首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Available soil mineral nitrogen (N) varies both temporally and spatially. These variations affect field‐scale N‐use efficiency. A field study was conducted for three years to investigate spatial variability in available soil mineral N within uniform research plots in relation to leaf greenness or chlorophyll content (plant N sufficiency) and yield. Variations within the plot in available soil mineral N sampled at the 6‐ligule stage was related to N fertility: the higher the fertilizer N levels, the higher the variability. The standard deviation for the 200 kg N ha‐1 treatment was up to five times higher than the unfertilized control treatment. The nitrate (NO3)‐N accounted for 70 to 80% of soil mineral N in fertilized plots compared to 50 to 60% in unfertilized control plots. The variability in grain yield of individual maize (Zea mays L.) plants within a plot was inversely related to soil N fertility: the higher the fertilizer N levels, the lower the yield variability (at 100 or 200 kg N ha‐1, yield ranged from 97 to 148 g plant1, or 10% CV within ayear compared to ranges from 0 to 82, or 50% CV in the same year at 0 kg N ha‐1). On an individual plant basis, chlorophyll content from the 6‐ligule stage through the growing season generally showed much smaller CV's, but had a similar trend to variations in yield. Leaf greenness from 6‐ligule stage to silking was significantly correlated with harvest yield (r>0.60, P<0.01), and both also correlated with available soil mineral N, though to a lesser degree (r>0.36). The number of fully expanded leaves prior to silking differentiated N treatments better than did single leaf chlorophyll measurements with higher yields associated with more rapid vegetative development. Our data suggest that multiple core samples are required to estimate available soil mineral N, particularly in fertilized plots that have greater spatial variability. Variability of plant‐based measures, such as chlorophyll content, could be used as an indicator of relative plant N sufficiency at early growth stages as spatial variability declined with higher soil N fertility.  相似文献   

2.
Results are presented from a 3 year investigation into nitrate leaching from isolated 0.4 ha grassland plots fertilized with 250, 500 and 900 kg N ha?1 a?1. Cumulative nitrate leaching over the 3 years was equivalent to 1.5%, 5.4% and 16.7% of the fertilizer applied at 250, 500 and 900 kg N ha?1 rates respectively. Over a whole drainage season, mean nitrate leachate concentrations at 250 kg N ha?1 did not exceed 4 mgl?1, although maximum values of 13.3 mgl?1 were observed. In contrast, at 900 kg N ha?1, the mean nitrate leachate concentration in two of the years exceeded 90 mgl?1. Mineral nitrogen balances constructed for the 1979 growing season indicated that leaching at 250 kg N ha?1 was low because net mineralization of soil organic nitrogen was small, and crop nitrogen uptake almost balanced fertilizer application. Although the pattern of nitrate leaching suggested that by-passing occurred in the movement of water down the soil profile, it was not possible to confirm this using simulation models of leaching. Possible reasons for this, including the occurrence of rapid water flow down gravitationally drained macropores, are discussed.  相似文献   

3.
Abstract

Understanding seasonal soil nitrogen (N) availability patterns is necessary to assess corn (Zea mays L.) N needs following winter cover cropping. Therefore, a field study was initiated to track N availability for corn in conventional and no‐till systems and to determine the accuracy of several methods for assessing and predicting N availability for corn grown in cover crop systems. The experimental design was a systematic split‐split plot with fallow, hairy vetch (Vicia villosa Roth), rye (Secale cereale L.), wheat (Triticum aestivum L.), rye+hairy vetch, and wheat+hairy vetch established as main plots and managed for conventional till and no‐till corn (split plots) to provide a range of soil N availability. The split‐split plot treatment was sidedressed with fertilizer N to give five N rates ranging from 0–300 kg N ha‐1 in 75 kg N ha‐1 increments. Soil and corn were sampled throughout the growing season in the 0 kg N ha‐1 check plots and corn grain yields were determined in all plots. Plant‐available N was greater following cover crops that contained hairy vetch, but tillage had no consistent affect on N availability. Corn grain yields were higher following hairy vetch with or without supplemental fertilizer N and averaged 11.6 Mg ha‐1 and 9.9 Mg ha‐1 following cover crops with and without hairy vetch, respectively. All cover crop by tillage treatment combinations responded to fertilizer N rate both years, but the presence of hairy vetch seldom reduced predicted fertilizer N need. Instead, hairy vetch in monoculture or biculture seemed to add to corn yield potential by an average of about 1.7 Mg ha‐1 (averaged over fertilizer N rates). Cover crop N contributions to corn varied considerably, likely due to cover crop N content and C:N ratio, residue management, climate, soil type, and the method used to assess and assign an N credit. The pre‐sidedress soil nitrate test (PSNT) accurately predicted fertilizer N responsive and N nonresponsive cover crop‐corn systems, but inorganic soil N concentrations within the PSNT critical inorganic soil N concentration range were not detected in this study.  相似文献   

