共查询到20条相似文献,搜索用时 46 毫秒
1.
测定了从巢湖底泥中筛选的活性菌株皮氏伯克霍尔德氏菌(Burkholderia pickettii)对4种邻苯二甲酸酯(PAEs)的降解.结果表明,Burkholderia pickettii菌对4种混合体系PAEs的降解速率常数高于降解单一种类PAEs,不同化学结构的邻苯二甲酸酯生物降解能力不同,PAEs浓度、温度和pH都是影响PAEs生物降解的主要因素,各因素对PAEs降解影响的大小关系是温度>PAEs浓度>pH,各因素最优水平组合应是浓度为20 mg·L-1,pH值为7,温度30℃. 相似文献
2.
一株邻苯二甲酸酯降解菌降解特性研究 总被引:2,自引:1,他引:2
测定了从巢湖底泥中筛选的活性菌株皮氏伯克霍尔德氏菌(Burkholderia pickettii)对4种邻苯二甲酸酯(PAEs)的降解。结果表明,Burkholderia pickettii菌对4种混合体系PAEs的降解速率常数高于降解单一种类PAEs,不同化学结构的邻苯二甲酸酯生物降解能力不同,PAEs浓度、温度和pH都是影响PAEs生物降解的主要因素,各因素对PAEs降解影响的大小关系是温度>PAEs浓度>pH,各因素最优水平组合应是浓度为20 mg.L-1,pH值为7,温度30℃。 相似文献
3.
4.
《农业环境科学学报》2007,(13)
从农药厂污水处理池中分离到一株能很好降解甲基对硫磷和对硝基苯酚的菌株Yw18,它能以甲基对硫磷或对硝基苯酚为惟一碳源生长,经鉴定,为苍白杆菌(Ochrobacterumsp.)。用气相色谱法和分光光度法对Yw18的降解性能进行了研究,结果表明,在0.5 h内它对50 mg.L-1甲基对硫磷的降解率达90%以上,在8 h内能将50 mg.L-1对硝基苯酚完全降解。对该菌进行了系统发育研究,并用PCR法克隆其甲基对硫磷降解酶基因mpd。 相似文献
5.
从青海油井口污泥中,分离出一株能高效降解咔唑的细菌B1。采用富集培养法筛选降解菌株,并利用生理生化特征及16S r DNA基因序列分析鉴定菌株种类,利用高效液相色谱法测定培养液中咔唑浓度。研究菌株在不同p H、盐浓度、温度等条件下的降解能力,及外加碳源、氮源和底物浓度对降解效率的影响。经鉴定,菌株B1属于Sphingosinicella sp.。最适温度和p H分别为30℃和7.0,最适条件下菌株B1在72 h内对100mg/L咔唑的降解率可达到98%,同时该菌株在盐浓度小于10 g/L时降解率较高。此外,研究结果显示,添加0.1 g/L的葡萄糖和硫酸铵能明显提高其降解效率,且菌株B1能耐受700 mg/L浓度的咔唑。研究表明,菌株B1具有高效降解咔唑的能力及良好的环境适应性。 相似文献
6.
《农业环境科学学报》2006,(13)
从天津临港工业区潮间带筛选分离出17株石油烃降解菌,其中柴油降解率较高的2株细菌Y4和Y7均为革兰氏阴性短杆菌,根据理化性质初步确定为假单胞菌属细菌,均能以柴油、萘和菲为唯一碳源和能源生长,在适宜降解条件下:尿素与卵磷脂型两性表面活性剂合成的亲油氮源(氮浓度为70mmol.L-1)、25℃,200r.min-1摇床培养10d,对1%浓度柴油的降解率分别为65%和70%。氮源及溶解氧能促进二者的柴油降解能力,3%的柴油含量对降解作用产生强烈的抑制。 相似文献
7.
