首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Boron (B) deficiency in crops is a major micronutrient disorder particularly in alkaline‐calcareous soils. A nutrient indexing of rainfed sorghum [Sorghum bicolor (L.) Merr; cv. Potohar 4–8] in the Potohar plateau of Pakistan revealed B deficiency in 50% of the 140 sampled fields in Jehlum district and 115 fields in Chakwal district. Hot water extractable (HWE) B in the associated soils, however, indicated more widespread B deficiency. The 255 sampled fields represented 21 soil series: 100 belonging to Alfisols, 63 to Entisols, 50 to Inceptisols, and 42 to Aridisols. Boron fertility varied in various soil types; the minimum HWE B (0.25 mg/kg) was noted in Calci Ustochrepts and the maximum (0.69 mg/kg) in Fleventic Ustochrepts. Boron fertilization of an alkaline calcareous Typic Ustorthents (HWE B, 0.11 mg/kg) increased grain yield up to 32% in improved sorghum (cv. PARC‐SS‐1) and 29% in local sorghum (cv. Potohar 4–8) over the respective control yields. Fertilizer requirements for near‐maximum (95%) grain yield was 1.2 mg B/kg for the improved and 0.6 mg B/kg for local cultivar; higher fertilizer requirement of improved sorghum may be attributed to its greater biomass production. Critical plant tissue B concentration in improved sorghum was 17 mg/kg in whole shoots and 25 mg/kg in most recently matured leaves. Contrary to its lesser fertilizer requirement, internal B requirement of local sorghum was greater, i.e., 18 mg/kg in whole shoots and 31 mg/kg in leaves. The three soil tests for B, hot water, hydrochloric acid (HC1), and mannitol were almost equally effective in evaluating soil B fertility. Soil test critical B levels (mg/ kg) for improved sorghum were: hot water, 0.48; HC1, 0.43; and mannitol, 0.37. Contrary to its internal B requirements, soil test critical B levels (mg/ kg) were slightly lower for local sorghum, i.e., hot water, 0.45; HC1, 0.40; and mannitol, 0.36. Thus, local sorghum appeared more efficient in utilizing soil B. As soil test critical levels as well as fertilizer requirement were greater for improved sorghum, a much widespread B deficiency is expected in this cultivar if grown on alkaline calcareous soils of the Potohar plateau.  相似文献   

2.
Pot culture experiment was conducted to evaluate the suitability of extractants and to determine the critical limit of boron (B) in soil and mustard plant in Inceptisols of Varanasi. Twenty-one bulk soil collected from different locations were used for growing mustard. Five extractants, namely hot water, hot 0.01molar (M) calcium chloride (CaCl2), 0.01M CaCl2 + 0.05 M mannitol, 1.0 M ammonium acetate (NH4OAC) and 0.05 M hydrochloric acid (HCl), were assessed by correlating the amount of extractable B in untreated and B fertilizer-treated soil with Bray’s per cent yield, plant tissue B concentration and B uptake by mustard. Similarly, correlation coefficients of the B extracted by different extractants and soil properties were calculated. The suitability of B extracted by different extractants was in the order of hot 0.01M CaCl2 (HCC-B) > hot water (HW-B) > 1.0 M NH4OAC (AA-B) > 0.05M HCl (HA-B) > 0.01M CaCl2 + 0.05M mannitol (CCM-B). The critical limits of extractable B in soil as determined by the graphical procedure were 0.54, 0.60, 0.36, 0.45 and 0.45 mg kg?1 and the statistical procedures were 0.54, 0.60, 0.38, 0.46 and 0.48 mg kg?1 with HW-B, HCC-B, CCM-B, AA-B and HA-B, respectively. Soil containing available B below the critical limit responded to B fertilization.  相似文献   