4.
The nitrogen (N) status of a crop can be used to predict yield and supplemental N fertilizer requirements, and rapid techniques for evaluating the N status of crops are needed. A study was conducted to determine the feasibility of using a hand held chlorophyll meter (SPAD 502, Minolta Co. Ltd., Japan) to monitor N status of tall fescue (Festuca arundinacea Schreb.). Four diverse tall fescue genotypes were grown at three locations in Alabama and fertilized at four N‐rates from 0 to 336 kg ha‐1. A similar experiment was conducted in the greenhouse using soil from the same field sites. Chlorophyll meter readings (SPAD) were taken, and extractable chlorophyll content, tissue N concentration and dry matter yield were determined at harvest. SPAD, extractable chlorophyll content, tissue N concentration, and dry matter yield increased quadratically (0.67 < R2 < 0.99) with increasing N fertilization in both experiments. All genotypes responded similarly to applied N, with some differences in magnitude. Relationships between SPAD meter readings and extractable chlorophyll and tissue N concentrations were linear with r2 > 0.95. An additional independent variable, the square root of the inverse of SPAD, lowered the residual mean square by 11 and 16%, respectively, for tissue‐N and chlorophyll concentrations, but did not increase the R2. This would be preferred for predictive purposes. Tissue N concentrations at higher N‐rates were sufficient for maximum yield which occurred at 290 and 248 kg N ha‐1 for greenhouse and field, respectively, but were lower than previously reported sufficiency values. The chlorophyll meter is an easy and efficient method of detecting tall fescue N status.  相似文献   

5.
华北地区采用无机氮测试和植株速测进行夏玉米氮肥推荐   总被引:2,自引:0,他引:2  
A field experiment with a split-plot design was carried out at Dongbeiwang Farm in Beijing Municipality to establish reliable N fertilizer recommendation indices for summer maize (Zea mays L.) in northern China using the soil Nmin(mineral N) test as well as the plant nitrate and SPAD (portable chlorophyll meter readings) tests. The results showed that Nrnin sollwert (NS) 60 kg N ha^-1 at the third leaf stage and N rate of 40 to 120 kg N ha^-1 at the tenth leaf stage could meet the N requirement of summer maize with a target yield of 5.5-6 t ha^-1. Sap nitrate concentrations and SPAD chlorophyll meter readings in the latest expanded maize leaves at the tenth leaf stage were positively correlated with NS levels, indicating that plant nitrate and SPAD tests reflected the N nutritional status of maize well. Considering that winter wheat subsequently utilized N after the summer maize harvest, the 0-90 cm soil Nmin (74 kg N ha^-1) and apparent N loss (12 kg N ha^-1) in the NS60+40 treatment were controlled at environmentally acceptable levels. Therefore NS60+40, giving a total N supply of 100 kg N ha^-1, was considered the optimal N fertilizer input for summer maize under these experimental conditions.  相似文献   

6.
Abstract

Field studies were made to determine the yield and quality of wheat at different landscape positions managed with uniform vs. variable rates of nitrogen (N). A moderately‐eroded wheat farm near Thana (Swat) was divided into four parallel transects which were further divided into two strips each. On one strip, fertilizer was applied at a uniform rate of 120 kg N ha‐1, and along the other strip, three different rates of N (80, 110, and 125 kg N ha‐1) were applied to match the crop productivity patterns. A basal dose of 90 kg P2O5 and 60 kg K2O ha‐1 was applied to the whole field. Soil profiles were described for the three different zones, i.e., low, medium, and high productivity zones. Soil in Zone I was Pirsabak, moderately deep variant, and in Zones II and III, Badwan soil series. Although uniformly fertilized strip (120 kg N ha‐1) received 40 and 10 kg N ha1 more than Zone I and Zone II (variable management strategy), there were no significant differences in yield. The differences in three fertilizer management zones were due to differences in moisture content at sowing, infiltration rate, lime content, steepness, and soil depth. Test weight of wheat grains was not significantly affected. Protein content of wheat was significantly higher in variably fertilized strips than in uniformly treated strips. Based on these results, it is suggested that farms with spatially‐variable soils should be fertilized according to the crop productivity and soil fertility patterns.  相似文献   

