra (Lumbricidae) and Cognettia sphagnetorum (Enchytraeidae) are the two most dominating soil invertebrates in terms of biomass in boreal coniferous forest soils. A microcosm experiment was set up in order to study the influence of pH, moisture and resource addition on D. octaedra and C. sphagnetorum when both species are simultaneously present. Two kinds of coniferous forest humus were used as substrate, pine stand humus (pH 4.2), and spruce stand humus (pH 4.6); in the third treatment the pine stand humus was adjusted with slaked lime (CaOH2) to the same initial pH as the spruce stand humus. Each substrate was adjusted to water contents of 25%, 42.5% and 60% of WHC (referred to as ‘dry’, ‘moist’ and ‘wet’). In the second part of the experiment, spruce needle litter and birch leaf litter were separately added into the pine stand humus (‘moist’, unlimed) and compared with a control without litter. The microcosms were plastic jars with 75 g (d.m.) of humus, into which 4 specimens of D. octaedra and 70 specimens of C. sphagnetorum were added. D. octaedra showed the highest biomass and C. sphagnetorum the lowest biomass in the spruce stand humus with higher pH. Moisture did not affect earthworms, while C. sphagnetorum thrived best at the highest moisture. Addition of both kinds of litter increased the numbers and biomass of D. octaedra, while on C. sphagnetorum resource addition had little effect. The results help to explain the abundance of these two species in coniferous forests differing in soil acidity, moisture and fertility.  相似文献   

3.
Microbial biomass C and N, and activities related to C and N cycles, were compared in needle and leaf litter, and in the uppermost 10 cm of soil under the litter layer in Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L.) and silver birch (Betula pendula L.) stands, planted on originally similar field afforestation sites 23–24 years ago. The ground vegetation was differentiated under different tree species, consisting of grasses and herbs under birch and pine, and mosses or no vegetation with a thick layer of needles under spruce. The C:N ratio of the soils was 13–21 and the soil pHCaCl 2 3.8–5.2. Both showed little variation under different tree species. Microbial biomass C and N, C mineralization, net ammonification, reduction) did not differ significantly in soil under different tree species either. Birch leaf litter had a higher pHCaCl 2 (5.9) than spruce and pine needle litter (pH 5.0 and 4.8, respectively). The C:N ratio of spruce needles was 30, and was considerably higher in pine needles (69) and birch leaves (54). Birch leaves tended to have the highest microbial biomass C and C mineralization. Spruce needles appeared to have the highest microbial biomass N and net formation of mineral N, whereas formation of mineral N in pine needles and birch leaves was negligible. Microbial biomass C and N were of the same order of magnitude in the soil and litter samples but C mineralization was tenfold higher in the litter samples.  相似文献   

4.
We investigated the influence of three concentrations of water extracts of three leaf litter species (pitch pine, huckleberry and white oak) and a mixture of all litters on the germination of pitch pine seeds and initial seedling growth in a microcosm experiment. All three plant species are important components of the pine barrens ecosystems in New Jersey, where it has been seen that pine seedling recruitment occurs only after stand replacing fire or in disturbed sites, where surface organic soil horizons and leaf litter have been removed. Leaf litter extracts did not influence seed germination, but significantly reduced seedling growth at high concentrations. There was little difference between the leaf litter species in growth suppression. As charcoal is a natural residue on the forest floor following fire, its influence on growth suppression was examined; it has been shown to immobilize polyphenols. Charcoal removed the inhibitory effect of leaf litter extracts and allowed the fertilizer effect of nutrients leached from the leaves to enhance seedling growth, particularly at the higher concentration of litter extract used. Responses to litter extracts were compared to four pure phenolic compounds, catchecol, p-coumaric acid, p-hydroxybenzoic acid and tannic acid. None of these compounds suppressed pine seedling growth, suggesting that these phenolics are not allelopathic to pine seedlings. The results are discussed in the context of fire as a driving factor in these oligotrophic and seasonally dry ecosystems and the interactions between nutrient supply and allelopathic chemistry of different leaf litters.  相似文献   

