首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Abstract

Sokoto rock phosphate (SRP) obtained from Sokoto in the Northern Nigeria was evaluated with some other phosphorus (P) sources viz: Partially acidulated rock phosphate (PARP) and single superphosphate (SSP) in the greenhouse and field studies. These fertilizers were also compared with nitrogen‐phosphorus‐potassium (NPK) 11–12–11–9.7S‐1.4Zn and NPK 10–20–5–6.5S which have 80% of their P as rock phosphate and were formulated through compaction. The fertilizers were applied in the greenhouse at 0–400 mg kg‐1soil on the Oyo Arenic Haplustalf and Alagba Kandiudult soil. Field trials were carried out at four locations—at Ikenne in the humid, Samara in the subhumid, Gumi and Gusau in the semi‐arid zones of Nigeria. The fertilizers were applied at 0–150 kg P2O5 ha‐1 in the humid zone and 0–100 kg P2O5 ha‐1in the subhumid and semi‐arid zones. Maize was used as test crop in most sites except at Samaru where sorghum was planted. The results of the greenhouse study showed that on the Haplustalf, PARP, and NPK 10–20–5–6.5S gave almost a similar relative agronomic effectiveness (RAE about 70%) as SSP, which was followed by SRP and NPK 11–12–11–9.7S‐1.4Zn (RAE between 50 and 60%). On the Kandiudult, the RAE of the fertilizers increased significantly. The PARP and NPK 10–20–5–6.55S gave high effectiveness (RAE about 90%) relative to SSP. The field trials results indicated that ground SRP was suitable for direct application on slightly acid soil in the humid zone (annual rainfall > 1,200 mm). Its efficiency was fairly moderate in the subhumid and quite low in the semi‐arid zones (annual rainfall <900 mm). The PARP gave higher RAE than SRP and had almost similar efficiency as for NPK 10–20–5–6.5S. The PARP was well comparable to SSP in the humid and subhumid zones and was fairly comparable to the later in the semi‐arid. This suggests that PARP may be suitable for humid and subhumid zones and the physical quality was also superior to SRP and SSP. Application of SRP on soils in the semi‐arid zones of low rainfall gave relatively low yields which could be due to inadequate moisture availability required to enhance P solubilization.  相似文献   

2.
Abstract

The supply of sulfur (S) fertilizers, such as phosphogypsum, to new agricultural frontiers has been hindered by the high cost of freight. However, this problem could be resolved by utilizing deposits of rock in the affected regions. Accordingly, a greenhouse study was designed to evaluate the effect of S source and rate on soybean yield. Five S rates (0, 50, 100, and 200?mg kg?1) and five S sources (S-phosphogypsum, S-Niquelândia rock, S-Araripina rock, S-Grajaú rock, and S-Sulfurgran [90% S0?+?10% bentonite]) were applied to soybean grown in two soil types (Typic Ultisol and Typic Oxisol), which differ in clay content. Regardless of soil type, the application of P-phosphogypsum resulted in a higher grain yield. However, application of the other S sources also improved grain yield as well as total dry weight; S application, in general, improved soybean yield components (number of grains per pod, number of pods per pot, and weight of pods per pot), photosynthetic rate, chlorophyll content, and the S levels of leaves and grains as well as the available sulfate (SO42-) levels in the soil. Therefore, for soybean grown in Typic Ultisol and Typic Oxisol, different S sources effectively improve a variety of variables that ultimately improve grain yield.  相似文献   

3.
Phosphorus (P) deficiency is one of the most important yield‐limiting factors in acid soils in various parts of the world. The objective of this study was to evaluate the growth and P‐use efficiency of 20 upland rice (Oryza sativa L.) genotypes at low (0 mg P kg‐1), medium (75 mg P kg‐1), and high (150 mg P kg‐1) levels of applied P on an Oxisol. Plant height, tillers, shoot and root dry weight, shoot‐root ratio, P concentration in root and shoot, P uptake in root and shoot, and P‐use efficiency were significantly (P<0.01) affected by level of soil P as well as genotype. Shoot weight and P uptake in shoot were found to be the plant parameters most sensitive to P deficiency, suggesting that these two parameters may be most suitable for screening rice genotypes for P‐use efficiency under greenhouse conditions.  相似文献   

