首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Research has shown that some corn (Zea mays L.) hybrids grown under reduced tillage conditions respond to starter fertilizer containing nitrogen (N) and phosphorus (P), while others do not. This research studied variability of responsiveness among corn hybrids to starter fertilizer containing a more complete complement of nutrients. The experiment was conducted from 1996 to 1998 on a producer's field near Scandia, KS, on a Carr sandy-loam soil (coarse-loamy, mixed, superactive calcareous, mesic Typic Udifluvents). The response of four corn hybrids (Pioneer 3563, Pioneer 3346, DeKalb 591, and DeKalb 646) to starter fertilizer combinations containing N, P, potassium (K), sulfur (S), and zinc (Zn) was evaluated. In all three years of the experiment, starter fertilizer containing N and P consistently increased grain yield, reduced the number of thermal units needed from emergence to maturity, decreased grain-moisture content at harvest, and increased total P uptake (grain plus stover at maturity) of Pioneer 3346 and DeKalb 591, but had no effect on Pioneer 3563 and DeKalb 646. Addition of S to the starter mix produced additional yield increases for Pioneer 3346 and DeKalb 591, whereas addition of K and Zn to the starter did not show any additional yield benefit for these two hybrids. Grain yield of Pioneer 3563 and DeKalb 646 was not improved by starter fertilizer, regardless of the elemental composition. When no starter fertilizer was applied, early-season root development was greater in Pioneer 3563 and DeKalb 646 than in the other two hybrids. However, the addition of starter fertilizer increased numbers of roots and depth of rooting in Pioneer 3346 and DeKalb 591 but had no effect on Pioneer 3563 and DeKalb 636. Results showed starter fertilizer benefited grain yield for two hybrids. Grain yield of the other two hybrids, however, was not influenced by starter, regardless of which nutrients were supplied. This response may be attributed to differences in root-growth characteristics of the hybrids. The two responsive hybrids did, however, yield an average of 0.75 mg ha?1 greater than the two non-responsive hybrids. This result indicates it is unlikely that all of the yield loss from not using a starter can be avoided by hybrid selection.  相似文献   

2.
Abstract

Depression of corn grain yields from nutrient stress has been studied extensively, but effects of nutrient stress on rates of corn development and yield determinants are less well understood. Nutritional effects on the number of kernels/unit area, growth rate/kernel, and duration of growth have implications concerning fertilization practices and yield potentials of crops. Two corn hybrids with equivalent silking dates but having different grain filling periods were grown in a field experiment. Fertility treatments consisted of a N series receiving 0, 112, or 336 kg of N/ha and a P‐K series receiving factorial combinations of 0, 22, or 112 kg of P/ha and 0, 56, or 224 kg of K/ha. Dates for grain initiation and maturity were determined for each plot along with tissue analyses of ear leaves, grain yields, and kernel weights. Concentrations of N and K in ear leaves generally corresponded to treatment levels of these nutrients, although Pioneer Hi‐bred 3390 appeared to be less efficient than Pioneer Hi‐bred 3334 in K uptake. Effects of nutrient stress on yield determinants depended on the determinant and nutrient under consideration. Severe N stress did not change length of grain filling periods, but decreased kernel numbers 30 to 70%. Stress for K, on the other hand, shortened grain filling periods about 13% and had only a slight effect on kernel number. Negligible P stress occurred in the experiment. The two hybrids produced equal quantities of grain/ha/day but the hybrid with a longer filling period (Pioneer 3334) filled many more kernels at a slightly slower rate and for a longer period of time to give a significantly greater grain yield compared to Pioneer 3390.  相似文献   

