首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Abstract

A relatively small range between deficiency and toxic limits of boron (B) necessitates precise evaluation of the availability of extractable boron before applying B in deficient soils. Keeping this in view, laboratory and greenhouse experiments were conducted to assess the availability of native B in soils. For this purpose, 25 acid soils with diverse properties and varying hot water extractable B content, were selected from lateritic and alluvial tracts of Southern West Bengal. A greenhouse pot experiment with four rates of B (0, 0.5, 1.0, and 2.0 mg kg‐1) was conducted in completely randomized design to study the response of soybean (Glycine max L.) to native and applied B in all 25 soils. The suitability of nine extractants for determining available soil B was assessed by correlating the amount of extractable B in untreated soils with Bray's percent yield, uptake, and tissue B concentration of soybean plants. Optimization of salicylic acid concentration is described and the advantages of this extractant are discussed. The interference of amethyst color (produced by iron and salicylic acid) with the colorimetric estimation of B is studied. Hot CaCl2 was found to be the most suitable extractant for the determination of available B in these soils, followed by hot water, salicylic acid, and ammonium acetate. However, salicylic acid appeared to be the most efficient extractant for routine soil analysis for available B, where a large number of samples are analyzed. The critical values in respect to sufficiency of extractable B for soybean plants were 0.51 for hot water, 0.61 for hot CaCl2, 0.27 for ammonium acetate and 0.45 mg kg‐1 for salicylic acid. The critical B concentration in soybean plants was 18 mg kg‐1 on dry weight basis. Multiple regression equations relating soil properties to native soil B extracted by various extractante were developed. It was observed that organic carbon and clay contributed positively to B extracted by hot water, hot CaCl2, and ammonium acetate, while salicylic acid extractable B showed positive relationships with cation exchange capacity (CEC) and clay. The CEC and Fe2O3 were found to have positive influence on tartaric acid extractable B. Implications of the influences of soil properties on the extractable B content of soils are discussed.  相似文献   

3.
Abstract

Soil samples, dried and in field moisture condition, respectively, were extracted by 0.01M calcium chloride (CaCl2) at two different soil:extractant ratios (1:2 and 1:10), and analysed by inductively coupled plasma emission spectrometry (ICP), by ion Chromatograph, and by two different molybdenum blue methods for content of phosphorus (P). There was a good relationship between the methods, although the different methods gave quite different P values. Phosphorus detected by the molybdenum blue methods included not only orthophosphates, and the values were influenced by method‐dependent factors like effect of temperature. The difference is important when studying the complex of P cycle in soil and its plant availability and stresses the need for a reliable method of detecting low amounts of orthophosphates in soil extracts. Plant samples, collected at the same times as the soil samples, were digested in concentrated nitric acid (HNO3) and the P content determined by ICP. Linear regressions were performed with plant P as dependent on extractable P according to different methods. The degree of explanation is generally between 0.6 and 0.9, without indicating any method as superior in predicting plant availability of P.  相似文献   

4.
Abstract

Knowledge of the change in soil extractable phosphorus (P) as a consequence of soil P fertilization could be useful in discriminating soils with a potential for soil P release to runoff or movement of P along the soil profile. In this research, soils with low to medium P retention capacity were equilibrated for 90 days with soluble P (KH2PO4) at rate of 100 mg P kg‐1 soil. After this period, soil samples both with and without the P addition were analyzed using six conventional methods: 1) Olsen, 2) Bray 1,3) Mehlich3,4) Egner, 5) Houba, dilute CaCl2 solution, and 6) distilled water, and three “innovative”; P‐sink methodologies: 1) Fe oxide‐coated paper strip, 2) anion exchange resin membrane, and 3) cation‐anion exchange resin membrane. The soils without P addition had low levels of extracted P as determined by all nine procedures. Net increases in the amount of P extracted from the soils with added P ranged from 4.2 mg kg‐1 (CaCl2 extraction) to 57.6 mg kg‐1 (cation‐anion resin membrane extraction). Relationships between change in extracted P and i) physical and chemical characteristics, and ii) soil P sorption properties are also presented and discussed.  相似文献   

5.
Abstract

Soils in southern Australia within the Mediterranean‐type climate zone vary widely in boron concentrations, from potentially deficient to toxic for plant growth. A general method is needed for the determination of boron in soils ranging from acidic to alkaline, with wide ranges of clay content and sodicity.