3.
Abstract

Zinc (Zn) deficiency in crops, including rapeseed and mustard, is a widespread nutritional disorder especially in alkaline soils. However, plant analysis diagnostic criteria for interpreting Zn analysis in rapeseed and mustard are scarcely reported in the literature. Use of seeds for diagnosing Zn fertility status of soils has certain advantages over foliar analysis—ease of sampling, processing, and chemical analysis. Despite this, mature seeds of these species were hardly evaluated as an index tissue for this purpose. Our study determined Zn requirement in foliar tissues and also evaluated Zn composition of mature seeds as an index of Zn status of soils and plants. Zinc concentration in mature seeds of the test crops reflected the Zn status of the soil where plants were grown. In fact, the range of Zn concentration in grains was almost comparable with the ranges in foliar plant parts. Critical Zn concentration (mg/kg) in diagnostic plant parts of rapeseed was: whole shoots, 29; leaves, 33; and seeds, 29; while the Zn requirement of mustard was a little higher: whole shoots, 35; leaves, 41; and seeds, 33.  相似文献   

4.
Field studies were conducted to assess boron (B) requirement, critical concentrations in diagnostic parts based on yield response curves and genotypic variation by growing three peanut (Arachis hypogaea L.) cultivars (‘Golden’, ‘BARD-479’, ‘BARI-2000’) on two B-deficient calcareous soils. Boron application significantly increased pod yield of all the cultivars over control. Maximum pod yield increases were: ‘Golden’, 16?23%; ‘BARD-479’, 21?27%; and ‘BARI-2000’, 25?31%. The cultivars varied in B efficiency and cv. ‘Golden’ was the most B efficient (81?86%) while cv. ‘BARI-2000’ was the least efficient (76?80%). Boron requirements for near-maximum (95%) dry pod yield were 0.65 kg ha?1 for ‘Golden’, 0.75 kg ha?1 for BARD-479 and 0.80 kg ha?1 for BARI-2000. Critical B concentrations in shoots and seeds were: ‘Golden’, 33 mg kg?1 and 26 mg kg?1; ‘BARD-479’, 38 mg kg?1 and 31 mg kg?1; and ‘BARI-2000’, 42 mg kg?1 and 33 mg kg?1.  相似文献   

5.
Boron (B) deficiency is potentially an important nutrient constraint in calcareous soils. We determined B deficiency incidence and spatial distribution in rainfed wheat (Triticum aestivum L.) in 1.82 Mha Pothohar plateau in Pakistan, its relationship with soil types, crop responses to B, and internal B requirement and B fertilizer use efficiency of wheat. Plant and soil analyses indicated deficiency in 64% of the 61 sampled fields; geostatistics-aided contour maps delineated B deficient areas. In rainfed field experiments, B use increased wheat yields up to 11%. Fertilizer requirement was 1.2 kg B ha?1; critical B concentration (mg kg?1) ranges were: young whole shoots, 4–6; flag leaves, 5–7. Boron uptake by wheat was 0.14–0.58% of applied dosage, leaving substantial residual impact. Highly cost-effective B use or B-efficient genotype adoption can enhance wheat productivity and grower-income. Such effective nutrient assessment and management approaches can be beneficially adopted elsewhere as well.  相似文献   

6.
Abstract

Analysis of soil and plant tissue for boron (B) is routine, but more information is needed to clarify the interpretations of test results as a basis for B fertilization of potato (Solarium tuberosum L.). Experiments were conducted in nutrient cultures and in the field to relate the utilization of B by potato plants to visual symptoms of deficiency and toxicity. Without added B the nutrient cultures produced B‐deficient potato plants, but the field plots with 0.3 to 0.4 mg of hot water soluble B/kg of soil did not. Plant shoots from nutrient cultures had a minimum of 13 mg B/kg as compared with plants in field plots with 30 mg B/kg in vines. Concentrations to 50 mg B/kg of dry matter were obtained in plant shoots from nutrient cultures with 1 mg B/L added and in field‐grown plants fertilized with 2.2 kg B/ha. Toxicity to B appeared or was eminent from either adding 3 mg B/L or more to nutrient solutions or 4.5 kg B/ha or more to the field plots. These results suggest the feasibility of developing critical nutrient (sufficiency) ranges for B in plant shoots and vines.  相似文献   