4.
Non-renewable nature of rock phosphate (RP) reserves coupled with open ended nature of P cycle makes it imperative for maximum utilization of available P resources. In this context, use of Indian RPs from Purulia and Udaipur along with citric acid loaded nanoclay polymer composite (CA-NCPC) as P source to costly diammonium phosphate (DAP) was investigated through an incubation experiment followed by a greenhouse experiment with wheat-rice cropping sequence in a Luvisol (pH 5.14, available P 13.5 mg kg?1). Soil available P, crop yield parameters and dynamics of soil P fractions were taken to judge the efficacy of CA-NCPC in solubilizing RPs. Application of CA-NCPC and DAP resulted in 82% and 69% increase in available P over control, respectively under incubation study. Direct effect of treatment receiving CA-NCPC + RP on yield and P uptake by wheat was comparable with DAP but residual impact of CA-NCPC + RP (16.7 g pot?1) was better than DAP (13.8 g pot?1) in rice. The changes in inorganic P fractions were also significant as inclusion of RP increased calcium-P from 16.1 to 61.5 mg kg?1. Results indicated potentiality of RPs treated with CA-NCPC as an alternate P source which could prove promising amidst P scarcity.  相似文献   

5.
This field study evaluates the integrated impact of poultry manure (PM), rock phosphate (RP), composted rock phosphate (CRP) and single super phosphate (SSP) on the growth, yield, and phosphorus use efficiency (PUE) of winter wheat and their effect on postharvest soil characteristics. The seven treatments were as follows: T1 = control; T2 = SSP full; T3 = PM full; T4 = RP full; T5 = CRP full; T6 = 50% SSP + 50% CRP (50:50); T7 = 50% PM + 50% CRP (50:50) at a recommended P rate of 90 kg ha?1. The combined treatment with PM + CRP produced the highest straw yield of 3582 kg ha?1, grain yield of 2226 kg ha?1, P uptake of 21.3 kg ha?1, and PUE of 18%. The postharvest soil organic carbon, total nitrogen and soil available phosphorus were sig-nificantly higher in integrated treatments.  相似文献   

6.
‘Phosphate solubilizing bacteria' (PSBs) are able to release unavailable P from native and applied P sources into plant‐available soil pool through their solubilizing and acidifying effects. The effects of three indigenous and one exotic PSBs on P solubilization from different P sources, plant biomass production, and P‐uptake efficiency of maize (Zea mays L.) were examined in an incubation and greenhouse study. For incubation study, surface (0–15 cm) soil was collected from an arable field (Inceptisols) and amended with rock phosphate (RP), single superphosphate (SSP), poultry manure (PM), and RP+PM with and without PSBs. The amended soil was incubated in the control environment at 25 ± 2°C for a total of a 100‐d period to establish relative potential rate of P solubilization of added P sources. A complementary greenhouse experiment was conducted in pots by growing maize as a test crop. Growth characteristics, P‐uptake, and P‐utilization efficiency (PUE) were determined. Phosphate solubilizing bacteria generated a solubilization effect on different P sources by releasing more P into plant‐available soil pool, i.e., 14.0–18.3 µg g?1 in RP, 5.0–9.9 µg g?1 in SSP, 1.4–4.4 µg g?1 in PM, and 4.5–7.8 µg g?1 in RP+PM compared to their sole application without PSBs. The available P from inorganic SSP declined continuously from the mineral pool (after day 30) and at the end 40% of applied P was unaccounted for. However, P losses were reduced to 28 and 27% when PSBs (PSB1 and PSB3) were applied with superphosphate treatments. In the absence of PSBs, the recoveries of applied P (in soil) from RP, SSP, PM and RP+PM were 4, 25, 9, and 12%, respectively, those had been increased to 14, 30, 12 and 15% in the presence of PSBs. Similarly, the plant biomass in RP+PSBs treatments compared to the RP without PSBs increased between 12–30% in first sampling (30 DAG) and 13–30% in the second sampling (60 DAG). The P utilization efficiency (PUE) in plants supplemented with PSBs was 20–73% higher compared to those without PSBs. The detection of oxalic and gluconic acids in culture medium treated with PSBs (7.8–25.0 and 25–90 mg L?1, respectively) confirmed the production of organic acids by the indigenous bacterial isolates. This study indicate that low P recovery both in plant and soil can likely be improved by using indigenous PSBs and organic amendment poultry manure, which allowed a more efficient capture of P released due to P solubilization.  相似文献   