The amounts of boron extracted were compared following boiling in 0.01M CaCl2 in test tubes in temperature‐controlled programmable digestion blocks, or in Erienmeyer flasks on hot plates under different analytical conditions. Comparisons were also made between CaCl2, hot water, and mannitol extractable boron. All analyses of boron were made by inductively coupled plasma spectrometry (ICPS).

The extraction of boron was dependent on extraction time and temperature of the heating block. Addition of 20 ml of 0.01M CaCl2 to 10g of soil in 250 ml test tubes fitted with air condensers and placed in a pre‐heated temperature‐controlled digestion block set at 140°C and boiled for 30 minutes. This method was found to be a suitable extractant of boron in soils with a wide range of sodicity, pH and extractable boron (from concentrations potentially deficient to toxic for plant growth).  相似文献   

6.
Abstract

Metal availability in soils is often assessed by means of extraction with chemical solutions, among others the chelating agent DTPA (diethylenetriaminepentaacetic acid) and the non‐buffered salt calcium chloride (CaCl2). The same procedures are used for polluted soils that were originally created to assess the nutrient status of arable soils. We studied the influence of various parameters (type of shaker, shaking time, soil to solution ratio, and concentration of chemical extractant) and modify the DTPA and CaCl2 extraction procedures to make them suitable for the study of polluted soils. The chosen extraction ratio and extractant concentration were the followings: 8 g/20 mL of 0.1 MCaCl2 and 2 g/20 mL of 0.005 M DTPA. The optimized procedures were applied to nine soil samples affected by different sources of pollution (mine works, vehicle emissions, and various industries). Cadmium (Cd) showed the highest extractability with both extractants. Depending on the soil, copper (Cu) and zinc (Zn) (using DPTA) and Cu and manganese (Mn) (using CaCl2) were the followings in the extractable amounts. Cadmium, Cu, and Zn were highly correlated in both extractions and with total contents.  相似文献   

7.
Soil testing is widely adopted as an essential diagnostic tool for identifying soil nutrient factors that limit sustained crop production. A systematic approach for rapid soil testing and fertilizer recommendation has been introduced and widely used in China by Agro Services International (ASI), USA. To verify the usefulness and reliability of the ASI method in soil testing and fertilizer recommendation in comparison with other commonly used traditional soil testing methods, 294 soil samples from major agricultural regions and soil types in China with a wide range of soil pH, from 5.1 to 8.9, were taken and analyzed for available phosphorus (P) and potassium (K) by the ASI multielement extraction solution and selected traditional methods, Olsen extractant for P, ammonium acetate (NH4OAc) extractant for K, and multielement extractant Mehlich 3 for P and K. Also, 46 soils were selected from northern China regions for a greenhouse trial with sorghum seedlings to determine if the soil testing values correlate well with plant response. Results indicated that the amount of soil P extracted by the ASI method (ASI P) was correlated to both soil extractable P tested by the Olsen extractant (Olsen P) and Mehlich 3 extractant (Mehlich 3 P). The correlation coefficient of ASI P with Mehlich 3 P (R2 = 0.86) was greater than that of ASI P with Olsen P (R2 = 0.74) across all selected soils. A good correlation was also found between the exchangeable K from the ASI method with the traditional ammonium acetate method (R2 = 0.81) and the Mehlich 3 method (R2 = 0.85). The results from the greenhouse trial showed that the extractable P and exchangeable K by the ASI multielement extraction solution could be used to represent the fertility status of soil P and K for the selected soils. Regression analysis indicated that the relative dry-matter yield of the sorghum plants can be predicted with either ASI P and ASI K values with the correlation coefficients (R2) values of 0.78 and 0.72 respectively and could be a good measure for soil testing and fertilizer recommendation in the selected soils and regions in China.  相似文献   