3.
Abstract

P status of soils derived from volcanic ash in Guatemala was investigated. Growth chamber and greenhouse studies were conducted with H‐3 hybrid corn (Zea mays). All plants exhibited P deficiency symptoms and yielded less dry matter when they were grown on soils that received only lime at a rate equivalent to 2,240 and 4,480 kg/ha. The P content of plants was low and correlated with P deficiency symptoms. Application of P (336 and 672 kg/ha) under constant liming corrected the P deficiencies and increased dry matter. In comparative studies, plants grown on a highly fertile, non‐volcanic soil showed vigorous growth and yielded high dry matter. Apparently, P was limiting productivity in volcanic ash soils of Guatemala, and due to low exchangeable Al, addition of only lime did not produce beneficial results. The soils responded to P fertilization and they should be supplied large quantities of this macronutrient.  相似文献   

4.
Abstract

Different rates of K, Ca, and Mg were applied to bulklots of Decatur clay loam (pH 5.8) which had been collected from an area under natural vegetation. Nitrogen and P were each applied at the rate of 100 ppm. Soybean (Glycine max L.) and corn (Zea mays L.) were planted to pots in four replications of each treatment. Plants were grown for 6 weeks and subsequently all the pots were re‐planted to soybeans. This crop rotation was repeated until six crops had been harvested from each pot.

Potassium fertilization did not affect soybean growth but increased the dry matter of corn plants. Calcium application affected the growth of neither crop, but Mg addition to the soil reduced the growth of both crops. The composition of the plants generally reflected the available amounts of each nutrient. Additionally, Mg consistently decreased K in soybeans but increased Mn in the two crops. The inclusion of corn in rotation with soybeans resulted in the following effects on the succeeding soybean harvests: more tolerance to high Mg, greater reduction of plant Ca and Mg caused by K application, and lower levels of available K and Ma in soils and soybeans. However, the greater rate of depletion of soil K and Mn under corn rotation did not appear Co affect the dry matter yields of the following soybean plants relative to the plants under the continuous soybean cropping system.  相似文献   

5.

Red clover (Trifolium pratense L.) is one of the most important plants in forage production, especially in northern areas. Fertilisation practices are focused on high yield and forage quality but effects of nutrients on nodulation and N2 fixation are poorly understood. The aim of this work was to study how nitrogen (N) and phosphorus (P) separately as well as in combination affected nodulation. Red clover plants were grown in pots with gravel in a greenhouse for 11 weeks. To resemble field conditions the root temperature was kept lower than the shoot temperature. Plants were given five different combinations of N and P concentrations during growth. The result showed that at high N concentrations P had a counteracting effect on the N inhibition. The N2-fixation parameters, nodule number, nodule dry matter and specific nitrogenase activity, were six times higher in plants grown with high N and high P than in plants with high N and low P. When the N2-fixation parameters and the dry matter of roots and shoots were related to total plant dry matter, there was a stronger effect of P on nodulation parameters than on roots and shoots. This indicates that P has a direct effect on the N2-fixation parameters, rather than an indirect effect via increased plant growth. These results demonstrate the importance to studying the effects of more than one nutrient at a time.  相似文献   

6.
Growing Fe-efficient genotype(s) could be considered as a preferred genetic approach to tackle the widespread constraint of Fe-deficiency-/lime-induced chlorosis in crop grown on alkaline soil. This study aimed to investigate morphological and physiological traits linked to expression of Fe deficiency among four corn (Zea mays) including sweet (Z. mays sacchrata cvs. H403 and H404) and grain (Z. mays indentata cvs. H500 and H700) hybrids grown in nutrient solution using two Fe concentrations (5 and 50 µM Fe-ethylenediaminetetraacetic acid (Fe-EDTA)). Significant variation was found among studied hybrids in their tolerance to Fe-deficiency stress. Sweet corn hybrids were more sensitive to Fe deficiency as compared with grain corn hybrids and greater reduction was observed in their shoot dry matter at the 5 µM Fe-EDTA treatment. The greatest decrease in plant height, leaf area, and root and shoot dry matter weight under Fe-deficiency condition was found for H403 hybrid. No significant correlation was found between shoot and root Fe concentration with crop tolerance to Fe deficiency. Furthermore, different response of corn hybrids to Fe deficiency is an important factor, which has to be considered in Fe fertilizer recommendation as well as breeding programs.  相似文献   