7.
Abstract

The SPAD chlorophyll meter appears promising for rapid, on‐farm analysis of crop nitrogen (N) status. Leaf SPAD chlorophyll levels have been correlated with total leaf N concentrations, but it has not been determined how they relate to other widely applied N diagnoses such as petiole or stem nitrate (NO3) analysis. Our objective was to examine the relationship between leaf SPAD readings and stem NO3 levels in peppermint (Mentha piperita L.). Upper canopy SPAD chlorophyll and stem NO3 concentrations were determined weekly during two seasons for peppermint grown with variable N inputs. Leaf SPAD levels exhibited significant linear‐plateau responses with respect to stem NO3, indicating that SPAD readings do not respond to luxury N consumption. The meter is therefore promising for the detection of crop N deficiencies by comparison of production fields to well fertilized plots or strips. Break‐points in the linear‐plateau regressions describe saturation concentrations of stem NO3 with respect to leaf SPAD levels peaking at 12,000 mg NO3‐N/kg in mid to late July and declining later in the season. The SPAD meter may be applied directly to N management by use of reference plots or it may be used as a tool to aid in determination of criteria for other diagnoses such as tissue NO3.  相似文献   

8.
Abstract

Variable precipitation in many regions makes it difficult to predict yield goals and nitrogen (N) rates for malting grade barley (Hordeum vulgare L.). During years with below normal growing season precipitation, barley fertilized at the recommended rate often exhibits grain protein concentrations exceeding what is acceptable for malting. A study was conducted to evaluate the chlorophyll meter as a N management tool. Barley was grown under several N rates in the field. Chlorophyll meter readings and N additions were made at the Haun 4 to 5 growth stage, and grain yield and protein concentrations were evaluated at maturity. Chlorophyll meter readings, normalized as meter reading from treatment plot divided by that from a plot receiving a full N treatment at the Haun 4 to 5 growth stage, were correlated with grain yield (r2=0.67). Stands having normalized chlorophyll meter readings below 95% responded to N additions with yields equivalent to the fully fertilized stand and grain protein concentrations acceptable for malting. A N management strategy is proposed whereby 40 to 50% of the N calculated for the yield goal is applied at planting and a fully fertilized reference strip is included for each variety or soil type. At the Haun 4 to 5 growth stage, chlorophyll meter readings are taken in the reference strip and in the field. Normalized chlorophyll meter readings below 95% of the reference strip indicate a need for additional N fertilizer. This strategy will provide producers with additional time (up to a month) to evaluate growing season conditions before investing in additional crop inputs and will improve the likelihood that a barley crop acceptable for malting will be produced.  相似文献   

9.
Abstract

Heightened environmental consciousness has increased the perceived need to improve nitrogen (N) use efficiency by crops. Synchronizing fertilizer N availability with maximum crop N uptake has been proposed as a way to improve N‐use efficiency and protect ground water quality. Chlorophyll meters (Minolta SPAD 502) have the potential to conveniently evaluate the N status of corn (Zea mays L.) and help improve N management. A potential problem with the use of chlorophyll meters is the effect of within‐row plant spacing on meter reading variability. Chlorophyll meter readings and leaf N concentration of irrigated corn at anthesis and grain yield at harvest were measured on plants grouped into eight within‐row plant spacing categories. Leaf N concentration was not affected by plant spacings, but chlorophyll meter readings and grain yield per plant increased as plant competition decreased and N fertilizer rate increased. These data indicate that avoiding plants having extreme spacings can greatly increase precision when using chlorophyll meters to evaluate the N status of corn.  相似文献   