5.
Surface (0–15 cm) and subsurface (30–45 cm) soil samples from under canopy, edge of canopy and away from canopy of isolated Cordia africana Lam. and Croton macrostachyus Del. trees and their leaves were examined to investigate leaf nutrient content, root biomass and the contribution of trees on farms to soil fertility parameters in Badessa area, eastern Ethiopia. Leaves of C. macrostachyus had 20% higher P and 25% lower K contents than those of C. africana. The studied species had comparable leaf N content. Both species produced shallow lateral roots that extended beyond the canopy zone. Typically, higher fine root biomass was observed in the surface soils than the subsurface soils. Both species did not affect soil organic C, pH and cation exchange capacity. Surface and subsurface soils under tree canopies had 22–26 and 12–17% higher N, respectively, than the corresponding soils away from tree canopies. Surface soil available P under tree canopies was 34–50% higher than the corresponding soil away from canopies. Available P content of subsurface soil was improved only under C. africana canopy. The available P of surface soil under C. macrostachyus canopy was more than double that for C. africana. Trees of both species increased underneath surface and subsurface exchangeable K by 18–46% compared with the corresponding controls. In conclusion, C. macrostachyus and C. africana trees on farms keep soil nutrient high via protection against leaching, translocation of nutrients from deeper to the surface layer and accumulation of litter, which create a temporary nutrient pool in the surface soils under their canopies.  相似文献   

6.
Soils at different developmental stages were sampled from eight sites on the slopes of Mt Etna, Sicily (Italy) and characterized for total C, microbial biomass and microbial respiration. The values of these parameters were greatest for the most developed soils, but differences in recent management and site characteristics limited analysis of trends with soil development across the eight sites. The decomposition kinetics of both intact leaf litter and the water-insoluble fraction of leaf litter from three common species on Etna [Etnean broom (Genista aetnensis), European chestnut (Castanea sativa), and Corsican pine (Pinus nigra)] were determined in four of the soils (the two with the smallest and the two with the largest organic C contents) in a laboratory experiment over 168 days to test two hypotheses. First, that the readily mineralized fraction of added plant C is greater when the plant material decomposes in well-developed soils compared to less developed soils, and second, that the microbial communities in less developed soils are less efficient at mineralizing C from low quality plant residues. The first hypothesis held for Genista and Pinus litter, but not Castanea litter. The second hypothesis was supported for the Castanea and Pinus litter, but not for the Genista litter. Thus, the general applicability of the hypotheses was dependent on the precise source and characteristics of the litter.  相似文献   

7.
We investigated the effects of slug (Arion rufus L.) mucus and cast material on litter decomposition, nutrient mobilization, and microbial activity in two laboratory experiments: (1) Slug mucus and cast material was added to beech leaf litter (Fagus sylvatica L.), and leaching of N and P and CO2 production in microcosm systems were measured during 77 days of incubation; (2) mucus was added to beech leaf litter, and basal respiration, microbial biomass (substrate-induced respiration), specific respiration (qO2), microbial growth ability after C, CN, CP, and CNP amendment, and lag time (time between CNP addition and start of exponential increase in respiration rate) were measured during 120 days of incubation. Leaching of N and P from beech leaf litter was significantly increased in treatments with mucus or faecal material of A. rufus. Following day 3, slug mucus increased nitrification processes. Mucus addition to beech leaf litter also increased basal respiration and microbial biomass significantly. In contrast, specific respiration was not significantly affected by mucus addition, and generally declined until day 60 but then increased until day 120. Nutrient amendments indicated that between days 1 and 30, N was available for microbial growth in litter with mucus but not in control litter. Generally, the lag time in beech leaf litter with added mucus was shorter than in control litter. Lag times generally increased with age, indicating dominance of slow-growing microbial populations at later stages as a consequence of depletion of easily available C resources and nutrients. We conclude that C, N, and P cycling is accelerated by slug activity.  相似文献   

8.
Rotation of nitrogen-fixing woody legumes with maize has been widely promoted to reduce the loss of soil organic matter and decline in soil biological fertility in maize cropping systems in Africa. The objective of this study was to determine the effect of maize-fallow rotations with pure stands, two-species legume mixtures and mixed vegetation fallows on the richness and abundance of soil macrofauna and mineral nitrogen (N) dynamics. Pure stands of sesbania (Sesbania sesban), pigeon pea (Cajanus cajan), tephrosia (Tephrosia vogelii), 1:1 mixtures of sesbania + pigeon pea and sesbania + tephrosia, and a mixed vegetation fallow were compared with a continuously cropped monoculture maize receiving the recommended fertilizer rate, which was used as the control. The legume mixtures did not differ from the respective pure stands in leaf, litter and recycled biomass, soil Ca, Mg and K. Sesbania + pigeon pea mixtures consistently increased richness in soil macrofauna, and abundance of earthworms and millipedes compared with the maize monoculture (control). The nitrate-N, ammonium-N and total mineral N concentration of the till layer soil (upper 20 cm) of pure stands and mixed-species legume plots were comparable with the control plots. Sesbania + pigeon pea mixtures also gave higher maize grain yield compared with the pure stands of legume species and mixed vegetation fallows. It is concluded that maize-legume rotations increase soil macrofaunal richness and abundance compared with continuously cropped maize, and that further research is needed to better understand the interaction effect of macrofauna and mixtures of organic resources from legumes on soil microbial communities and nutrient fluxes in such agro-ecosystems.  相似文献   

