首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Substitution analysis of drought tolerance in wheat (Triticum aestivum L.)   总被引:4,自引:0,他引:4  
E. Farshadfar    B. Köszegi    T. Tischner  J. Sutka 《Plant Breeding》1995,114(6):542-544
Chromosome substitution lines of the wheat variety ‘Cappelle Desprez’ into ‘Chinese Spring’ were tested for drought tolerance in growth chambers in the Martonvásár phytotron. Three different moisture regimes were created: E1, fully irrigated control; E2, mid-season water stress (preanthesis); and E3, terminal water-stress during grain filling. Data were analysed to estimate the chromosomal location of the genes controlling relative water-content (RWC), relative water-loss (RWL), drought-susceptibility index (DSI) and phenotypic stability in each substitution line. Simultaneous consideration indicated that most of the genes controlling these characters are located on chromosomes 1A, 5A, 7A,4B, 5B, 1D, 3D and 5D.  相似文献   

2.
3.
Genetic basis of adult plant leaf rust resistance in three released Indian wheat cultivars viz. DWR195, RAJ3765 and HP1731 was investigated through detailed inheritance study under controlled polythene house condition at Flowerdale, India. The F2, F3, F4 and F5 generations were analyzed with the most frequent and virulent Indian leaf rust pathotype 121R63-1. Two complementary recessive genes imparted resistance in DWR195, two complementary dominant genes governed the resistance of RAJ3765 whereas two independent dominant genes were involved in the resistance of HP1731. The genes responsible for adult plant resistance in the three cultivars were not allelic. The two complementary genes of DWR195 and two independent dominant genes of HP1731 have been isolated as single gene lines. Utilization of resistance from HP1731, which carries two independent dominant genes, will be easy as compared to DWR195 and RAJ3765.  相似文献   

4.
5.
Terminal heat stress has the potential negative impact on wheat production across the world, especially in South Asia. Under the threat of terminal heat stress, wheat genotypes with stay green trait would suffer from high temperature stress during their long grain filling duration (GFD). The genotypes with short GFD would be advantageous. To identify quantitative trait loci (QTL) for heat tolerance, a RIL population of K 7903 (heat tolerant) and RAJ 4014 (heat sensitive) wheat genotypes was investigated under timely and late‐sown conditions. Heat susceptibility index of GFD, yield components and traits under late‐sown condition were used as phenotypic data for QTL identification. Stable QTLs associated with these traits were identified on chromosomes 1B, 2B, 3B, 5A and 6B. The LOD value ranged from 2.9 to 5.0 and the corresponding phenotyping variation explained ranged from 12.0–22%. QTL for heat susceptibility index for the grain filling duration were colocalized with QTL for productive tillers under late sown and GFD under late‐sown condition on chromosomes 1B and 5A, respectively. These genomic regions could be exploited for molecular wheat breeding programmes targeting heat tolerance.  相似文献   

6.
H. Ekiz  A. Safi Kiral  A. Akçin  L. Simsek 《Euphytica》1998,100(1-3):189-196
The inheritances of thousand kernel weight (TKW), protein percentage, protein quality and grain hardness were studied through an 11 x 11 complete diallel set of bread wheat genotypes consisting of four alloplasmic lines of Selkirk, two alloplasmic lines of Siete Cerros 66, and five commercial cultivars. Genetic components accounted for 93%, 90%, 78%, and 92% of total variation for TKW, protein percentage, protein quality, and grain hardness, respectively. General combining ability (GCA) effects were dominant for TKW (48% GCA, 38% SCA [specific combining ability], and 7% reciprocal effects [RE]), protein percentage (70% GCA, 10% SCA, and 10% RE), and grain hardness (59% GCA, 29% SCA, and 4% RE). However, SCA effects dominated for protein quality (30% GCA, 43% SCA, and 5% RE). Broad- and narrow-sense heritabilities were estimated at 0.95 and 0.65 for TKW, 0.94 and 0.82 for protein percentage, 0.83 and 0.47 for protein quality, and 0.95 and 0.74 for grain hardness. Reciprocal effects were highly significant for all quality traits, but less effective than additive and non-additive gene effects. Aegilops cylindrica, Ae. ventricosa, and Triticum turgidum cytoplasms showed positive effects on TKW in some crosses. Ae. cylindrica, Ae. variabilis, and Ae. uniaristata cytoplasms seemed to have potential for improving protein percentage. T. aestivum cytoplasms were superior to alien cytoplasms for protein quality. Bolal 2973, Kiraç 66 and Bezostaja 1 cytoplasms increased protein quality in some crosses. Ae. cylindrica, Ae. variabilis, Ae. ventricosa and Ae. uniaristata cytoplasms had significant effects on grain hardness. The cytoplasmic variation in B type T. aestivum cytoplasm was found to be significant for all traits.  相似文献   