10.
Abstract. Artificial urine containing 20.2 g N per patch of 0.2 m2 was applied in May and September to permanent grassland swards of a long‐term experiment in the western uplands of Germany (location Rengen/Eifel), which were fertilized with 0, 120, 240, 360 kg N ha?1 yr?1 given as calcium ammonium nitrate. The effect on N2O fluxes measured regularly during a 357‐day period with the closed‐chamber technique were as follows. (1) N2O emission varied widely among the fertilized control areas without urine, and when a threshold water‐filled pore space >60% was exceeded, the greater the topsoil nitrate content the greater the flux from the individual urine patches on the fertilized swards. (2) After urine application in May, 1.4–4.2% of the applied urine‐N was lost as N2O from the fertilized swards; and after urine application in September, 0.3–0.9% of the applied urine‐N was lost. The primary influence on N2O flux from urine patches was the date of simulated grazing, N‐fertilization rate being a secondary influence. (3) The large differences in N2O emissions between unfertilized and fertilized swards after May‐applied urine contrasted with only small differences after urine applied in September, indicating an interaction between time of urine application and N‐fertilizer rate. (4) The estimated annual N2O emissions were in the range 0.6–1.6 kg N2O‐N per livestock unit, or 1.4, 3.6, 4.1 and 5.1 kg N2O‐N ha?1 from the 0–360 kg ha?1 of fertilizer‐N. The study demonstrated that date of grazing and N‐fertilizer application could influence the N2O emission from urine patches to such an extent that both factors should be considered in detailed large‐scale estimations of N2O fluxes from grazed grassland.  相似文献   

11.
In 2‐years field experiments near Nienstädt (60 km west of Hannover, northern Germany), the effects of rate and timing of nitrogen (N) application on leaf N‐concentration, leaf greenness (SPAD chlorophyll meter readings), canopy greenness (canopy light reflectance), leaf area development, photosynthetic activity of leaves, and yield and quality of sugar beet were studied. In 1999 (pre‐planting soil mineral N: 15 kg ha—1), N fertilizer was applied at rates of 0, 105, 125, 145, 165 and 205 kg N ha—1. In 2000 (pre‐planting soil mineral N: 60 kg ha—1), an N rate of 100 kg ha—1 was applied at planting (100/0/0/0) or split applied at planting and 8 (60/40/0/0), 12 (60/0/40/0), and 16 (60/0/0/40) weeks after planting (WAP), respectively. In both years, canopy greenness as indicated by ”︁sensor values” (a combination of the reflectance of visible and near infrared light) changed with crop age. However, at each time of measurement, sensor values precisely reflected the different N application treatments and were significantly correlated with leaf N‐concentrations and SPAD chlorophyll meter readings. Beet yield and processed white sugar yield increased up to an N supply (fertilizer N + pre‐planting soil mineral N) of 160 kg ha—1. Split N application slightly retarded leaf growth but had no effect on photosynthetic activity per unit leaf area. Beet yield and beet quality were not systematically affected by the timing of N application. Certain application schemes tended to favor either beet yield or beet quality, resulting in similar processed white sugar yields. Our data suggest that moderate N topdressing can be integrated in site‐specific N management systems in sugar beet production. Canopy light reflectance might serve as a useful diagnostic tool to assess the N status and sidedress N demand of sugar beets. However, due to changing sensor values over time, on‐site calibration (using established standard methods or reference plots receiving extra N at planting) will be necessary. The applicability of this approach has to be tested in further field studies.<?show $6#>  相似文献   

12.
Drained and undrained grassland lysimeter plots were established in 1982 on a clay loam of the Hallsworth series at a long-term experimental site in south-west England. The plots were continuously grazed by beef cattle, and received fertilizer at either 200 or 400 kg N ha-1 per annum to the existing permanent sward, or at 400 kg N ha-1 to a new sward, reseeded to perennial ryegrass following cultivation. Drainage water was monitored at V-notch weirs and sampled daily for the analysis of nitrate-N. Seven years of data are presented (five years for the reseeded swards). On the drained plots a large proportion of the rainfall was routed preferentially down large pores to the mole drains, whilst on the undrained plots, drainage was mainly by surface runoff. The average quantities of nitrate N leached per year were 38.5, 133.8 and 55.7 kg ha-1 from the old sward that received 200 and 400 kg N ha-1, and from the reseed that received 400 kg N ha-1 fertilizer, respectively. Ploughing and reseeding resulted in a two-fold reduction in leaching, except during the first winter after ploughing, and twice as much leaching occurred after a hot, dry summer as after a cool, wet one. Nitrate concentrations in drainage from either drained or undrained plots were rather insensitive to rainfall intensity, such that concentration was a good predictor of nitrate load for a given drainage volume. The drainage volume determined the proportion of the leachable N that remained in the soil after the winter drainage period. Initial (peak) concentrations of nitrate N ranged, on average, from 55 mg dm-3 for the drained old sward that received 400 kg N ha-1 fertilizer, to 12 mg dm-3 for the undrained sward at 200 kg N ha-1 fertilizer input. Concentrations of nitrate N in drainage from similar, unfertilized plots rarely exceeded 1 mg dm-3. The results suggest that manipulating the nitrate supply can lessen leaching and that the route of water through soil to the watercourse determines the maximum nitrate concentration for a given load.  相似文献   