7.
Abstract

A greenhouse pot culture study was conducted to evaluate the agronomic efficiency of two rock phosphates from Mussoorie (MRP) and Purulia (PRP) in two acidic soils from Dapoli (Maharashtra) and Aruvanthklu (Karnataka), India, by growing maize (cv. Ganga) as the test crop and using 32phosphorus (P) single superphosphate (32P=SSP) as a tracer (A‐value technique). Dry‐matter yield and P uptake increased significantly with the application of P fertilizers compared to control treatment (without P) in both the soils. There was no significant difference with respect to dry‐matter yield among the P fertilizer treatments. However, P uptake by the shoots was found to be significantly higher in the PRP treatment in only Dapoli soil compared to other P fertilizer treatments. Phosphorus derived from fertilizer decreased in rock phosphate treatments compared to standard 32P‐SSP treatment in both the soils, indicating an excess availability of P from the rock phosphates. A‐values of soil and rock phosphate indicate a relatively higher P availability from Aruvanthklu soil compared to Dapoli soil; A‐values for the rock phosphates were in the order PRP>MRP. The substitution ratio showed that the availability of P from both the rock phosphates were less than SSP in both the soils.  相似文献   

8.
Abstract

Evolution of residual phosphate was monitored as function of time on an Ultisol without cropping in a field trial at Sembawa Rubber Research Station, South Sumatra, Indonesia. Three treatments were imposed and either triple superphosphate at a rate of 600 kg ha‐1 containing 21.54% phosphorus (P) or lime at the rate of 4.14 tons ha‐1 was applied. During the 20 months of incubation, extractable phosphate as evaluated by hydrochloric acid‐ammonium fluoride (Bray‐I) declined in all treatments. The decrease in the P fertilized plot was more pronounced in relation to the control and the limed soil. Only 56% of P added to the soil was initially recovered as extractable P. This percentage was 30–40% in limed soils. No significant pH difference was recorded for all treated plots except for limed soils. An increase of 1.3 pH units was initially obtained by liming, but the pH dropped to about 0.9 unit after 20 months of incubation. In addition, total P in arable layer remained fairly constant. According to the recoveries of P added referring to 4.3 P 100 g‐1, half‐life of a single P dose was estimated at 31 months for a P fertilized soil and almost threefold delay for combination of P fertilization and lime application, which was obtained from the following equation:  相似文献   

9.
不同磷源对设施菜田土壤速效磷及其淋溶阈值的影响   总被引:2,自引:0,他引:2  
土壤中磷的移动性不仅取决于磷的数量且与磷肥形态有关。了解不同磷源(有机肥和化肥)对设施菜田土壤磷素的影响对于指导科学施肥和面源污染防治至关重要。本文选取河北省饶阳县3种不同磷含量的农田土壤(未种植过蔬菜的土壤、种植蔬菜30年的塑料大棚土壤和种植蔬菜4年的日光温室土壤)为研究对象,采用室内培养试验和数学模型模拟方法研究有机无机磷源对设施菜田土壤磷素的影响,确定无机肥和有机肥源土壤磷素淋溶的环境阈值。结果表明添加有机肥和无机磷肥都会显著增加3种不同种植年限设施菜田土壤速效磷(Olsen-P)和氯化钙磷(CaCl2-P)含量,但增加速度不同。对于未种植过蔬菜的低磷对照土壤,磷投入量高于50 mg·kg-1(干土)后,无机肥比有机肥显著提高了土壤Olsen-P含量。对于已种植蔬菜30年的塑料大棚土壤,高磷投入时[300 mg·kg-1(干土)和600 mg·kg-1(干土)],无机肥比有机肥显著提高了土壤Olsen-P含量,低于此磷投入量时有机肥和无机肥处理之间没有显著差异。3种不同农田土壤CaCl2-P的含量所有处理均表现出无机肥显著高于有机肥处理,尤其是在高磷量[>300 mg·kg-1(干土)]投入时表现更加明显。两段式线性模拟结果表明,设施菜田土壤有机肥源磷素和无机肥源磷素淋溶阈值分别为87.8 mg·kg-1和198.7 mg·kg-1。随着土壤Olsen-P的增加,添加无机肥源磷对设施菜田土壤CaCl2-P含量的增加速率是有机肥源磷的两倍。因此,建议在河北省高磷设施菜田应减少无机磷肥的投入,特别是土壤速效磷高于198.7 mg·kg-1的设施菜田应禁止使用化学磷肥和有机肥,在土壤速效磷低于198.7 mg·kg-1的设施菜田应加大有机肥适度替代无机肥技术的推广。  相似文献   