8.
The traditional method for quantifying phosphorus (P) in Manitoba soil extracts is the molybdate blue–ascorbic acid colorimetric method. The shift from this traditional method to newer and more sophisticated analytical methods such as inductively coupled plasma (ICP) optical emission spectroscopy for P determination in soil extract could have serious implications on agronomic and environmental P management. Thus, the objectives of this study were to compare P determination by colorimetric and ICP methods in four extractants, namely Olsen, Mehlich 3, CaCl2, and water extraction methods and to evaluate the possibility of developing conversion equations for P determination for the two methods in Manitoba soils. A laboratory experiment was conducted to establish relationships between P determination by colorimetric and ICP methods. Sixty surface soil samples (30 manured and 30 nonmanured) were collected from across Manitoba and extracted with Mehlich 3 reagent, Olsen solution, calcium chloride (CaCl2) solution, and deionized water. Extractable P in the extract was determined by colorimetric (Col-P) and ICP (ICP-P) methods. The concentrations of P measured by the two methods were statistically analyzed. Mean comparison showed that P amounts determined by ICP in Mehlich 3, water, and CaCl2 solutions were significantly greater than those determined by colorimetric method (P < 0.05) in the study. The differences between P determinations by the two analytical methods in the extractants were probably due to the presence of organic P, which was included in ICP determination but not in colorimetric determination. The influence of other factors such as the presence of colloidal particles on the P that was determined by the two methods could not be ruled out. However, Olsen P determined by the colorimetric method was not significantly different from the values determined by ICP (P > 0.05) probably because the alkaline nature of this extractant enhanced the hydrolysis of organic P in the extract, thus including organic P in the colorimetric determination of P. There were significant correlations between the two methods of P determination in the various extracting solutions with correlation coefficients ranging between 0.94 and 1.00. The two methods of P determination were linearly related for all the extracting solutions.  相似文献   

9.
Abstract

A new soil extractant (H3A) with the ability to extract NH4, NO3, and P from soil was developed and tested against 32 soils, which varied greatly in clay content, organic carbon (C), and soil pH. The extractant (H3A) eliminates the need for separate phosphorus (P) extractants for acid and calcareous soils and maintains the extract pH, on average, within one unit of the soil pH. The extractant is composed of organic root exudates, lithium citrate, and two synthetic chelators (DTPA, EDTA). The new soil extractant was tested against Mehlich 3, Olsen, and water for extractable P, and 1 M KCl and water‐extractable NH4 and NO2/NO3. The pH of the extractant after adding soil, shaking, and filtration was measured for each soil sample (5 extractants×2 reps×32 soils=320 samples) and was shown to be highly influential on extractable P but has no effect on extractable NH4 or NO2/NO3. H3A was highly correlated with soil‐extractable inorganic N (NH4, NO2/NO3) from both water (r=0.98) and 1 M KCl (r=0.97), as well as being significantly correlated with water (r=0.71), Mehlich 3 (r=0.83), and Olsen (r=0.84) for extractable P.  相似文献   