13.
The ability of a hand‐held chlorophyll meter (SPAD‐502 Chlorophyll Meter3, Minolta Camera Co., Ltd., Japan) to determine the N status of cotton (Gossypium hirsutum L.) was studied at field sites in Alabama and Missouri. Meter readings on the uppermost fully‐expanded leaf were compared to leaf‐blade N and petiole NO3‐N at first square, first bloom and midbloom as to their seed cotton yield predictive capability. Nitrogen was applied at rates of 0, 45, 90, 135, 180 and 225 kg ha‐1 to establish a range of cotton chlorophyll levels, tissue N concentrations, and seed cotton yields. A typical curvilinear cotton yield response to N fertilizer was observed in Alabama experiments.

Because of adverse weather conditions, cotton yield in Missouri experiments did not respond to N. Chlorophyll meter readings were significantly correlated to leaf‐blade N concentration at all three stages of growth for all experiments. In Alabama, chlorophyll meter readings compared favorably to leaf‐blade N and petiole NO3‐N with respect to their seed cotton yield predictive capability at all three stages of growth. It appears that hand‐held chlorophyll meters would be as reliable as leaf‐blade N and petiole NO3‐N for predicting supplemental N fertilization requirements of cotton. However, more research will be required prior to use of chlorophyll meter readings for routine cotton‐N recommendation purposes.  相似文献   

14.
This study reports and analyzes nutrient balances in experimental vegetable production systems of the two West African cities of Tamale (Ghana) and Ouagadougou (Burkina Faso) over a two‐year period comprising thirteen and eleven crops, respectively. Nutrient‐use efficiency was also calculated. In Tamale and Ouagadougou, up to 2% (8 and 80 kg N ha?1) of annually applied fertilizer nitrogen were leached. While biochar application or wastewater irrigation on fertilized plots did not influence N leaching in both cities, P and K leaching, as determined with ion‐absorbing resin cartridges, were reduced on biochar‐amended plots in Tamale. Annual nutrient balances amounted to +362 kg N ha?1, +217 kg P ha?1, and –125 kg K ha?1 in Tamale, while Ouagadougou had balances of up to +692 kg N ha?1, +166 kg P ha?1, and –175 kg K ha?1 y?1. Under farmers' practice of fertilization, agronomic nutrient‐use efficiencies were generally higher in Tamale than in Ouagadougou, but declined in both cities during the last season. This was the result of the higher nutrient inputs in Ouagadougou compared to Tamale and relatively lower outputs. The high N and P surpluses and K deficits call for adjustments in local fertilization practices to enhance nutrient‐use efficiency and prevent risks of eutrophication.  相似文献   