7.
Using the Information and Analytical System of Wheat Genetic Resources GRIS 3.2, the peculiarities of distribution of hybrid necrosis genes in bread wheat in different regions of the world were analyzed. Considerable variation in frequencies of the Ne1 and Ne2 genes in regions with different moisture and heat supply was revealed. A significant effect of breeding on frequency dynamics of different genotypes Ne1ne2, ne1Ne2 and ne1ne2 was confirmed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Summary Variation in pigment content of the flour of bread wheats (Triticum aestivum L.) was studied in the progenies of F1 and F2 of three crosses and their reciprocals. Reciprocal differences in pigment content were observed in the F1 and F2 means. Low pigment content was found to be partially dominant or over dominant in the crosses studied. There was evidence of substantial mid-parent F1 heterosis in all crosses and betterparent F1 heterosis in three crosses. In the F2, heritability estimates were moderate to high. The F2 frequency distributions were not normal. Estimation of effective factor pairs indicated the presence of one or two major gene pairs involved in the expression of pigment content in the flour. Action of modifiers was also assumed in one cross and its reciprocal. A factorial approach to metrical character suggested that the F2 segregation ratios of low pigment content to high pigment content were 3:1, 15:1, 13:3 and 9:7 for the different crosses. Utilization of the findings in a wheat breeding program is briefly discussed.  相似文献   

9.
Summary Breeding wheat (Triticum aestivum L.) for tolerance to manganese (Mn) might be in some cases more feasible and economical than use of soil amendments. As part of research on the heritability of Mn tolerance, a study on the level of Mn tolerance in Canadian wheat cultivars and its probable origin was accomplished by analysis of cultivar pedigrees and drawing phylogenetic maps to discern filial relationships. Cultivar tolerance to Mn was determined by relative root weight (RRW) in solution culture in the presence of 500 M Mn. A total of 91 cultivars were screened, 76 of which were Canadian. These data, together with data from another 28 cultivars reported in the literature, were used to draw two pedigree maps, a map for Canadian cultivars only, and a map for the Mn-tolerant Canadian cultivars Norquay and Laura. Results indicated a range of tolerance to Mn among Canadian cultivars. Manganese tolerance, found in either Canadian or foreign germplasm, and of either recent or older selection or origin, seems to have originated from land races from Rio Grande do Sul, the southernmost state of Brazil. Tolerance may have been introduced into Canadian germplasm directly by the use of Brazilian cultivars as parents, or indirectly by the introduction of Mexican germplasm with Brazilian parentages. This information will help the plant breeder to develop plant breeding systems, and may also help in the study of the mechanisms for Mn tolerance in wheat.  相似文献   

10.
Adult plant resistance against Indian leaf rust race 77 and five of its highly virulent variants have been identified from 111 bread wheat cultivars originating from 12 countries. The adult plant resistance of only 16 of these cultivars is due to hypersensitive seedling or adult plant resistance genes. All others expressed nonhypersensitive type of resistance characteristic of the genes Lr34 and Lr46.Forty five of the 111 cultivars showed tip necrosis on flag leaves, a trait linked to the gene Lr34. Therefore, the nonhypersensilive type of resistance of these 45 cultivars is attributed to Lr34. The nonhypersensitive resistance of the remaining cultivars is likely to be due to the gene(s) different than Lr34. The reaction pattern of these 111 cultivars to six races suggests the presence of at least six to seven new hypersensitive adult plant resistance genes and at least three new hypersensitive seedling resistance genes. The known genes Lr10, Lr23 and Lr26 were detected frequently but these genes did not contribute towards the adult plant resistance of any of the 111 cultivars. Based on the presence of new genes for hypersensitive and nonhypersensitive type of resistance, the 111 cultivars have been classified into 31 diverse resistance groups. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
12.
Journal of Crop Science and Biotechnology - Abiotic stress, especially drought and heat, affects cereal yields and wheat production worldwide, more particularly in West and South Asia, North...  相似文献   