《(《农业科学与技术》)编辑部》2015,(7)
利用平板分离技术,以5种邻苯二甲酸酯类物质(DMP、DEP、DBP、DEHP、DOP)为能源和碳源,对巢湖底泥进行驯化培养,从中筛选出活性菌株DM1,经鉴定,该菌为皮氏伯克霍尔德氏菌(Burkholderia pickettii)。气相色谱分析的结果表明:B.pickettii.z-1菌对五种混合体系邻苯二甲酸酯的降解趋势符合一级动力学方程:,且随着基质邻苯二甲酸酯浓度梯度的增加,PAEs的降解速率减小。B.pickettii.z-1菌对不同PAEs化合物的降解速率差别很大,较短侧链的DMP和DEP降解较快,较长侧链的DEHP、DOP降解较慢。 相似文献
8.
一株DBP高效降解菌的筛选及降解特性研究 总被引:2,自引:0,他引:2
邻苯二甲酸二丁酯(DBP)属邻苯二甲酸酯(PAEs),DBP与基质间非共价键连接,是环境污染物。由于DBP性质相对稳定,微生物降解是其降解主要途径。试验从荒废污染设施土壤中成功筛选一株DBP高效降解菌,经16S r RNA比对与剑菌(Ens ife r sp.)相似度为99%,将其命名为DNB-S2。经研究发现DNB-S2最适生长条件为:温度35℃;p H 7.0;DBP浓度500 mg·L~(-1);转速125 r·min~(-1)。DNB-S2能利用高浓度DBP,在500 mg·L~(-1)DBP浓度下,48 h内降解率达95%。底物广谱性研究发现DNB-S2可降解PAEs家族中其他污染物邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)和邻苯二甲酸二(2-乙基己基)酯(DEHP)。为PAEs污染的生物降解提供理论基础和技术支持。 相似文献
9.
利用2株降解细菌S-1和S-3对西玛津进行生物降解,研究其降解能力及降解特性。通过紫外可见分光光度法测定OD600考察S-1和S-3的生物学特性,高效液相色谱法检测不同条件下两菌对西玛津降解效果的影响以及混合菌的降解效果。结果表明:在30℃,pH 7.5条件下培养72 h后,0.2 mg·L~(-1)西玛津降解率均可达到99%以上;两菌对中低浓度底物(0.2~10.0 mg·L~(-1))的降解效果较好,72 h几乎降解完全,高浓度(25.0~50.0 mg·L~(-1))则不利于降解,50.0 mg·L~(-1)时S-1和S-3最高降解率分别为56.67%和75.53%,外加少量碳源和氮源后降解速率均有所提高;混合菌的最佳配比为1∶1,此时西玛津降解率最高,混菌的降解速率及降解能力均强于单菌,可见S-1和S-3对西玛津均具有较强的降解能力,说明两株降解菌在残留西玛津污染治理中具有独特的应用前景。 相似文献
10.
两株邻苯二甲酸二丁酯降解菌的分离鉴定及降解特性的研究 总被引:3,自引:1,他引:3
采用水-硅油双相体系从污染土壤中驯化分离到2株能够以邻苯二甲酸二丁酯(DBP)为惟一碳源和能源生长的菌株TS2H、TS2L,经过形态特征、生理生化以及16SrDNA序列分析,菌株分别鉴定为乙酸钙不动杆菌属(Acinetobacter calcoaceticus)和铜绿假单胞菌(Pseudomonas aeruginosa),对其降解DBP的特性进行了研究,探讨了可能的生物降解途径。结果表明,菌株TS2H、TS2L在48h内对40mg·L^-1初始浓度DBP的降解率分别达到98.64%、74.62%,TS2H降解DBP的中间代谢产物主要有邻苯二甲酸以及一些小分子酸类和醇类物质。 相似文献
11.