7.
超高产夏玉米干物质与氮、磷、钾养分积累与分配特点   总被引:26,自引:5,他引:26  
探讨超高产夏玉米品种整株干物质与氮、磷、钾养分积累分配特点,为制定高产栽培管理措施提供依据.本文在大田条件下,以登海661(DH661)和郑单958(ZD958)为试验材料,比较研究了超高产夏玉米干物质与氮、磷、钾养分积累分配特点.结果表明,超高产夏玉米DH661在成熟期内整株干物质及氮、磷、钾积累量分别为33475.53 kg/hm2、369.76 kg/hm2、117.85 kg/hm2、285.78 kg/hm2,均显著高于ZD958,较ZD958分别高15.82%、23.72%、32.17%、21.89%.超高产夏玉米DH661的干物质和氮、磷、钾养分在叶片和茎秆中的分配比例均低于ZD958,而籽粒和根系中的分配比例高于ZD958,因而具有较高的养分收获指数与偏生产力.整个生育期内,DH661各器官的养分吸收速率均显著高于ZD958,具有较高的养分吸收效率;茎、叶及根系的氮、磷、钾养分吸收速率在灌浆期前保持较高水平,之后下降较快,而籽粒的氮、磷、钾养分吸收速率于灌浆期后增加较快.吐丝期后,DH661仍能吸收积累较多的养分,因此吐丝后适当追肥对于超高产夏玉米灌浆期养分充足供应至关重要.  相似文献   

8.
Abstract

Thirteen fertility trials were made throughout Quebec's corn growing region during 1972–74. These included eleven fertilizer combinations with corn silage as the test crop and were carried out on nine soils. Total dry matter and digestible nutrients (TDN) varied greatly from year to year, though, mean yields increased by 23 and 30 percent respectively with the 50 kg N/ha treatment, compared to control receiving no nitrogen fertilization. However, 150 kg N/ha was required to attain a maximum yield of 1250 kg/ha crude protein. Despite a 0.2 percent nitrate content found in the silage grown on the most northerly site, a 120 kg P/ha combined with 100 kg N and K gave the highest mean TDN production (9580 kg/ha).

Potassium fertilization affected plant K content of corn grown at the most northerly site only, where a 0.5 percent was found with the control on a suit containing low potassium levels. Further, striking increases in Ca and Mg concentrations were observed with corn grown on that soil. However, magnesium concentration ranging from 0.11 to 0.14 percent were found with nine field trials out of twelve. Also, low K:(Ca + Mg) ratios were found on three trials, which were increased with potassium fertilization levels of 150 kg K/ha. Accordingly, it is suggested that uptakes of 200, 48, 200, 30 and 30 kg/ha of N, P, K, Ca and Mg are required for good corn silage crops.  相似文献   

9.
Abstract

Several different organisms cause corn (Zea mays, L.) root rot. The extent of damage to the root system varies with the aggressiveness of different causal organisms or different strains of the same causal organism. The attack of the roots by disease organisms could cause changes in the tissue analysis that would lead to misdiagnosing the cause of the problem. Studies were conducted to ascertain changes in selected mineral concentrations in the corn tissue and in plant growth resulting from various degrees of root rot caused by root infections of several different soil borne pathogenic fungi. Thermally pasteurized soil was placed in pots and infested with various fungi isolated from root lesions on corn from field studies. Corn was grown in the infested soil for four weeks in the greenhouse. Plants were harvested, roots indexed for disease, above ground visual symptoms noted, dry weight taken, and tissue analyzed for Ca, Mg, P, and K. Results showed that aerial plant parts of infected plants may exhibit typical nutrient deficiency symptoms which are not necessarily reflected in the mineral analysis of the tissue. Elemental uptake and tissue concentration appeared not to be related to changes in mineral analysis regardless of the relative soil mobility of the nutrient. Related fungi did not cause similar changes in mineral tissue concentration for the same or different minerals. Dry matter yields were reduced about 20% for each unit increase in root disease index. The use of the root disease index appears to have potential as a diagnostic tool and should be evaluated for this purpose.  相似文献   