9.
Condensed tannins (CT) can strongly affect litter decomposition, but their fate during the decomposition process, in particular as influenced by detritivore consumption, is not well understood. We tested the hypothesis that litter CT are reduced by the gut passage of two functionally distinct detritivores of Mediterranean forests, the millipede Glomeris marginata, and the land snail Pomatias elegans, as a fixed proportion of initial litter CT, but more so in Pomatias since snails are known to have a more efficient enzymatic capacity. Contrary to our hypothesis, both detritivore species reduced litter CT to near zero in their faecal pellets irrespective of the wide range in initial leaf litter CT concentrations of 9-188 mg g−1 d m among three Mediterranean tree species (Pistacia terebinthus, Quercus ilex, Alnus glutinosa) and different decomposition stages of their litter. The almost complete disappearance of CT even from some litter types highly concentrated in CT, due to either degradation by gut microorganism or complexation of CT into insoluble high molecular weight structures, suggests a high “de-tanning” efficiency across functionally distinct detritivore species. The transformation of CT-rich litter into virtually CT-free faecal pellets by detritivores might be highly relevant for the subsequent decomposition process in ecosystems with a high macrofauna abundance and CT-rich plant species such as Mediterranean forests.  相似文献   

10.
Aim of this study was to determine effects of heavy metals on litter consumption by the earthworm Lumbricus rubellus in National Park the “Brabantsche Biesbosch”, the Netherlands. Adult L. rubellus were collected from 12 polluted and from one unpolluted field site. Earthworms collected at the unpolluted site were kept in their native soil and in soil from each of the 12 Biesbosch sites. Earthworms collected in the Biesbosch were kept in their native soils. Non-polluted poplar (Populus sp.) litter was offered as a food source and litter consumption and earthworm biomass were determined after 54 days. Cd, Cu and Zn concentrations were determined in soil, pore water and 0.01 M CaCl2 extracts of the soil and in earthworms. In spite of low available metal concentrations in the polluted soils, Cd, Cu and Zn concentrations in L. rubellus were increased. The litter consumption rate per biomass was positively related to internal Cd and Zn concentrations of earthworms collected from the Biesbosch and kept in native soil. A possible explanation is an increased demand for energy, needed for the regulation and detoxification of heavy metals. Litter consumption per biomass of earthworms from the reference site and kept in the polluted Biesbosch soils, was not related to any of the determined soil characteristics and metal concentrations.  相似文献   

11.
Residues from some tree species may contain allelopathic chemicals that have the potential to inhibit plant growth and symbiotic N2-fixing microorganisms. Soybean [Glycine max (L.) Merr] was grown in pots to compare nodulation and N2-fixation responses of the following soil amendments: control soil, leaf compost, red oak (Quercus rubra L.) leaves, sugar maple (Acer saccharum Marsh) leaves, sycamore (Platanus occidentalis L.) leaves, black walnut (Juglans nigra L.) leaves, rye (Secale cereale L.) straw, and corn (Zea mays L.) stover. Freshly fallen leaves were collected from urban shade trees. Soil was amended with 20 g kg-1 air-dried, ground plant materials. Nodulating and nonnodulating isolines of Clark soybean were grown to the R2 stage to determine N2-fixation by the difference method. Although nodulation was not adversely affected, soybean grown on leaf-amended soil exhibited temporary N deficiency until nodulation. Nodule number was increased by more than 40% for soybean grown on amended soil, but nodule dry matter per plant generally was not changed compared with control soil. Nonnodulating plants were severely N deficient and stunted as a consequence of N immobilization. Nodulating soybean plants grown on leaf or crop residue amended soil were more dependent on symbiotically fixed N and had lower dry matter yields than the controls. When leaves were composted, the problem of N immobilization was avoided and dry matter yield was not reduced. No indication of an allelopathic inhibition on nodulation or N2-fixation from heavy application of oak, maple, sycamore, or walnut leaves to soil was observed.  相似文献   