10.
Behaviour of heavy metals in soils. 2. Extraction of mobile heavy metals with CaCl2 and NH4NO3 156 soil samples from arable fields, grassland and forest stands were analysed for the CaCl2? and NH4NO3? extractable contents of Cd, Zn, Mn, Cu and Pb. The average amounts of Cd, Zn, Cu and Pb extracted with CaCl2 are higher compared with NH4NO3 whereas the relation for Mn is vice versa. The proportion of the NH4NO3? extractable contents in percent of the CaCl2? extractable contents of Cd, Zn and Pb decrease with increasing pH, whereas the contents of Mn and Cu increase. Inspite of a differing extraction behaviour of the two salt solutions the CaCl2? and NH4NO3? extractable amounts of Cd, Mn, Zn und Pb are highly correlated and can be converted one into another. The mobile (CaCl2, NH4NO3) proportion of the corresponding total, EDTA and DTPA heavy metal contents is in close relation to the pH of the soils. Using CaCl2 solution the threshold pH values for an increasing mobility decrease in the order Cd > Mn > Zn > Cu > Pb, using NH4NO3 as extractant the order is Mn > Cd > Zn > Cu > Pb. In the case of CaCl2 as extractant soluble chloro-Cd-complexes will be formed so that the Cd mobility in soils will be overestimated in most cases.  相似文献   

11.
Abstract

A method is proposed for determination of hot‐water‐soluble boron in acid soils from western Oregon. The soil sample is boiled in 0.02 M CaCl2, filtered, and B determined using azomethine‐H. Soils extracted in this way yielded extracts with little color in them and the predicted error due to this color was 0.00–0.07 ppm B. The use of charcoal as a decolorizing agent resulted in comparatively high predicted errors.

Inductively‐coupled plasma emission spectroscopic (ICP) analysis of distilled water and 0.02 M CaCl2 extracts indicated that the extractable B level was not affected by the presence of CaCl2. Azomethine‐H yielded comparable values to ICP but the curcumin method tended to give high values for hot‐water‐soluble B.  相似文献   

12.
Abstract

The influence of some soil properties on hot 0.02 M calcium chloride (CaCl2) extractable boron in the Argentine Pampas was studied. The selected soils represent an extensive area in the middle west of the country where most of the grain crops are produced. Soils have all developed on loess and cover a wide range of organic matter, pH, and exchangeable calcium. The most representative soils are Typic Argiudolls and Typic Haplustolls. Two hundred soil samples were taken in order to characterize their 0.02 M CaCl2 extractable boron content and study the boron behavior with regard to other soils properties and environmental conditions. The amounts of extracted boron on all samples had a significant correlation with soil organic carbon (positive), and soil pH (negative). The regression equation between extractable boron and organic carbon content was y=0.1021+0.3722 OC R2: 0.51. Since solubility in hot CaCl2, 0,02 M is considered an availability index, these results support the hypothesis that organic carbon content is the main boron reserve for plants. When a multiple regression was calculated, both variables organic carbon and pH explained 57% of variation in extractable boron. The studied area can be subdivided into regions with different boron content, within each region the relationship between boron content and organic carbon and pH were also different. The exchangeable calcium content had a light influence especially in the subsuperficial layer. The influence of environmental conditions on boron content and its relationship with soil properties were discussed.  相似文献   

13.
Secondary and trace elements may be limiting soil microbial functioning, albeit microbial demand and content remain largely unknown and methods for their in situ detection are limited. Thus, the objective of the present study was to take the first step towards the method development for the assessment of the soil microbial ionome, that is, the elemental composition of soil microbial communities. Chloroform (CHCl3) fumigation extraction was used for the detection of microbial CHCl3-labile secondary and trace element concentrations in soils. The suitability of two extractants (NH4NO3, CaCl2) for the quantification of CHCl3-labile concentrations of phosphorus, sulphur, potassium, sodium, and magnesium, as well as selenium, iron, zinc, manganese, copper, cobalt, nickel, molybdenum, vanadium, boron, silicon, barium, arsenic, and cadmium, were tested in six agricultural soils. Additionally, three soil to extractant ratios (1:5, 1:10, and 1:20) and two extraction durations, 1 or 2 h, were tested in a subset of two soils. Out of the two extractants tested, 0.01 M CaCl2 was found to be the best-suited extractant. For CaCl2, a soil-to-extractant ratio of 1:20 with an extraction time of 1 h was best for the majority of elements in the two soils tested. In a limited number of agricultural soils, we were able to show that CHCl3 fumigation extraction can successfully be applied to the elements phosphorus, sulphur, potassium, sodium, magnesium, zinc, manganese, copper, nickel, vanadium, boron, silicon, and barium to yield a CHCl3-labile element fraction. Conversion values to microbial biomass, accounting for elements contained in the cell envelope components, which are mostly not extractable, and to account for adsorption to soil colloids during extraction are yet to be determined in a larger variety of soils. To overcome some of the limitations of the fumigation extraction approach for secondary and trace elements, a pre-extraction step may provide a suitable solution.  相似文献   