10.
Phosphorus nutrition of spring wheat (Triticum aestivum L.) in mixed culture with white lupin (Lupinus albus L.). Spring wheat (Triticum aestivum L. ?Schirokko”?) and white lupin (Lupinus albus L.) were grown in mixed culture in Mitscherlich pots with 20 kg of soil in a green house. The soil used was a Bt of a Parabraunerde-Pseudogley from loess low in available P and limed from pH 4.6 to pH 6.5. Phosphorus was added as phosphate rock. In half of the pots cylinders of stainless steel screen prevented intertwining of the roots of the plant species. Independent of P addition, white lupin had higher dry matter production and P uptake than wheat, even although wheat had thinner roots and higher root densities than lupin, factors which favour the utilization of soil and fertilizer P. The higher P efficiency of white lupin was due to higher P uptake rates per unit root length mainly through mobilization of P especially in the rhizosphere of the proteoid roots. When the roots of the two species were allowed to intertwine, shoot dry matter production of wheat was nearly double because of improved tillering. Higher P concentrations and a more than 2-fold higher P uptake indicated that the increase in dry matter production of wheat was due to improved P nutrition. Nitrogen concentrations, however, remained unaffected at sufficient levels. An increased P uptake rate per unit root length was responsible for the better utilization of P by wheat, rather than the increase in total root length, due to the extended root volume. White lupin was able to mobilize P in the rhizosphere in excess of its own requirements. Thus mobilized P may be available to less P-efficient plants grown in mixed culture.  相似文献   

11.
  【目的】  我国植胶区砖红壤钾、镁缺乏现象日益突出,研究钾、镁缺乏对橡胶幼苗根系形态和养分吸收的影响,可为橡胶平衡施肥和优质高产栽培提供理论依据。  【方法】  选用‘热研7-33-97’橡胶 (Hevea brasiliensis) 幼苗为研究材料,在人工气候箱内用营养液培养。采用二因素二水平的析因试验设计,设置4个处理:对照 (CK)、缺钾 (–K)、缺镁 (–Mg) 和缺钾镁 (–K-Mg),培养3个月后,取样测定橡胶幼苗干物质量、根系构型参数、根系活力和养分含量等指标。  【结果】  1) 与CK相比,–K和–K-Mg处理显著降低了单株干物质量和根冠比,干物质量降幅分别为8.4%和27.5%,根冠比降幅分别为20.4%和26.9%,而–Mg处理对干物质量和根冠比均无显著影响;K、Mg交互作用对茎干、根和单株干物质量及根冠比均有显著影响 (P < 0.05)。2) 与CK相比,各缺素处理均显著降低了橡胶幼苗吸收根 (直径 < 2 mm) 的根长、根表面积、根体积、总根尖数及根系活力等根系构型参数,而不同程度增加了平均根粗。方差分析结果表明,K、Mg交互作用对吸收根的根长、根表面积、根体积及总根尖数有极显著影响 (P < 0.01)。3) 各处理下氮和镁、磷和钾以及钙分别在叶片、根系以及茎皮中的平均分配比例高于其他器官。各缺素处理下,地上部的养分占比呈增加趋势。4) 与CK相比,–K处理显著增加了橡胶幼苗单株氮、磷和镁的积累,–K-Mg处理则显著降低了单株氮积累,各缺素处理均显著增加了单株钙的积累;K、Mg交互作用对氮、磷、钙和镁的积累有显著或极显著影响。  【结论】  钾、镁营养显著影响橡胶幼苗对养分的吸收,缺钾、缺镁显著抑制橡胶幼苗特别是根系的生长发育,同时缺钾缺镁加重抑制效果。因此,橡胶生产上不仅要保证培养基质或土壤的矿质营养充足,还要重视钾、镁元素间平衡关系。  相似文献   