12.
The objective of this study was to determine whether differences in canopy structure and litter composition affect soil characteristics and microbial activity in oak versus mixed fir-beech stands. Mean litter biomass was greater in mixed fir-beech stands (51.9t ha−1) compared to oak stands (15.7t ha−1). Canopy leaf area was also significantly larger in mixed stands (1.96m2 m−2) than in oak stands (1.73m2 m−2). Soil organic carbon (C org) and moisture were greater in mixed fir-beech stands, probably as a result of increased cover. Soil microbial biomass carbon (C mic), nitrogen (N mic), and total soil nitrogen (N tot) increased slightly in the mixed stand, although this difference was not significant. Overall, mixed stands showed a higher mean C org/N tot ratio (22.73) compared to oak stands (16.39), indicating relatively low rate of carbon mineralization. In addition, the percentage of organic C present as C mic in the surface soil decreased from 3.17% in the oak stand to 2.26% in the mixed stand, suggesting that fir-beech litter may be less suitable as a microbial substrate than oak litter.  相似文献   

13.
Aims : The aim of this study was to explore interactive effects between quality (types) and quantity (application rates) of biochar as well as of arbuscular mycorrhiza (AM) symbiosis on the growth of potato plants. Methods : A low P sandy loam soil was amended with 0%, 1.5%, or 2.5% (w/w) of either of 4 types of biochar, which were produced from wheat straw pellets (WSP) or miscanthus straw pellets (MSP) pyrolyzed at temperatures of either 550°C or 700°C. Potato plants grown in pots containing the soils or soil biochar mixture were inoculated with or without AM fungus (AMF), Rhizophagus irregularis. The experiment was carried out under fully irrigated semi‐field conditions and plants were harvested 101 days after planting. Results : Application of high temperature biochar decreased growth, biomass and tuber yield of potato plants, while the low temperature biochar had a similar effect on yield as plants grown without biochar amendment. Total biomass of potato plants were decreased with the increasing rate of biochar. Arbuscular mycorrhizal fungus inoculation stimulated the growth of potato plants in all organs, increased tuber biomass significantly in 1.5% MSP700 amended plants, and to a lesser degree for WSP700, MSP550, and WSP550. In addition, plant biomass gain was linearly related to N, P, and K uptake, the ratio of P to N in the leaf of plants indicated that all treatments were mainly P‐limited. A multiple linear regression using P uptake and biochar rate as independent variables explained 91% of the variation in total biomass. The single effect of AMF inoculation, type and rate of biochar affected plant N, P and K uptake similarly. While AMF inoculation significantly increased P uptake in potato plants grown in soil with WSP700 or MSP700 despite of the rate of biochar. In general, application of biochar significantly increased AMF root colonization of potato plants. Conclusions : The application of MSP550 at 1.5% combined with AMF stimulated growth of potato the most. Furthermore, the results indicated that the interactive effect of AMF inoculation, biochar type and application rate on potato growth to a large extent could be explained by effects on plant nutrient uptake.  相似文献   

14.
Summary The rate and degree of fragmentation of leaf litter by Julus scandinavius in a Sycamore/ash wood in Cheshire, England, were determined from the ratio of surface area of the leaf diet consumed by all individuals of each instar during the period when they were present on the surface area of leaf materials in the faecal pellets. Generally, the rate of fragmentation of leaf litter decreased in the series young instars sexed immature instars mature instars. The total degree of increase in the fragmentation of leaf litter by the population was 72×106.  相似文献   