为获得用于修复邻苯二甲酸酯(PAEs)污染的高效降解菌,通过富集培养的方法从土壤中筛选出2株PAEs降解菌(RXX-2、RXX-3),经形态观察、生化鉴定和16S r DNA序列分析对菌株进行了鉴定,并对其降解性能进行了分析。结果表明:菌株RXX-2和RXX-3初步鉴定为食异源物鞘氨醇菌(Sphingobium xenophagum)和鳗败血假单胞菌(Pseudomonas anguilliseptica)。菌株RXX-2降解PAEs的最佳条件为p H 8、温度30℃、转速175 r·min~(-1)、接种量1.5%;菌株RXX-3降解PAEs的最佳条件为p H 7、温度30℃、转速175 r·min~(-1)、接种量1.0%。在最佳降解条件下,经过5 d的培养,菌株RXX-2对邻苯二甲酸二丁酯(DBP)和邻苯二甲酸二(2-乙基己基)酯(DEHP)的降解率分别达到71.43%和52.85%,RXX-3对DBP和DEHP的降解率分别达到98.98%和62.96%,表明2株降解菌在PAEs污染环境的生物修复方面具有良好的应用前景。 相似文献
12.
对10种邻苯二甲酸酯进行产甲烷潜能研究,结果发现,产甲烷性能有较大的差异.邻苯二甲酸酯终极厌氧生物降解受其分子结构影响,烷基链越长,受试化合物的厌氧生物降解率越低,其降解半衰期越长;通过分析试验,建立了产气量与烷基链碳原子数相关方程,可以从烷基链的长度(碳原子数)大致推断邻苯二甲酸酯的厌氧生物降解性状. 相似文献
13.
[目的]分离耐冷苯胺高效降解菌株并研究其降解特性。[方法]从常州城北污水处理厂的污水曝气池中,采用高通量菌株方法筛选耐冷苯胺高效降解菌株。同时通过生理生化试验和16S rDNA测序对其进行鉴定,用液相色谱法和分光光度法对其进行降解性能分析。[结果]获得一株能以苯胺为唯一碳源生长的耐冷降解菌株An7,该菌株为黄杆菌(xanthomonas),在pH值为7,20℃,接种量1%的条件下,120 h内对800 mg/L的苯胺降解率达83.5%。[结论]An7菌株可以作为耐冷苯胺高效降解菌株。 相似文献
14.
五氯硝基苯降解菌的降解效能及影响因素研究 总被引:1,自引:0,他引:1
从长期施用PCNB的栽参土壤中,筛选出2株对PCNB具有降解作用的菌株,其中1株为细菌PB-1,另1株为放线菌PS-5,对其降解性能和影响生物降解的因素进行了研究。结果表明,适合PB-1和PS-5菌株生长的pH范围分别为pH5~7和pH6~8;适合PB-1和PS-5菌株生长的温度范围分别为20~30℃和25~35℃;在此pH和温度范围内,二菌株对PCNB具有良好的降解性能。菌株生长和降解PCNB的最佳条件,对于PB-1是pH6、温度28℃;对于PS-5是pH7、温度30℃。在最佳生长条件下,菌株达到最大生长量和最高降解率,在PCNB初始浓度为20.0mg.L-1时,经过4d的培养,降解率分别达到83.5%和76.9%。金属离子对各菌株的生长量和降解性能产生不同程度的促进和抑制作用,在添加浓度范围内,Cu2 和Mo6 对菌株PB-1有毒,Mn2 对菌株PS-5有毒;Fe2 和Co2 能促进菌株PB-1对PCNB的降解,分别比对照提高了8.9%和7.1%;Ca2 、Zn2 能刺激PB-1菌株的生长;Fe2 、Ca2 、Zn2 、Cu2 和Mg2 不同程度地促进菌株PS-5对PCNB的降解,降解率提高7%~20%,其中Mg2 也刺激菌株PS-5的生长。维生素B2和丙氨酸可以显著提高PB-1和PS-5菌株的生长和降解性能,维生素C和甘氨酸具有促进PS-5菌株降解PCNB的作用,其他生长因子的作用不明显。在甲醇、柠檬酸纳、甲苯(电子供体)和乙酸铵(电子受体)存在下,菌株降解PCNB的能力有明显差异,添加柠檬酸纳和甲苯能促进PS-5菌株对PCNB的降解;柠檬酸钠促进PB-1菌株的生长,甲醇促进PS-5菌株的生长;乙酸铵对菌株的生长和PCNB降解具有明显的抑制作用,降解效果与菌株生长量不存在一致性。试验结果为在PCNB污染土壤中应用降解微生物进行生物修复具有很好的参考价值。 相似文献
15.