12.
Abstract

This analysis establishes linkage among (a) applied nutrients nitrogen (N), phosphorus (P), and potassium (K), (b) available soil nutrients, (c) root dry matter and nutrient content, (d) top dry matter and nutrient content, and (e) leaf area and carbon dioxide (CO2) concentration. It was previously shown that (a) and (d) are coupled by logistic equations with a common response coefficient c between dry matter and plant nutrient uptake with each applied nutrient. As a consequence of the common c, it has been shown that dry matter and plant nutrient removal are coupled by a hyperbolic equation. Furthermore, a model has been developed which includes N, P, and K as inputs. In the present work, (a) and (b) were coupled by a logistic equation as were (a) and (c). It was then shown that plant nutrient removal was coupled to available soil nutrients through a hyperbolic equation. The hyperbolic relationship was also shown to link dry matter between roots and tops, as well as plant N removal between roots and tops. As a consequence of the results above, it was then concluded that root nutrient content is related to available soil nutrient through a hyperbolic equation. The detailed mechanism of this coupling was not identified. Leaf area of soybeans followed a hyperbolic relationship with CO2 concentration in the canopy.  相似文献   

13.
ABSTRACT

Soil compaction interferes in soil nutrient transport and root growth. The aim of this work was to evaluate eucalypt growth and phosphorus (P) nutritional efficiency as affected by soil compaction and P rates. The treatments were composed of a 3 × 4 factorial scheme (soil bulk densities levels versus P fertilization rates) for two weathered tropical soils, a clayey Ferralsol (FClayey) and a sandy Ferralsol (FSandy). The soil bulk densities assessed were 0.90, 1.10 and 1.30 g cm?3 for FClayey, and 1.35, 1.55 and 1.75 g cm?3 for FSandy. The P rates were 0, 150, 300 and 600 mg kg?1 for FClayey, and 0, 100, 200 and 400 mg kg?1 for FSandy. Soil compaction reduced root growth, P content in the plant, P utilization efficiency and P recovery efficiency; and increased average root diameter. Phosphorus fertilization increased root length density, root surface area, dry matter, P content in the plant, P utilization efficiency and P uptake efficiency; and decreased P recovery efficiency. It was concluded that P fertilization is not effective to offset the deleterious effects of soil compaction on eucalypt growth and nutrition.

Abbreviations: FClayey: clayey Ferralsol; FSandy: sandy Ferralsol; RDens: root length density; RDiam: root diameter; RSurf: root surface area; RDM: root dry matter; SDM: shoot dry matter; WPDM: whole-plant dry matter; RP: root P content; SP: shoot P content; WPP: whole-plant P content; PUtE: P utilization efficiency; PUpE: P uptake efficiency; PRE: P recovery efficiency.  相似文献   

14.
Abstract

The primary nitrogen forms utilized by plants are ammonium and nitrate. Although the importance of nutrients other than nitrogen for proper turfgrass growth is well established, the amounts of these nutrients in the plant tissue in relation to the use of different N‐forms has not been clearly documented. This study was conducted under greenhouse conditions to determine the effect of N‐form and cutting regime on growth, macronutrient, and micronutrient content of creeping bentgrass (Agrostis palustris Huds. ‘Penncross'). Treatments consisted of 100% NO3? (calcium nitrate), 100% NH4 + (ammonium sulfate), and a 50:50 ratio of NH4 +:NO3 ?. Half the turfgrass plants were maintained at a height of 1 cm (cut), while the other half of the plants were not cut until the end of the study (uncut). The uncut 50:50 treatment yielded the highest shoot, verdure, and total plant dry matter, while the uncut NO3 ? treatment produced the highest root dry matter. The uncut NH4 + treatment yielded the least shoot, root, and total plant dry matter. Plants of the uncut NO3 ? treatment had greater accumulation of macronutrients in the shoot and root tissue compared to plants of the NH4 + treatment. The uncut NO3 ? and 50:50 treatments had higher total accumulation of micronutrients compared to the uncut NH4 +‐treated plants. The cut NO3 ? treatment resulted in the highest macronutrient and micronutrient contents in the root tissue in comparison to other cut treatments. The cut treatments had the highest percentage accumulation of nutrients in the verdure tissue, while the uncut treatments had the highest percentage accumulation of nutrients in the shoot tissue.  相似文献   