10.
Understanding phosphorus (P) release under different climatic or moisture regimes will facilitate effective management of plant nutrition. The objective of this study is to evaluate the effect of two soil moisture regimes on P release from Ogun rock phosphate (ORP) and Sokoto rock phosphate (SRP) in two soil types. Soil was poured into soil columns to form lower and top layers. Top layer was mixed with 400 kg ha?1 P from ORP, SRP, single super phosphate (SSP) and leached with 35.4 cm3 water representing low moisture regime (LMR; 400 mm rainfall) and 106.1 cm3 water for high moisture regime (HMR; 1200 mm rainfall). P concentrations of leachates, available P in soil and soil pH were determined. Cumulative P leached was higher under HMR than LMR in both soils. There was more leaching with SSP (0.41–0.97 mg P) than both phosphate rocks (0.008–0.19 mg P) indicating leaching potential of SSP. Cumulative P leached from SSP treated Olokemeji soils was twice that of acidic Sapoba under LMR while they were similar (Olokemeji, 0.97 mg P; Sapoba, 0.94 mg P) under HMR suggesting that LMR enhances fixation of P in acidic soils. Irrigation of P fertilized soils may reduce P sorption in acidic soils.  相似文献   

11.
A review is made of the trends in soil classification in Tanzania, indicating the need for an alternative to the traditional catena concept. An attempt to use the 7th Approximation is reported, in view of the demand for high category soil classification, using forty-three typical soil profiles and discussing the particular problems related to placing three intimately studied profiles into the orders Alfisol, Ultisol, and Oxisol. An unrevised version of the 7th Approximation is not recommended for use in Tanzania. However, by using the central concepts of the system and further defining the soil classes at all levels, the use of the 7th Approximation could greatly assist in the assessment of the nation's soil resources and the ultimate development of agriculture in this country.  相似文献   

12.
The dynamics of P in soil is greatly influenced by the adsorption of phosphate onto Fe‐oxides. Access of phosphate to the surface of these minerals depends on the degree of soil aggregation, which in turn is influenced by soil management system. The primary purpose of this work was to investigate P adsorption and desorption in undisturbed and disturbed soil samples from an Ultisol (Rhodic Paleudult) and an Oxisol (Humic Hapludox) under conventional tillage (CT) or no‐tillage (NT). Phosphorus adsorption and desorption in undisturbed soil was studied by using a continuous flux system containing a P solution for adsorption measurements or deionized water and Mehlich‐I solution for desorption measurements. The Oxisol, which had higher clay, hematite, and goethite contents than the Ultisol, exhibited the highest maximum P adsorption capacity (Pmax) values in disturbed samples. Also, the disturbed Ultisol samples had lower Pmax values under NT than under CT. The undisturbed soil samples exhibited no significant differences in P adsorption between soil management systems, but P desorption was more marked under NT than under CT. The samples of Oxisol under NT exhibited lower P adsorption rates and higher P desorption rates than the CT samples of the same soil. The decreased P adsorption in undisturbed samples relative to disturbed samples suggests that P adsorption is influenced by physical properties of soil.  相似文献   