7.
Abstract

In a greenhouse study, a significant increase in sunflower (Helianthus annuus L., cv. Hysun 33) dry matter yield was observed with boron (B) application to a B-deficient (hot water-extractable, 0.23 mg B kg?1) calcareous soil of Missa series (Typic Ustochrept). Six rates of B, ranging from 0 to 8 mg B kg?1 soil, were applied as H3BO3 along with adequate basal fertilization of nitrogen (N), phosphorus (P), potassium (K), and zinc (Zn). Four plants of sunflower were grown in each pot; two were harvested after 4 weeks of germination and the other two after 8 weeks. Maximum crop biomass was produced with 1.0 mg B kg ?1, and application of ≥2.0 mg B kg?1 proved toxic, resulting in drastic yield suppressions. Critical B concentration range for deficiency diagnosis in 4‐week‐old sunflower whole shoots appears to be 46–63 mg B kg?1. However, critical concentration in 8‐week‐old plants was much less (i.e., 36 mg B kg?l), presumably due to a dilution effect. As plant's internal B requirement can vary, in fact manifold, depending on the species, plant part, and plant age, only a relevant criterion can help in diagnosing the deficiency effectively.  相似文献   

8.
Yield‐response correlations with old and improved soil extraction methods for boron (B) are needed. Russet Burbank potato (Solanum tuberosum L.) was grown with two, four, and six B treatments applied in 2004, 2005, and 2006, respectively. Zero and 1.1, 2.2, or 3.4 kg B ha?1 soil and 0.22 or 0.28 kg B ha?1 foliar treatments were applied. Boron fertilization did not significantly increase tuber yield or quality despite initially low hot‐water‐extractable B (0.34–0.50 mg kg?1), although postseason B for unfertilized treatments increased (0.51–0.57 mg kg?1). Soil‐applied B generally reflected B application relative to the untreated control and the low foliar rates in all three years for the four soil extractions utilized [hot water, pressurized hot water, diethylenetriaminepentaacetic acid (DTPA)–sorbitol, and Mehlich III]. Boron content of potato petiole did reflect application of B in 2 years, but tuber and peel tissues did not consistently reflect application of B.  相似文献   

9.
Abstract

Mungbean [Vigna radiata (L). Wilczek] grown in rainfed calcareous soils suffers with phosphorus (P) deficiency. In view of high cost and low use efficiency of P fertilizer, greenhouse, incubation, and field experiments were carried out for determining P deficiency diagnostic criteria and efficient method of P fertilizer application in mungbean. In a pot culture experiment using a P‐deficient Typic Ustocherpt, maximum increase in grain yield with P was 686% over the control; and fertilizer requirement for near‐maximum (95%) grain yield was 30 mg P kg‐1 soil where fertilizer was mixed with the whole soil volume (broadcast) and 14 mg P kg‐1 where mixed with 1/4th soil volume (band placement). In a field experiment on a P‐deficient Typic Camborthid, however, maximum increase in grain yield was 262% over the control. Band placement resulted in 73% fertilizer saving as P requirement was 66 kg ha‐1 by broadcast and only 18 kg ha‐1 by band placement. Critical P concentration range appears to be 0.27–0.33% in young whole shoots (≤30 cm tall) and 0.25–0.30% in recently matured leaves. In an incubation study using the same Typic Ustochrept, P extracted by the sodium bicarbonate (NaHCO3), the ammonium bicarbonate‐diethlylenetriaminepentaacetic acid (AB)‐DTPA), and the Mehlich 3 soil tests correlated closely with each other, P concentration of whole shoots, and total P uptake by mungbean plants. Critical soil test P levels for pot grown mungbean were NaHCO3,9 mg kg‐1; AB‐DTPA, 7 mg kg‐1; and Mehlich 3, 23 mg dm‐3 soil. The more efficient and economical ‘universal’ soil test, AB‐DTPA, is recommended for P fertility evaluation of calcareous soils.  相似文献   