15.
Abstract

One of the characteristics that can help wheat (Triticum aestivum L.) plants escape late season drought in the semiarid areas of Morocco is early stand establishment and adequate vigor. Little is known about the effect of nitrogen (N) on early seedling vigor in wheat. The objective of this study was to determine how N supply affects early root and shoot growth, N partitioning between the two parts and N use efficiency of seedlings. To reach this objective, three spring wheat cultivars were grown in pots in a growth chamber under N conditions which were low, adequate and high. Data showed that optimum N rates increased shoot and root growth but high N concentrations reduced their dry matter accumulation and inhibited root elongation. The cultivars tested behaved differently. ‘Nesma’, an older cultivar, produced 60% more dry matter and accumulated 93% more N in the shoot and root than the newer cultivars ‘Merchouch 8’ and ‘Saada’. Because of its high N uptake, ‘Nesma’ probably reduced soil N concentration at the root zone and avoided the negative effect of high N concentration on root growth. Although, ‘Nesma’ performed better and produced more dry matter, it used N less efficiently than the other two cultivars.

From this study, we can conclude that use of optimum N rates at time of seeing will result in quicker establishment and higher vigor of wheat seedlings. However, excessive N supply may retard seedling growth. The cultivars that produce more seedling dry matter with greater N accumulation are not necessarily the ones that use N more efficiently.  相似文献   

16.
ABSTRACT

The use of applied phosphorus (P) and the uptake of nutrients from the soil by plants can be improved when the fertilizer is combined with the application of humic substances (HS). However, these beneficial effects are inconsistent and can depend on the type of soil. This study was performed to evaluate the effects of the application of HS (0, 1.25, and 7.50 mL pot–1), as Humic HF®, and fertilizer-P (10, 50, 100, and 200 mg P dm–3), as triple superphosphate, on root morphological characteristics, dry matter accumulation, nutrient uptake, and tuber yield of potatoes grown in sandy and clayey soils. Only under low P supply in the sandy soil did the supply of HS, at the rate of 1.25 mL pot–1, increase the plant growth, yield of tubers, and uptake of macronutrients by the plants, without affecting the efficiency of the P fertilization. In the clayey soil, which had a higher organic matter content, the application of HS did not affect plant growth, tuber yield or nutrient uptake. In both soils, P fertilization increased plant growth, tuber yield, and nutrient uptake. The combined application of HS and P increased the root length of potatoes in sandy soil.  相似文献   

17.
Abstract

NutraSweet sludge, a by‐product of the production of the noncarbohydrate sweetener aspartame, is often used as a N fertilizer for crops. However, its performance with respect to inorganic N fertilizers is not well understood. This work was conducted to compare NutraSweet sludge to ammonium sulfate and urea as an N fertilizer for wheat and corn. Samples from two soils were mixed with one of the three N sources to achieve rates of 0, 25, 50, 100, or 150 mg N kg‐1. The treated soil was placed in pots, which were used to grow corn or wheat for 45 days in the greenhouse. Above‐ground dry matter yields of com and wheat increased as N rate increased from 0 to 50 or 100 mg N kg‐1. Above 100 mg N kg‐1, dry matter yields decreased. In general, at a given N rate, NutraSweet sludge produced dry matter yields that were equal to or higher than those obtained with ammonium sulfate or urea. The results suggest that NutraSweet sludge could be managed as an ammoniacal N fertilizer when applied to crops.  相似文献   