13.
Abstract

Surface horizon samples from two Vertisols, an Andisol, and an Alfisol were collected from farmers’ fields, research station farms, and from uncultivated/ nonfertilized areas to characterize the organic and inorganic forms of phosphorus (P) in the highland plateau soils of Ethiopia using the Hedley soil P fractionation scheme. The total P values ranged from 226 mg‐kg‐1 in the Akaki Vertisol samples developed on alluvial deposits to 1570 mgkg‐1 in the Andisol samples, where the HCl fraction dominates the inorganic soil P pool. The Alfisol samples contained 400 mg‐kg‐1 of total P, with the NaOHand residual P being the dominant P fractions. The resin inorganic phosphorus (Pi) and bicarbonate Pi fractions generally accounted for less than 15% of the total P in all soils, and were positively correlated with organic C. The NaOH P fraction, which was most prominent in the surface horizon samples of the Alfisols, accounted for 4–15% of total P. The HCl P fraction, ranged from 1% in the Alfisols to 46% in the Andisols, and positively correlated with pH. All of the P fractions were negatively correlated with clay and extractable Al contents. The organic P (Po) fractions were positively related to organic carbon (C) and dithionate extractable iron (Fe). All samples collected from farmers’ fields showed a loss of P from the residual, and HCl fractions as compared to the uncultivated/nonfertilized samples. There is also a decrease in the labile P (resin Pi, bicarbonate Pi, and Po) fractions, except for the Akaki Vertisol samples. However, under research station management, the amount of labile P fractions either increased or remained at the same level as the uncultivated/nonfertilized samples, except for the Andisol. Addition of P fertilizer at the recommended rates to the Debre Zeit research station Vertisol appears to have resulted in a slight increase in the labile P and prevented loss of P from the HClP and residual P fractions.  相似文献   

14.
Abstract

Mungbean [Vigna radiata (L). Wilczek] grown in rainfed calcareous soils suffers with phosphorus (P) deficiency. In view of high cost and low use efficiency of P fertilizer, greenhouse, incubation, and field experiments were carried out for determining P deficiency diagnostic criteria and efficient method of P fertilizer application in mungbean. In a pot culture experiment using a P‐deficient Typic Ustocherpt, maximum increase in grain yield with P was 686% over the control; and fertilizer requirement for near‐maximum (95%) grain yield was 30 mg P kg‐1 soil where fertilizer was mixed with the whole soil volume (broadcast) and 14 mg P kg‐1 where mixed with 1/4th soil volume (band placement). In a field experiment on a P‐deficient Typic Camborthid, however, maximum increase in grain yield was 262% over the control. Band placement resulted in 73% fertilizer saving as P requirement was 66 kg ha‐1 by broadcast and only 18 kg ha‐1 by band placement. Critical P concentration range appears to be 0.27–0.33% in young whole shoots (≤30 cm tall) and 0.25–0.30% in recently matured leaves. In an incubation study using the same Typic Ustochrept, P extracted by the sodium bicarbonate (NaHCO3), the ammonium bicarbonate‐diethlylenetriaminepentaacetic acid (AB)‐DTPA), and the Mehlich 3 soil tests correlated closely with each other, P concentration of whole shoots, and total P uptake by mungbean plants. Critical soil test P levels for pot grown mungbean were NaHCO3,9 mg kg‐1; AB‐DTPA, 7 mg kg‐1; and Mehlich 3, 23 mg dm‐3 soil. The more efficient and economical ‘universal’ soil test, AB‐DTPA, is recommended for P fertility evaluation of calcareous soils.  相似文献   

15.
Aluminum toxicity is a major limitation to crop production on highly weathered and leached soils in Rwanda. Moreover, sulfur though widely deficient in Rwanda acidic soils has received little attention by soil fertility researchers. A field experiment on maize response and soil nutrients status to liming materials of travertines at 3.4 t ha?1, ash wood 1.2 t ha?1 of CaO equivalent and sulfur at 10 kg ha?1 combined with NPK at 80, 60, and 45 kg ha?1 respectively was conducted in Rubona Ultisol and Nyamifumba Oxisol. Results revealed that travertine and wood ash increased the soil pH from 4.7 to 5.8 or higher and decreased exchangeable Al3+ and H+ to near 0 cmolc kg?1. Soil nutrients generally increased to high or medium ranges for crop production. Leaf dry biomass, plant height and maize grain yields were significantly higher in Rubona Ultisol than in Nyamifumba Oxisol. Plots that received wood ash, with NPKS or with NPK, generally had higher maize yields, followed by those which received travertines and NPKS or NPK which had maize growth response as compared to the control plots which received NPK only. Thereby, a combination of wood ash with NPKS or NPK, travertines with NPKS was found to neutralize soil aluminum toxicity, increase soil nutrients status to required levels for plant growth and increase maize yields significantly.  相似文献   