10.
Abstract

The relationship between nutrient concentration and yield of plant forms the basis of using plant analysis to assess nutrient status of plants. This study determined critical levels of phosphorus (P) in diagnostic plant parts of four grain crops. The crops were grown in greenhouse using a P‐deficient Typic Ustochrept fertilized with 0, 10, 30, 90, and 270 mg P/kg soil. Crop sensitivity to P deficiency was: sorghum > maize > sunflower > mungbean. Fertilizer requirements (mg P/kg soil) for near‐maximum grain yield were: sunflower, 89; and maize and mungbean, 74. Fertilizer requirement of sorghum was much greater than the other species. Critical P concentrations in whole shoots (≤30 cm tall) were: mungbean, 0.30%; sunflower, 0.29%; and maize, 0. 24%. Equivalent values for diagnostic leaves were: mungbean, 0.33%; sunflower, 0.31%; and maize, 0.26%. Critical P concentrations in mature seeds were: mungbean, 0.34%; maize, 0.29%; and sunflower, 0.20%.  相似文献   

11.
Abstract

Zinc (Zn) deficiency in crops is a major micronutrient disorder particularly in alkaline‐calcareous soils like those of the rainfed Potohar plateau in Pakistan. A nutrient indexing of sorghum (cv. Potohar 4–8) by sampling <30 cm tall whole shoots and associated soils from 255 random field locations revealed that the crop was deficient in Zn in 54% fields in Jehlum district and 64% in Chakwal. In a greenhouse experiment using a Zn‐deficient calcareous Typic Ustorthents, maximum increase in grain yield with Zn fertilizer was 177% over control in improved sorghum variety (cv. PARC‐SS‐1) and only 10% in local sorghum (cv. Potohar 4–8). Although biomass production of cv. PARC‐SS‐1 was much greater compared with cv. Potohar 4–8, fertilizer Zn requirement for the two cultivars was not much different, 8.3 mg Zn/kg soil for improved sorghum variety and 7.3 mg Zn/kg for local sorghum variety. Contrary to its higher sensitivity to Zn deficiency, the improved sorghum variety was more efficient in utilizing fertilizer Zn. Despite low Zn availability in the Potohar fields, local sorghum is not expected to respond to fertilizer Zn. However, adequate Zn fertility must be assured for cultivating improved sorghum in these soils. Zinc content in mature grains of sorghum proved a good index of soil Zn fertility status. Internal Zn requirement in foliar plant parts of cv. PARC‐SS‐1 (whole shoots, 33 mg/kg; leaves, 22 mg/kg) was greater than in cv. Potohar 4–8 (whole shoots, 27 mg/kg; leaves, 20 mg/kg). In contrast, critical Zn content in grains of the improved sorghum variety (10 mg/kg) was lower than of local variety (14 mg/kg). Three soil tests were equally effective in determining soil Zn fertility. Critical soil Zn levels for cv. PARC‐SS‐1 were: DTPA, 3.4 mg/kg; AB‐DTPA, 3.7 mg/kg; and Mehlich 3, 8.0 mg/dm3. Similar to internal Zn requirement in foliar plant parts, soil test critical Zn levels were lower for cv. Potohar 4–8, i.e., DTPA, 3.1 mg/kg; AB‐DTPA, 3.5 mg/kg; and Mehlich 3, 7.2 mg/dm3. Because of their better efficiency, ‘universal’ soil tests appear superior to the DTPA test for routine Zn analysis.  相似文献   