13.
Summary Near-isogenic tall (no dwarfing gene), semidwarf (Rht1 or Rht2) and dwarf (Rht1 + Rht2 or Rht3) spring wheat lines were evaluated for yield and yield components under irrigated and rainfed conditions. Under irrigated conditions, the dwarf and the semidwarf lines exhibited a significant yield advantage over the tall lines. Under rainfed conditions, the semidwarf lines outyielded the tall as well as the dwarf lines. Percent yield reduction in response to drought stress was highest with the dwarfs and lowest with the tall lines. Dry matter production of the tall lines and that of the semidwarf lines did not differ significantly and both produced significantly more dry matter than the dwarf lines under irrigated as well as rainfed conditions. Plant height and kernel weight decreased with increasing degree of dwarfness while number of kernels per spikelet, harvest index and days to heading increased under both moisture regimes. The dwarfing genes did not have any significant influence on number of tillers/m2 and spikelets per spike in either moisture regime.  相似文献   

14.
The presence or absence of the staygreen trait was screened for 3 consecutive years in 963 wheat lines from various sources, including Indian and CIMMYT germplasm. Staygreen was assessed at the late dough stage by visual scoring (0–9 scale) and the leaf area under greenness (LAUG) measurement. Around 5.5 % of the lines were staygreen, 10.5 % were moderately staygreen, and the remaining lines showed little or no expression of the trait. One hundred lines showing diversity for the staygreen trait were sown under three different sowing dates (timely, late and very late) for 3 consecutive years in three replications to determine the association of staygreen with heat tolerance. There was a decline in yield, biomass, grain filling duration (GFD) and 1,000 grain weight (TGW) under late and very late sowing conditions owing to terminal stress at anthesis and later stages. However, the decline was relatively less in staygreen genotypes compared to the non-staygreen (NSG) ones. The correlation study showed that LAUG and canopy temperature depression (CTD) were strongly correlated. LAUG and CTD were also significantly associated with grain yield, GFD and biomass. To further confirm the association of the staygreen trait with terminal heat stress, individual F2-derived F7 progenies from the cross of the ‘staygreen’ lines with NSG were evaluated for yield and yield traits at the three sowing dates. In each cross, the staygreen progenies showed a significantly smaller decline in yield and TGW under heat stress than the NSG progenies. These results appear to suggest an association between the staygreen trait and terminal heat stress and, thereby, that the staygreen trait could be used as a morphological marker in wheat to screen for heat tolerance.  相似文献   

15.
The allelopathic water extracts (AWEs) may help improve the tolerance of crop plants against abiotic stresses owing to the presence of the secondary metabolites (i.e., allelochemicals). We conducted four independent experiments to evaluate the influence of exogenous application of AWEs (applied through seed priming or foliage spray) in improving the terminal heat and drought tolerance in bread wheat. In all the experiments, two wheat cultivars, viz. Mairaj‐2008 (drought and heat tolerant) and Faisalabad‐2008 (drought and heat sensitive), were raised in pots. Both wheat cultivars were raised under ambient conditions in the wire house till leaf boot stage (booting) by maintaining the pots at 75% water‐holding capacity (WHC). Then, managed drought and heat stresses were imposed by maintaining the pots at 35% WHC, or shifting the pots inside the glass canopies (at 75% WHC), at booting, anthesis and the grain filling stages. Drought stress reduced the grain yield of wheat by 39%–49%. Foliar application of AWEs improved the grain yield of wheat by 26%–31%, while seed priming with AWEs improved the grain yield by 18%–26%, respectively, than drought stress. Terminal heat stress reduced the grain yield of wheat by 38%. Seed priming with AWEs improved the grain yield by 21%–27%; while foliar application of AWEs improved the grain yield by 25%–29% than the heat stress treatment. In conclusion, the exogenous application of AWEs improved the stay green, accumulation of proline, soluble phenolics and glycine betaine, which helped to stabilize the biological membranes and improved the tolerance against terminal drought and heat stresses.  相似文献   