18.
Plants have evolved different mechanisms to survive under stress conditions. This field study was conducted to evaluate the influence of nitrogen (N) application on dry biomass allocation and translocation in two maize varieties under short pre-anthesis and prolonged bracketing flowering period of drought. Two maize varieties, ‘Pioneer 30B80? and ‘Suwan 4452? receiving N at 0 (control), 160 (optimal) and 320 (supra-optimal) kg ha?1 were subjected to short pre-anthesis and prolonged bracketing flowering periods of drought. Prolonged bracketing flowering period of drought had more suppressive effect on anthesis-silking interval, dry matter allocation and translocation, leaf greenness, contribution of current assimilates to grain (CCAG), kernel number, kernel weight and kernel yield of two maize varieties than a short pre-anthesis drought. Nitrogen application at optimal level was the best for all traits, except CCAG. The maize variety ‘Pioneer 30B80? performed better under both drought types due to more root xylem vessels of large size and more accumulation of dry matter in leaves and roots than the variety ‘Suwan 4452?. Therefore, the variety ‘Pioneer 30B80? may be planted in drought prone environments and may be used in breeding program aimed at developing drought-tolerant cultivars.  相似文献   

19.
Uptake and utilization of phosphorus by three inbred lines of Lolium multiflorum L. and their hybrids Three Lolium multiflorum inbred lines A, B and C and their hybrids (AB, AC, BC) were tested for their shoot dry matter (DM) production, P uptake (mg P pot?1), P utilization (mg DM · mg P?1) and P influx (P uptake rate per cm root length) by growing in plastic pots for a maximum period of 92 days at two P levels in a loess loam soil. The acid phosphatase activity of roots of inbreds A and C grown in nutrient solutions with 1.10 and 100 μmol P · L?1 was also determined using the hydrolysis of Nitrophenyl phospate (NPP). Compared to the average of the inbreds DM production of the hybrids was 8 % higher at high and 12 % higher at low P level. With an increase of 14% and 25% DM respectively hybrid BC had the highest heterosis effect. The biomass production corresponded with the P uptake. Therefore, the P utilization efficiency of the hybrids was nearly the same as that of the inbreds. The increase in P uptake of the hybrids was related to the increase of root length. This means that the P uptake efficiency, i.e. the influx per unit of root remained unchanged between the inbreds and their hybrids. It can thus be concluded that the heterosis effect corresponds to an increase of P uptake caused by an increase of the size of the root system. The activity of the root phosphatases increased with declining P status of shoots and being absolutely higher in inbred A than C. Both inbreds responded within 3 days to a decreased P supply (from 100 to 1 μmol P · L?1).  相似文献   

20.
Zinc (Zn) deficiency is more common in corn (Zea mays L.) than in sorghum [Sorghum bicolor (L.) Moench] or wheat (Triticum sp.). The ability of wheat to withstand low soil Zn conditions is related to increased release of phytosiderophore from its roots. The reasons for sorghum's ability and corn's inability to utilize low levels of soil Zn have not been explored adequately. The objectives of this research were to 1) ascertain if Zn deficiency could be induced in sorghum, wheat, and corn grown in a chelator‐buffered nutrient solution and 2) determine relative releases of phytosiderophore from roots of sorghum, wheat, and/or corn under Zn‐deficiency conditions. Sorghum, wheat, and corn were grown hydroponically in the greenhouse with a chelator‐buffered nutrient solution designed to induce Zn deficiency, while supplying adequate amounts of other nutrients. Root exudates were collected over time to measure phytosiderophore release. Shoot Zn concentrations and shoot and root dry matter yields were determined also. The technique was effective for inducing Zn deficiency in sorghum, wheat, and corn, as evidenced by reduced shoot and root dry matter yields, shortened internodes, reduced shoot Zn concentrations, and plant Zn concentrations below the suggested critical values for these species. Sorghum and wheat plants increased the release of phytosiderophore in response to Zn deficiency, but com did not. The total amount of phytosiderophore released by the roots was in the order wheat>sorghum>corn. The absence of a “phytosiderophore”; response to Zn deficiency of corn, coupled with the evidence that this species requires, or at least accumulates, more Zn than wheat or sorghum, provides an explanation as to why Zn deficiencies are more prevalent for corn than wheat or sorghum under field conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号