12.
Boron (B) is known to play important roles in the structures of cell walls and membranes and in the integrity and functions of membranes in plants. Under the conditions in the central Amazon region, there are few studies about this nutrient. In Brazilian soils, the hot-water B extraction method has been extensively used for evaluation of soil B status. However, difficulties with this method result in poor accuracy and precision of extraction of available B in soil. The objective of this study was to evaluate the yield, foliar concentration, and efficiency of B extracting solutions and the effect of B fertilization on B uptake in banana (Musa spp.) leaves and fruits, subgroup Cavendish (AAA), cultivated in a Xanthic Ferralsol (dystrophic Yellow Latosol) located in Amazonas State, Brazil. The experimental design was a completely randomized split plot, with four B rates (0, 4, 8, and 12 kg ha?1), two harvest cycles (subtreatments), and four replicates. Available B was determined with seven extractant solutions: Mehlich 1, Mehlich 3, hot water, hydrochloric acid (HCl) 0.05 mol L?1, HCl 0.1 mol L?1, HCl 5.0 mol L?1, and potassium chloride (KCl 1.0 mol L?1). The application of B fertilizer increased the yield and B concentration in leaves and fruits. Hot water and KCl 1.0 mol L?1 were the most efficient extracting solutions for the determination of available B in soil. The application of 3.4 kg B ha?1 in the first cycle and 1.3 kg B ha?1 in the second cycle guarantees an adequate nutritional status in banana plants.  相似文献   

13.
In greenhouse studies, corn (Zea mays L.) growth increased with Zn fertilization of two alkaline calcareous soils. Zinc concentration and total uptake increased with Zn application. Very high correlations were recorded between plant tissue Zn concentration, total Zn uptake and soil Zn levels determined by DTPA and AB-DTPA soil tests. Correlation between Zn concentration in plants and relative yield was poor. However, close relationships were revealed between extractable soil Zn and relative yield. Near maximum dry matter yield of corn was associated with a fertilizer rate of 2 mg Zn/kg soil. Plant tissue Zn-requirement was 27 mg/kg in 15 days old plants and 32 mg/kg in corn shoots of 40 day age. Critical soil test Zn level was 1.2 mg/kg by DTPA and 1.7 mg/kg by AB-DTPA method. Use of AB-DTPA soil test is suggested for evaluating Zn status of calcareous soils.  相似文献   

14.
Boron (B) deficiency hampers cotton (Gossypium hirsutum L.) growth and productivity globally, especially in calcareous soils. The crop is known as a heavy feeder of B; however, its reported plant analysis diagnostic norms for B-deficiency diagnosis vary drastically. In a 2-year field experiment on a B-deficient [hydrochloric acid (HCl)–extractable 0.47 mg B kg?1], calcareous, Typic Haplocambid, we studied the impact of soil-applied B on cotton (cv. CIM-473) growth, productivity, plant tissue B concentration, and seed oil composition. Boron was applied at 0.0, 1.0, 1.5, 2.0, 2.5, and 3.0 kg B ha?1, as borax (Na2B4O7·10H2O), in a randomized complete block design with four replications, along with recommended rates of nitrogen (N), phosphorus (P), potassium (K), and zinc (Zn). Boron use improved crop growth, decreased fruit shedding, and increased boll weight, leading to seed cotton yield increases up to 14.7% (P < 0.05). Improved B nutrition of plants also enhanced seed oil content (P < 0.05) and increased seed protein content (P < 0.05). Fiber quality was not affected. Fertilizer B use was highly cost-effective, with a value–cost ratio of 12.3:1 at 1 kg B ha?1. Fertilizer B requirement for near-maximum (95% of maximum) seed cotton yield was 1.1 kg B ha?1 and HCl-extractable soil B requirement for was 0.52 kg ha?1. Leaf tissue B requirement varied with leaf age as well as with plant age. In 30-day plants (i.e., at squaring), B-deficiency diagnosis critical level was 45.0 mg kg?1 in recently matured leaves and 38.0 mg kg?1 in youngest open leaves; at 60 days old (i.e., at flowering), critical concentration was 55.0 mg kg?1 in mature leaves and 43.0 mg kg?1 in youngest leaves. With advancement in plant age critical B concentration decreased in both leaf tissues; that is, in 90-day-old plants (i.e., at boll formation) it was 43.0 mg kg?1 in mature leaves and 35.0 mg kg?1 in the youngest leaves. As critical concentration range was narrower in youngest leaves (i.e., 35–43 mg kg?1) compared with mature leaves (i.e., 43–55 mg kg?1), B concentration in youngest leaves is considered a better indicator for deficiency diagnosis.  相似文献   