15.
This paper focuses on N balance in a paddy field planted with whole crop rice (Oryza sativa cv. Kusahonami). The experiment was conducted with two treatments during two rice-growing seasons: one was fertilized with N (160 kg N ha–1; 16N plot) and the other unfertilized (0N plot); both plots were fertilized with P and K. The N input from precipitation was 15 and 12 kg N ha–1 in 2002 and 2003, respectively. The N input from irrigation water reached as much as 123 and 69 kg N ha–1 in 2002 and 2003, respectively. This was because irrigation water contained higher NO3 concentrations ranging from 4 to 8 mg N l–1. The N uptake by rice plants was the major output: 118 and 240 kg N ha–1 in the 0N and 16N plots in 2002 and 103 and 238 kg N ha–1 in 2003, respectively. N losses by leaching were 4.8–5.3 and 6.5–7.3 kg N ha–1 in 2002 and in 2003, respectively. Laboratory experiments were carried out to estimate the amounts of N2 fixation and denitrification. Amount of N2 fixation was 43 and 0 kg N ha–1 in the 0N and 16N plots, respectively. Denitrification potential was quite high in both the plots, and 90% of the N input through irrigation water was lost through denitrification. Collectively, the total N inputs were relatively large due to irrigation water contaminated with NO3, but N outflow loading, expressed as leaching–(irrigation water + precipitation + fertilizer), showed large negative values, suggesting that the whole crop rice field might serve as a constructed wetland for decreasing N.  相似文献   

16.
The irrigation and nitrogen (N) requirements of potatoes (cv. Delaware) were determined using sprinklers in a line‐source design on a Spearwood sand. Irrigation water was applied at 73 to 244% of the daily pan evaporation (Epan) and N at 0 to 800 kg N ha‐1 (total applied) as NH4NO3 in 10 applications post‐planting. There was a significant yield (total and marketable) response to irrigation, at all levels of applied N, and N at all levels of applied water (P<0.001). The interaction between irrigation and N was also significant (P<0.001). There was no significant yield response to irrigation from 149% Epan (i.e., W3 treatment) to 244% Epan (i.e., W6 treatment). Irrigation at 125 and 150% of Epan was required for 95 and 99% of maximum yield, respectively, as determined from fitted Mitscherlich relationships. Critical levels of N required for 95 (417 kg ha‐1) and 99% (703 kg ha‐1) of maximum yield were also determined from a Mitschlerlich relationship fitted to the average of the W3 to W6 treatments. The percent total N and nitrate‐N in petioles of youngest fully expanded leaves required for 95 and 99% of maximum yield was 1.78 and 2.11, respectively, at the 10 mm tuber stage, and 0.25 and 0.80% at the 10mm plus 14 day stage (from quadratic regressions). There was a significant (P≤0.001) increase in N uptake by tubers with level of applied N from 57 kg ha‐1 at 0 kg applied N ha‐1 to 190 kg ha‐1 at 800 kg applied N ha‐1 (from a Mitscherlich relationship fitted to the average of W3 to W6 treatments). After accounting for N uptake from soil reserves (57 kg N ha‐1), apparent recovery efficiency (RE) of fertilizer N by tubers [RE=(Up‐Uo/Np) where Up=uptake of N by the crop, Uo=uptake in absence of applied N and Np is the level of applied N, expressed as a fraction] declined from 0.28 at 100 kg applied N ha‐1 to 0.17 at 800 kg applied N ha‐1. There was a linear increase in ‘after cooking darkening’ (i.e., greying) of tubers with increasing level of applied N. Conversely, ‘sloughing’ (i.e., disintegration) of tubers decreased (inverse polynomial) with increasing level of applied N. Rate of irrigation had no effect on these cooking qualities. Reducing applied irrigation and N from levels required for 99% of maximum yield to levels required for 95% of maximum yield would not lead to a significant reduction in profit. This would increase apparent recovery efficiency of applied N by plants, maintain tuber quality, and reduce the impact of potato production on the water systems of the Swan coastal plain.  相似文献   

17.
Planting cover crops after corn‐silage harvest could have a critical role in the recovery of residual N and N from fall‐applied manure, which would otherwise be lost to the environment. Experiments were conducted at the University of Massachusetts Research Farm during the 2004–2006 growing seasons. Treatments consisted of oat and winter rye cover crops, and no cover crop, and four cover‐crop dates of planting. The earliest planting dates of oat and winter rye produced the maximum biomass yield and resulted in the highest nitrate accumulation in both cover‐crop species. The average nitrate accumulation for the 3 years in winter rye and oat at the earliest time of planting was 60 and 48 kg ha–1, respectively. In 2004 where the residual N level was high, winter rye accumulated 119 kg nitrate ha–1. While initially soil N levels were relatively high in early September they were almost zero at all sampling depths in all plots with and without cover crops later in the fall before the ground was frozen. However, in plots with cover crops, nitrate was accumulated in the cover‐crop tissue, whereas in plots with no cover crop the nitrate was lost to the environment mainly through leaching. The seeding date of cover crops influenced the contribution of N available to the subsequent crop. Corn plants with no added fertilizer, yielded 41% and 34% more silage when planted after oat and rye, respectively, compared with the no–cover crop treatment. Corn‐silage yield decreased linearly when planting of cover crops was delayed from early September to early or mid‐October. Corn‐ear yield was influenced more than silage by the species of cover crop and planting date. Similar to corn silage, ear yield was higher when corn was planted after oat. This could be attributed in part to the winter‐kill of oat, giving it more time to decompose in the soil and subsequent greater release of N, while the rapidly increasing C : N ratio of rye can lessen availability to corn plants. Early plantings of cover crops increased corn‐ear yield up to 59% compared with corn‐ear yield planted after no cover crop.  相似文献   