16.
从长期施用多菌灵农药的土壤中,通过富集筛选,获得1株新的多菌灵高效降解菌株.通过生理生化实验和16S rDNA序列同源性分析鉴定该菌株,应用高效液相色谱法对纯培养条件下菌株的降解特性和粗酶提取液的降解性能进行了分析.结果表明,筛选所获得的菌株与Raoultella菌属的亲缘关系最近,将其命名为Raoultella sp.MBC,该菌株能在以多菌灵为唯一碳源的无机盐培养基中生长;25℃、pH7.0、200 r·min-1的最适生长条件下避光振荡培养72 h,多菌灵的降解率达到100%;在最适培养条件下外加氮源和碳源在培养后期均可以提高多菌灵的降解率,外加氮源对多菌灵的降解效果优于外加碳源;该菌体的粗酶提取液具有降解多菌灵活性,且多菌灵降解酶为诱导酶.研究结果为多菌灵污染土壤的生物修复和酶修复提供了材料和理论依据. 相似文献
17.
《农业环境科学学报》2007,(13)
从长期堆积腐烂羽毛的土壤中分离出一株能降解羽毛角蛋白的细菌,经形态观察和16S rRNA测序初步鉴定为黄单胞菌属,与嗜麦芽窄食单胞菌(Stenotrophomonas maltophilia)相似性达98%,命名为黄单胞菌DHHJ(Stenotroph-omonas maltophiliaDHHJ)。该菌降解羽毛蛋白的最适温度为40℃,最适pH值为7.5。迄今为止,国内还未见黄单胞菌降解羽毛角蛋白的相关报道。 相似文献
18.
通过在液体培养基中添加苯并[a]芘(B[a]P)作为唯一碳源反复驯化培养,从长期受石油烃和多环芳烃(PAHs)污染的土壤中分离出8株能够降解B[a]P的细菌,其中一株细菌(命名为BB-1)具有最大降解效果。采用16s RNA基因测序结果表明,BB-1与巨大芽孢杆菌(Bacillus megaterium)同源性为100%。为了研究BB-1的降解特性,在pH7.0、30℃条件下培养8 d,菌株B[a]P的降解率高达66.36%。为了考察培养基初始pH和外加蔗糖浓度对BB-1降解B[a]P的影响,30℃下振荡培养8 d,当设置培养基初始pH为4.0、6.0、8.0和10.0时,BB-1对B[a]P的降解率分别为12.14%、39.61%、55.21%和30.03%,可见pH为8.0时其降解效果最优;当添加0.1%蔗糖和0.5%蔗糖为外加碳源时,菌株BB-1对B[a]P的降解率分别为70.56%和74.89%,表明0.5%蔗糖的降解效果最优。 相似文献
19.
一株氯氰菊酯降解菌的分离和鉴定 总被引:12,自引:1,他引:12
从氯氰菊酯污染土壤中,分离到一株氯氰菊酯的降解菌,命名为HF12-8.根据形态、生理生化和16S rDNA聚类分析、Biolog GN测试等,将该菌株初步鉴定为铜绿假单胞菌.HF12-8能够以氯氰菊酯或联苯菊酯为唯一碳源生长,5 d内对20 mg·L-1的氯氰菊酯和联苯菊酯降解率分别为93.03%和58%. 相似文献
20.
从氯氰菊酯污染土壤中,分离到一株氯氰菊酯的降解菌,命名为HF12-8.根据形态、生理生化和16S rDNA聚类分析、Biolog GN测试等,将该菌株初步鉴定为铜绿假单胞菌.HF12-8能够以氯氰菊酯或联苯菊酯为唯一碳源生长,5 d内对20 mg·L-1的氯氰菊酯和联苯菊酯降解率分别为93.03%和58%. 相似文献