15.
以甘蓝型常规油菜品种中油821(双高品种)为对照,通过盆栽试验研究了不同硼水平对甘蓝型双低油菜华双4号子粒产量和品质的影响。结果看出,两个油菜品种在缺硼条件下,施硼量从B 0.3 mg/kg增加到B 2.5 mg/kg时,单株角果数、每角粒数和子粒产量显著增加,但增加到B 5.0 mg/kg时,每株角果数、每角粒数和子粒产量显著降低,硼过量影响产量建成。在硼缺乏和硼过量条件下,华双4号的减产程度均高于中油821,表明双低优质油菜华双4号对缺硼和硼过量的反应较常规双高油菜中油821敏感。硼缺乏或过量时,两个品种子粒含油量和油酸含量均表现降低的趋势,而蛋白质含量呈增加趋势。本试验的结果表明,合理施用硼肥对子粒产量的影响大于对品质的影响,而高产优质品种华双4号更应注重硼肥的合理施用;我国栽培油菜的土壤有效硼的适宜浓度可以提高至B 1.0 mg/kg.但硼肥的安全施用应当控制在土壤有效硼含量为B 2.5 mg/kg以下。  相似文献   

16.
不同硼水平对双低油菜华双4号产量和品质的影响   总被引:5,自引:1,他引:4  
以甘蓝型常规油菜品种中油821(双高品种)为对照,通过盆栽试验研究了不同硼水平对甘蓝型双低油菜华双4号籽粒产量和品质的影响。结果看出,两个油菜品种在缺硼条件下,施硼量从B 0.3 mg/kg增加到B 2.5 mg/kg时,单株角果数、每角粒数和籽粒产量显著增加,但增加到B 5.0 mg/kg时,每株角果数、每角粒数和籽粒产量显著降低,硼过量影响产量建成。在硼缺乏和硼过量条件下,华双4号的减产程度均高于中油821,表明双低优质油菜华双4号对缺硼和硼过量的反应较常规双高油菜中油821敏感。硼缺乏或过量时,两个品种籽粒含油量和油酸含量均表现降低的趋势,而蛋白质含量呈增加趋势。本试验的结果表明,合理施用硼肥对籽粒产量的影响大于对品质的影响,而高产优质品种更应注重硼肥的合理施用;我国栽培油菜的土壤有效硼的适宜浓度可以提高至B 1.0 mg/kg,但硼肥的安全施用应当控制在土壤有效硼含量为B 2.5 mg/kg以下。  相似文献   

17.
Abstract

Boron soil tests often do not adequately reflect B plant uptake or deficiency levels in the Eastern United States. In an attempt to develop a better test, the following systems were studied: Silicic acid replacement of boron; B soil buffering power; and the addition of small quantities of boron (0.175 ugB/g‐soil) to each soil sample to overcome some of the stronger boron fixing sites prior to hot water extraction.

Boron extracted with B spiked hot water (r=0.80 for plant tissue B vs. extractable B, opposed to r=0.76 for nonspiked hot water) was the only new test that showed promise.