16.
17.
To investigate the effects of individual chromosomes on freezing resistance, as well as their interactions with the genetic background, reciprocal sets of chromosome substitution lines between two hard red winter wheat cultivars, ‘Cheyenne’ and ‘Wichita’, were used in this study. Duplicate lines for each chromosome were included to check background homogeneity. Two experiments were carried out in complete block designs with two replications for each duplicate. Crown and leaf water content and leaf wet weight were measured in the field experiments. Crown survival, electrolyte leakage and 50% lethality temperature (LT50) were measured in the laboratory. The results showed that ‘Cheyenne’ was more resistant than ‘Wichita’. Crown survival was significantly correlated with crown water content, crown wet weight and electrolyte leakage. Chromosomes 6A, 3B and 5D substituted from ‘Wichita’ into ‘Cheyenne’ (‘CNN‐WI’), decreased the crown survival, and increased membrane stability, crown water content and crown wet weight of ‘Cheyenne’. Thus, these chromosomes from ‘Wichita’ decreased freezing resistance in ‘Cheyenne’. Reciprocally, chromosomes 5A, 5D, 3B and 4D from ‘Cheyenne’ into ‘Wichita’ increased crown survival and decreased crown water content and crown wet weight of ‘Wichita’. It was concluded that these chromosomes from ‘Cheyenne’ cause freezing resistance in ‘Wichita’ and carry freezing‐resistance genes.  相似文献   

18.
Summary Expression of 17 rye traits in 24 bread wheat x rye and 8 durum wheat x rye crosses was studied, using a self-compatible, homozygous, dwarf rye. Rye showed epistasis for hairiness on the peduncle in all the crosses of Triticum aestivum and T. durum wheats with rye. Dark greenness of leaves of rye was expressed in all the durum wheat x rye and in some of the bread wheat x rye crosses. Similarly, absence of auricle pubescence, a rye trait, was expressed in most of the durum wheat x rye crosses but not in the bread wheat x rye crosses, indicating the presence of inhibitors for these traits frequently on the D genome and rarely on the A and/or B genome of wheat. Most of the wide hybrids resembled rye fully or partially for intense waxy bloom on the leaf-sheath and for the absence of basal underdeveloped spikelets. Similarly, most of the amphihaploids resembled rye for the anthocyanin in the coleoptile, stem and node. The presence of some inhibitors on A and/or B genome of wheat was indicated in some of the wheat genotypes for the expression of rye traits viz. intense waxy bloom, anthocyanin in node and absence of basal underdeveloped spikelets. Enhancement in the level of expression of the intensity and length of bristles on the mid-rib of the glume of the hybrids might be due to wheat-rye interaction. Less number of florets/spikelet as in rye showed variable expression in different wheat backgrounds. Some other rye traits like absence of auricles, terminal spikelet and glume-awn were not expressed in the wheat background. The expression of some of the rye genes might have been influenced by their interaction with Triticum cytoplasm and/or the environment.  相似文献   

19.
Summary Three lines derived from the old dirty Dutch land variety Gelderse Ris were resistant against race 66(70)EO(16) of yellow rust. It was found that this resistance was conditioned by one recessive gene provisionally coded yrGR.  相似文献   

20.
Pre-harvest sprouting (PHS) is one of the serious problems for wheat production, especially in rainy regions. Although seed dormancy is the most critical trait for PHS resistance, the control of heading time should also be considered to prevent seed maturation during unfavorable conditions. In addition, awning is known to enhance water absorption by the spike, causing PHS. In this study, we conducted QTL analysis for three PHS resistant related traits, seed dormancy, heading time and awn length, by using recombinant inbred lines from ‘Zenkouji-komugi’ (high PHS resistance) × ‘Chinese Spring’ (weak PHS resistance). QTLs for seed dormancy were detected on chromosomes 1B (QDor-1B) and 4A (QDor-4A), in addition to a QTL on chromosome 3A, which was recently cloned as TaMFT-3A. In addition, the accumulation of the QTLs and their epistatic interactions contributed significantly to a higher level of dormancy. QDor-4A is co-located with the Hooded locus for awn development. Furthermore, an effective QTL, which confers early heading by the Zenkouji-komugi allele, was detected on the short arm of chromosome 7B, where the Vrn-B3 locus is located. Understanding the genetic architecture of traits associated with PHS resistance will facilitate the marker assisted selection to breed new varieties with higher PHS resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号