15.
孙婷婷  徐磊  周静  樊剑波  陈晏 《土壤》2016,48(5):946-953
针对江西贵溪Cu、Cd重金属污染土壤,通过田间试验,比较无机生物材料羟基磷灰石及3种植物(海州香薷、巨菌草、伴矿景天)与羟基磷灰石联合修复对土壤总Cu、Cd的吸收及对活性Cu、Cd的钝化吸收能力差异。采用磷脂脂肪酸(PLFA)分析法,比较不同修复模式对土壤微生物群落结构的影响,以评估土壤微生态环境对不同修复措施的响应。研究结果表明:羟基磷灰石的施加可显著提高土壤pH,并有效钝化土壤活性Cu、Cd含量,但对土壤总Cu、Cd的含量影响较小。植物与羟基磷灰石的联合修复在显著降低土壤活性Cu、Cd(P0.05)的同时,减少了植物根际土壤总Cu、Cd的含量(P0.05)。不同修复措施对土壤微生物群落组成影响差异明显。单独施加羟基磷灰石与土壤真菌群落呈显著正相关,使土壤真菌生物量提高,从而引起真菌/细菌(F/B)的升高。植物与羟基磷灰石的联合修复可有效缓解土壤真菌化的趋势,其中巨菌草与羟基磷灰石的联合修复可有效提高土壤革兰氏阳性、革兰氏阴性细菌生物量及多样性,降低F/B值,从而降低土壤真菌病害的风险。不同植物根系活性代谢引起有机质的积累促进植物与羟基磷灰石处理中根际有机碳含量显著提高。聚类增强树(Aggregated boosted tree,ABT)分析结果表明:不同修复模式是影响土壤微生物群落的重要因素,其次土壤pH和Cu的含量及活性也是改变重金属污染区域微生物群落的因子。该研究从微生物群落结构角度解释了植物与羟基磷灰石联合修复对土壤微生态体系的作用,为开展Cu、Cd等重金属污染地植物与无机生物材料的联合修复方式的筛选及实施提供可靠的理论依据。  相似文献   

16.
Summary Vesicular-arbuscular mycorrhizal (VAM) fungi affect diverse aspects of plant form and function. Since mycorrhiza-mediated changes in host-plant responses to root colonization by different VAM fungi vary widely, it is important to assess each endophyte for each specific effect it can elicit from its host as part of the screening process for effectiveness. Three species of VAM fungi and a mixture of species were compared with non-VAM controls for their effects on soil organic matter contents and on nutrition and morphology in two varieties (native and hybrid) of corn (Zea mays L.) and one of sunflower (Helianthus annuus L.) in P-sufficient and N-deficient soil in pot cultures. Differences in soil organic matter due to the fungal applications were highly significant with all host plants. Native corn responded more to VAM colonization than the hybrid did; differences in treatments were significant in leaf area, plant biomass, and root: shoot ratio in the former, but not in the latter. Responses in the sunflower were similar to those in the native corn. Significant VAM treatment-related differences in shoot N and P contents were not reflected in shoot biomass, which was invariant. Correlations between plant or soil parameters and the intensity of VAM colonization were found only in soil organic matter with the native corn, in specific leaf area in the hybrid corn, and in plant biomass in the sunflower. The presence of the different endophytes and not the intensity of colonization apparently elicited different host responses.  相似文献   

17.
通过不同光强(15%、40%和70%自然光强)和施氮量(15g·株-1、30g·株-1和60g·株-1)的盆栽试验,研究了不同光照强度和施氮量对催吐萝芙木生长和生物量的影响。结果表明:光强和施氮量显著影响催吐萝芙木的生长、单株生物量及生物量分配(P0.05)。在70%自然光强下,催吐萝芙木株高、地径、株高和地径的相对生长速率(RGRH,RGRD)、单株生物量都较15%和40%自然光强下高,并分配更多的生物量到地下部分。在15%和40%自然光强下,催吐萝芙木的株高、地径、RGRH、RGRD、单株生物量随施氮量的增加而减小;在70%自然光强下,催吐萝芙木在30g·株-1中等施氮量下生长最好,单株生物量最大,达559.6g·株-1。在相同光强下,催吐萝芙木根生物量比(RMR)和根冠比(R/S)随施氮量增加而减小,比叶面积(SLA)和叶生物量比(LMR)在低光强和高施氮量下最大。从株高、地径、RGRH、RGRD、单株生物量、RMR和R/S等指标看,70%自然光强和30g·株-1的施氮量是催吐萝芙木最佳的光强和施氮量组合。  相似文献   