The results appear to explain why hot water extractable B correlates well with plant uptake for soils previously treated with boron fertilizer (e.g. alfalfa fields); but why, on the other hand, hot water extractable B fails to correlate well with plant boron uptake for soils not having a recent history of boron fertilization. . . in which some fixing sites apparently have to be satisfied before the hot water test will work well.  相似文献   

18.
Abstract

Four years after yearly applications of N (0, 67, 134 and 268 kg/ha in a N rate trial) soil pH and soil extractable K, Ca and Mg were reduced. Boron application (1 kg/ha in a N x B interaction trial) increased hot water extractable soil B and soil extractable Mg. Old and new cane leaf N concentration was increased by N application but B application resulted in only a very small effect. Both N and B applications increased leaf B concentrations. Leaf Mn was increased by N application, probably because of the reduced soil pH. Boron had little effect on leaf Mn. It was concluded that leaf tissue is not suitable for determining the requirements of N and B fertilizer because of the instability of B concentrations in the leaves within and between seasons. Sampling of new cane leaves in July showed promise for diagnosing Mn requirements since the concentration during that month was relatively stable in three separate years of sampling.  相似文献   

19.
青海省春油菜区土壤养分状况及施肥策略   总被引:4,自引:0,他引:4  
【目的】海拔高度、成土母质、气候条件、种植品种、耕作方式和施肥水平等因素对农田土壤肥力产生深刻影响。调查明确青海省春油菜区土壤养分的空间分布现状,有助于制定合理的施肥策略和实现该地区春油菜高产优质以及农业的可持续发展。【方法】2015年在青海省东部的湟中、大通和互助三个春油菜主产县,依据各乡镇油菜种植面积大小,共采集了103个耕层土壤样品。测定土壤主要养分含量,并结合ArcGIS中的Kriging插值法研究春油菜田土壤肥力现状及其空间分布特征。【结果】土壤各养分平均含量分别为有机质26.81 g/kg (中等)、全氮1.97 g/kg (丰富)、速效磷19.03 mg/kg (中等)、速效钾164.27 mg/kg (丰富)、有效铁12.02mg/kg (丰富)、有效锰6.43 mg/kg (中等)、有效铜0.70 mg/kg (中等)、有效锌1.81 mg/kg (中等)、有效硼0.27mg/kg (缺乏)。三县土壤全氮和速效磷含量达到中等水平以上的比例分别为94%和91%。速效钾和有效锌含量区域差异较大,速效钾缺乏及以下比例有23.0%,主要分布在湟中和互助县,有效锌缺乏及以下比例有36.9%,主要分布在互助县;有效硼缺乏及以下比例高达93.2%,主要分布在互助和大通县。【结论】青海省春油菜土壤氮磷钾养分含量整体偏高,相应化肥减量空间较大。大通、互助两县应合理减施氮肥;湟中、大通两县应降低磷肥施用量;针对湟中和互助县的速效钾含量缺乏地区应适当增施钾肥。土壤有效硼除湟中县的部分地区外均缺乏严重,有效锌含量缺乏的土壤主要分布在互助县,针对以上区域应合理增施硼肥和锌肥,防止作物因缺素而限制产量和品质的提高。养分的平衡供应将有利于提高肥料利用率,实现春油菜产业的可持续发展。  相似文献   

20.
Abstract

Foliar tissue in contrast to seed is considered a superior plant part for determining the nutrient‐element status of crops and soils. This study tested that generalization for oilseed, legume, and cereal crops. Internal phosphorus (P) requirements were estimated in pot culture experiments using a P deficient alkaline calcareous soil of Pakistan. The order of response (of grain yield) to P fertilization was rapeseed > wheat > lentil > chickpea. Phosphorus concentrations in whole shoots (≤ 30 cm) associated with 95% grain yields were: wheat and lentil, 0.28%; rapeseed, 0.27%; and chickpea, 0.18%. Critical P concentration in recently matured leaves were: chickpea, 0.39%; lentil, 0.33%; wheat, 0.30%; and rapeseed, 0.28%. Mature grains of crops, particularly of rape‐seed and chickpea, proved a good indicator tissue for evaluating P status of soils and plants. Phosphorus concentrations in seeds were associated with the P status of soil on which they grew. Internal P requirement in seeds were: rapeseed, 0.72%; chickpea, 0.37%; lentil, 0.26%; and wheat, 0.22%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号