14.
Abstract

Eighty four soil samples collected from southeastern Norway were analyzed for Cd by extraction with NH4OAc, DTPA, NH4OAc-EDTA, NH4NO3, HCl and CaCl2. The total Cd, pH, exchangeable K and Ca, dithionite-extractable Mn, available P and fine sand (0.2–0.02 mm) contents were the principal factors related to the extractable Cd, with some inter-extractant variations. Cadmium extracted by NH4NO3, NH4OAc, HCl and CaCl2 decreased with increasing soil pH, but the Cd extracted by all the extractants increased with increasing total Cd, exchangeable K and Ca, available P, and Mn-oxide contents in the soils. The Cd concentrations in plants were significantly related to the extractable Cd, exchangeable Ca and Mg, pH, Mn-oxides and organic matter content.  相似文献   

15.
Abstract

Field and greenhouse studies were conducted in Prince Edward Island (P.E.I.) on soybean (Glycine max (L.) Merr.), red clover (Trifolium pratense L.), alfalfa (Medicago sativa L.), and rutabaga (Brassica napobrassica, Mill). Plant B concentrations were compared to soil B extracted by hot water, 0.05M HCl, 1.5M CH3COOH, and 0.01M CaCl2. The r values for extractable soil B versus plant B were: hot water (0.67), 0.05M HCl (0.82), 1.5M CH3COOH (0.78), and hot 0.01M CaCl2(0.61). Results of soil B from the 0.05M HCl extracts were generally found to give the best correlation and linear regression among the four extractants tested for predicting the B availability to plants. Overall, the 0.05M HCl proved to be the best extractant and is recommended for predicting the available B status of acid soils. The probability of error with 0.05M HCl is less since it is shaken for a fixed period of time as opposed to subjective error which could be introduced in monitoring the boiling time using hot water. Since HCl is the cheapest among the chemical extractants used it would be most suited for determining soil B in countries with poor economic resources.  相似文献   

16.
Availability of cadmium for vegetable plants in allotment soils Pot experiments with soils from allotments of Hamburg and different vegetables were carried out to determine the mobility and plant availability of cadmium. Total soil Cd-contents in combination with other soil properties as well as 0.1 M CaCl2 and 1 M NH4NO3 extractable Cd were tested with regard to forecasting the Cd-uptake by plants. A direct comparison of these methods and their suitability is given. Soil threshold values were derived, which possibly result in Cd-plant uptake and Cd-contents exceeding the actually valid limits in food. These threshold values were evaluated for three testing methods: Total soil Cd-content in combination with pH as well as 0.1 M CaCl2 and 1 M NH4NO3 extractable Cd.  相似文献   