18.
Our aim was to determine whether the soil microbial biomass, which has developed naturally over many years in a given ecosystem, is specially adapted to metabolize the plant‐derived substrate C of the ecosystem within which it developed or whether the nature of recently added substrate is the more important factor. To examine this, soils from three sites in close proximity (woodland, grassland and arable from the Broadbalk Experiment at Rothamsted Research, Harpenden, UK) were each amended with air‐dried wheat straw (Triticum aestivum), ryegrass leaves (Lolium perenne) or woodland leaf litter (mainly Quercus robur and Fagus sylvatica) in a fully replicated 3 × 3 factorial laboratory experiment. The initial mineralization rates (evolved CO2‐C) were determined during the first 6.5 hours and again, together with the amount of microbial biomass synthesized (microbial biomass C), at 7, 14, 21, 30 and 49 days of incubation. The hourly rate of CO2‐C production during the first 6.5 hours was slowest following leaf litter addition, while the added grass gave the fastest rates of CO2‐C evolution both within and between soils. Ryegrass addition to the arable soil led to approximately four times more CO2‐C being evolved than when it was added to the woodland soil, at an overall rate in the arable soils of 41 μg C g?1 soil hour?1. In each soil, the net amounts of CO2‐C produced were in the order grass > straw > leaf litter. In each case, the amount produced by the added leaf litter was significantly less (P < 0.05) than either the added grass or straw. Overall, the trend was for much slower rates of mineralization of all substrates in the woodland soil than in either the arable or grassland soils. During 49 days of incubation in the woodland and grassland soils, the net total amounts of CO2‐C evolved differed significantly (P < 0.01), with grass > straw > leaf litter, respectively. In the arable soil, the amounts of CO2‐C evolved from added grass and straw were significantly larger (P < 0.01) than from the leaf litter treatment. Our findings indicated that the amounts of CO2‐C evolved were not related to soil management or to the size of the original biomass but to the substrate type. The amount of biomass C synthesized was also in the order grass > straw > leaf litter, at all stages of incubation in the woodland and grassland soil. In the arable soil, the same effect was observed up to 14 days, and for the rest of the incubation the biomass C synthesized was in the order grass > straw > leaf litter. Up to three times more biomass C was synthesized from the added grass than from the other substrates in all soils throughout the incubation. The maximum biomass synthesis efficiency was obtained with grass (7% of added C). Overall, the woodland soil was most efficient at synthesizing biomass C and the arable soil the least. We conclude that substrate type was the overriding factor that determined the amount of new soil microbial biomass synthesized. Mineralization of substrate C by soil microorganisms was also influenced mainly by substrate type and less by soil management or size of original biomass.  相似文献   

19.
Summary The effects of different litter input rates and of different types of litter on soil organic matter accumulation and net N mineralization were investigated in plant communities dominated by Erica tetralix L. or Molinia caerulea (L.) Moench. Plots in which the litter on the soil had repeatedly been removed were compared with plots in the same plant community in which litter had been added to the soil. In another treatment, litter was removed and replaced by litter from the other plant community. Net N mineralization was measured in situ after 5 years. Less soil organic matter and soil N was found in plots in which litter had been removed, compared with control plots, or plots to which litter had been added, but these differences were significant for the Erica sp. soils only. Plots in which litter had been replaced and control plots did not differ significantly in the amount of soil organic matter. However, in both plant communities, the differences agreed with the faster decomposition rate of Molinia sp. litter compared with Erica sp. litter. The gravimetric soil moisture content was correlated positively with the amount of soil organic matter, both in the Erica sp. soils and the Molinia sp. soils. Net N mineralization rates (g N m-2) differed significantly between treatments for Erica sp. soils but no for Molinia sp. soils. For Erica sp. soils, net N mineralization rates increased with increasing amounts of soil organic matter and soil N. Replacing the litter with Molinia sp. litter (which differs in chemical composition) had no clear additional effect on the net N mineralization rate.  相似文献   

20.
Soil P transformations are primarily mediated by plant root and soil microbial activity. A short-term (40 weeks) glasshouse experiment with 15 grassland soils collected from around New Zealand was conducted to examine the impacts of ryegrass (Lolium perenne) and radiata pine (Pinus radiata) on soil microbial properties and microbiological processes involved in P dynamics. Results showed that the effect of plant species on soil microbial parameters varied greatly with soil type. Concentrations of microbial biomass C and soil respiration were significantly greater in six out of 15 soils under radiata pine compared with ryegrass, while there were no significant effects of plant species on these parameters in the remaining soils. However, microbial biomass P (MBP) was significantly lower in six soils under radiata pine, while there were no significant effects of plant species on MBP in the remaining soils. The latter indicated that P was released from the microbial biomass in response to greater P demand by radiata pine. Levels of water soluble organic C were significantly greater in most soils under radiata pine, compared with ryegrass, which suggested that greater root exudation might have occurred under radiata pine. Activities of acid and alkaline phosphatase and phosphodiesterase were generally lower in most soils under radiata pine, compared with ryegrass. The findings of this study indicate that root exudation plays an important role in increased soil microbial activities, solubility of organic P and mineralization of organic P in soils under radiata pine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号