18.
This study shows the effect of organic fertilizers at different stocking rates, on nitrogen (N) leaching, measured using zero-tension lysimeters under undisturbed grassland soil. The experiment included two organic fertilizer types – cow dung with dung water (D) and slurry (S), both at a range of stocking rates: 0.9 LU (livestock unit) ha?1, 1.4 LU ha?1, 2.0 LU ha?1 (corresponding to 54, 84 and 120 kg N ha?1, respectively) and a control (C) treatment. In percolated water, the contents of ammonia nitrogen (NH4+–N) and nitrate nitrogen (NO3?–N) were studied. The average concentration of NH4+–N ranged from 0.91 to 1.44 mg l?1 on fertilized plots compared to 0.55 mg l?1 on the control plot. The average concentration of NO3?–N ranged from 5.2 to 9.5 mg l?1 on fertilized plots compared to 3.2 mg l?1 on the control plot. The results of this study showed that the use of organic fertilizers at chosen stocking rates influenced N leaching, but the concentration of N did not exceed the limits for drinking water permitted by Czech legislation. Stocking rates at 2.0 LU ha?1 and below do not result in elevated N concentrations in percolated water that pose environmental threat.  相似文献   

19.
Renovation of grassland may increase the mineralization of organic material and leads to a high amount of mineral N in soil which can be leached in the winter period. Soil mineral N (SMN) in autumn and calculated nitrate leaching during winter were measured after the renewal of 8 y–old cut grassland on a sandy soil in NW Germany in 1999 to 2002. Several factors, which may influence the intensity of N mineralization, were investigated in the 2 years following renewal: the season of renovation (spring or late summer/early autumn), the technique (rotary cultivator or direct drilling), and the amount of N fertilization (0 or 320 kg N ha–1 y–1 in the 7 years before the renovation). Calculated nitrate‐N leaching losses during winter were significantly higher following renewal in early autumn (36–64 kg N ha–1) compared to renewal in spring (1–7 kg N ha–1). This effect was only significant in the first, not in the second winter after renovation. The renovation technique had a significant effect on the nitrate‐N leaching losses only in the first year after the renovation. Direct drilling led to higher leaching losses (35 kg N ha–1) than the use of a rotary cultivator (30 kg N ha–1) in the same year. Calculated nitrate losses (on average over 60 kg N ha–1) were highest after renewal of N‐fertilized grassland in late summer/early autumn. To minimize N leaching losses, it would be more effective to plan grassland renewal in spring rather than in late summer/autumn. Another, however, less effective option is to reduce N fertilization before a renovation in autumn.  相似文献   

20.
Abstract

Nitrogen (N) fertilizer recommendations for corn (Zea mays L.) are normally developed from field experiments that determine yield response to applied N. The objective of this study was to examine the severity of border row competition with the harvest rows for sidedressed N in field experiments measuring grain yield. This study was conducted in 1993 and 1994 on a Sharpsburg silty clay loam (fine, montmorillonitic, mixed, mesic argiudoll). Ammonium nitrate was broadcast to the center two rows of a four row plot, all four rows of a four row plot and all six rows of a six row plot. Results showed that grain yield from four and six row plots were similar and indicated that while grain yields were much less in 1993 than 1994 (7.36 versus 12.06 Mg ha‐1, respectively), corn yield response to N was similar regardless of the number of rows fertilized. Thus, there is little reason for plots larger than four rows. The results also lend credibility to sidedressing only harvest rows for soil test calibration studies where grain yield response is the primary response variable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号