17.
Abstract

Simultaneous extraction of nutrients using ammonium bicarbonate–diethylene triamine penta acetic acid (ABDTPA) extractant has been successful for highland soils, but its potential for lowland soils is still uncertain. This study evaluated the suitability of ABDTPA extractant to determine available phosphorus (P), potassium (K), sodium (Na), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) in lowland rice soils of Sri Lanka. Available nutrients were analyzed both by conventional and ABDTPA methods, using the original ABDTPA (1∶2 soil–extractant) method as well as a modified (1∶4 soil–extractant) method. Conventional methods tested were Olsen, Bray 1, and FeO strip for available P; neutral NH4OAc extraction for exchangeable Ca, Na, K, and Mg; and DTPA extraction for available Zn, Cu, Fe, and Mn. Nutrient content and uptake by plants were determined by a pot experiment with rice (Oryza sativa). Nutrients extracted by the conventional methods and ABDTPA methods correlated well, in general, for all nutrients. Highly significant correlations were observed between plant uptake and extractable nutrients by 1∶2 and 1∶4 ABDTPA methods for P (r=0.85***and 0.73***, respectively), K (r=0.79*** and 0.66***, respectively), Na (r=0.86*** and 0.78***, respectively), Zn (r=0.66*** and 0.60***, respectively), Mn (r=0.72*** and 0.84***, respectively), and Fe (r=0.74*** and 0.68***, respectively). Calcium and Mg extracted by ABDTPA showed a poor relationship with their respective plant uptake. The ABDTPA method was as effective as or even better than the conventional methods in evaluating fertility status of lowland rice soils with respect to most nutrients. Replacing the conventional methods by the single ABDTPA multielement extractant will reduce the time and cost of soil analysis.  相似文献   

18.
Abstract

In 100 different soils, hot (100C) water extractable boron was determined and the results were compared with boron data after extraction of the same soil samples with cold (20C) 0.01 M CaCl2. Since the boron concentrations in cold soil extracts are too low for direct determination, the extracted boron was converted into BF4‐ and subsequently extracted with a liquid anion exchanger, Aliquat 336, into xylene, and measured by ICP‐AES. A linear relation with R2 = 0.74 was found between the two tested procedures. It is, therefore, concluded that with a cold 0.01 M CaCl2 extraction equally valuable soil boron values can be obtained as with the more difficult to standardize hot water extraction procedure.  相似文献   

19.
B. Ahmed  A. Islam 《Geoderma》1975,14(3):261-265
The use of a neutral solution of 0.0025M Na2EDTA as an extractant in the assessment of soil phosphate available to plants is described. In the soil types used, a high correlation was found between EDTA extractable soil phosphate and plant responses, as measured by phosphate content of dry matter. The dry-matter yield of plants was also closely correlated with PDTA values. The method provides a satisfactory estimate of the availability of phosphate to wheat plants in the soils under investigation.  相似文献   

20.
Abstract

Extractants employed for routine soil analysis vary from one laboratory to another. Lack of a universal soil extractant is a serious limitation for interpretation of analytical results from various laboratories on nutritional status of a given soil. This limitation can be overcome by developing functional relationships for concentrations of a given nutrient extractable by various extradants. In this study, extractability of Ca, Mg, P, and K in a wide range of soils (0–15 cm) from citrus groves in Florida representing 21 soil series, with varying cultural operations, were compared using Mehlich 3 (M3), Mehlich 1 (M1), ammonium acetate (NH4AOc), pH = 7.0 (AA), 0.2M ammonium chloride (NH4Cl), and ammonium bicarbonate‐DTPA (AB‐DTPA) extractants. Soil pH (0.01M CaCl2) varied from 3.57 to 7.28. The concentrations of Ca or Mg extractable by M3, M1, AA, and NH4Cl were strongly correlated with soil pH (r2 = 0.381–0.482). Weak but significant correlations were also found between AB‐DTPA extractable Ca or Mg and soil pH (r2 = 0.235–0.278). Soil pH relationships with extractable K were rather weak (r2 = < 0.131) for M1 and NH4Cl but non‐significant for M3, AB‐DTPA, and AA. Concentrations of Ca, Mg, and K extractable by M3 were significantly correlated with those by either M1, AA, or NH4Cl extractants. Mehlich 3‐P was significantly correlated with P extractable by M1 extractant only. Mehlich 3 versus AB‐DTPA relationship was strong for K (r2 = 0.964), weaker for Mg and P (r2 = 0.180–0.319), and non‐significant for Ca. With the increasing emphasis on possible use of M3 as an universal soil extractant, data from this study support the hypothesis that M3 can be adapted as a suitable extractant for routine soil analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号