16.
Abstract

Phosphite (PO‐3‐P) was compared to phosphate (PO4 ‐3‐P) at 2.5, 5, 10, 20, and 40 mg ? kg‐1) in a P‐deficient soil in a greenhouse pot study with alfalfa (Medicago sativa L.). Alfalfa growth (g dry matter pot‐1) and ? accumulation (g ? pot‐1) were measured by clipping each pot 3 times on 30‐day intervals. Although there was a significant (P<.05) growth response to ? during the first 30‐day growth period, it was significantly less from PO3 ‐3 than from PO4 ‐3‐P at the 10, 20, and 40 mg kg‐1 rate. The growth response to ? continued through the next 60 days with only the 40 mg kg‐1 PO3 ‐3‐P being significantly lower than PO4 ‐3‐P. During the first and second growth periods, there were no significant effects of PO3 ‐3‐P on total ? uptake, as compared to PO4 ‐3‐P, except at 40 mg kg‐1. Tissue concentrations of PO3 ‐3‐P at 40 mg kg‐1 dropped successively from 150, to 50, to 10 ppm during the first, second, and third growth periods. This suggests that 40 mg kg‐1 of soil‐applied PO3 ‐3‐P had largely oxidized to PO4 ‐3‐P by 90 days after application.  相似文献   

17.
Abstract

A study of the electrical charge distribution of selected Venezuelan soils (two Oxisols, two Ultisols, and one Alfisol) by potentiometric titration (PT) and ion adsorption (IA) procedures, showed that all soils have a predominance of negative charge at their natural pH level and within the experimental pH range used (3.5–7.5). The only exception was the Amazonas 2 soil, which has a point of zero net charge (PZNC) at pH 3.5. Potentiometric titration (PT) results allowed us to find the point of zero salt effect (PZSE) of these soils, which is related to their pedogenetic development. The order found, from older to younger, was: Guanipa (Oxisol) > Amazonas (Oxisol) > Lomas de Cubiro (Ultisol) > Altos de Pipe (Ultisol) > Barinas (Alfisol). The Stoop's method, used to determine the PZSE of the soils, was found to be a more efficient and shorter way than PT for this purpose. Ion adsorption (IA) was a more realistic way than PT to determine charge distribution for the studied soils. The soils were classified according to their charge distribution, following Gillman and Sinclair (4), as type 1 (Barinas, Lomas de Cubiro, Altos de Pipe, Amazonas 1) and type 2 (Amazonas 2 and Guanipa). This classification has agrotechnological and management implications related to the effect of added amendments, fertilizer and pollutants that would interact as ions in these soils. The low anion exchange capacity (AEC) of all these soils means low absorption capacity for non‐specifically adsorbed anions, and therefore, their probable ease of leaching down through the soil profile.  相似文献   

18.
Abstract

The effect of five rock phosphates with different solubility (from Algeria, North Florida, North Carolina, Senegal, and Morocco) and that of single superphosphate (SSP) alone or with lime was investigated on the root colonization of red clover with indigenous arbuscular mycorrhizal fungi (AMF). In a pot experiment, the phosphorus (P) sources were applied at four rates (0, 100, 400, and 1600 mg total P2O5 kg?1 dry soil) to an acidic sandy soil (Nyírlugos) and to an acidic clay loam soil (Ragály). The arbuscule content of the roots was more sensitive to various rock phosphates than the infection frequency. No mycorrhizal colonization of roots was observed in the Nyírlugos soil at the 1600 mg P2O5 kg?1 level of SSP or in either soil at the 1600 mg P2O5 kg?1 level of SSP+lime, indicating that the mycorrhizal dependency of the host was eliminated by the highest soluble P concentrations in the soil.  相似文献   

19.
Upland agriculture in Indonesia mainly relies on Ultisols and Oxisols, which have serious problems resulting from severe erosion and low organic‐matter content. The objectives of the study were (i) to assess the effect of long‐term rehabilitation techniques on soil organic carbon (SOC) and maize yields of a desurfaced Ultisol and (ii) to assess the effect of short‐term rehabilitation techniques on desurfaced Oxisol properties and soybean yields. A 7‐year field experiment was conducted on artificially desurfaced Ultisol grown with maize (Zea mays L.). The results showed that rehabilitation techniques using cattle manure, rice straw mulch or Mucuna sp. mulch were successful in restoring SOC content of degraded Ultisol to its initial natural state. All sources of organic‐matter rehabilitations significantly increased maize yields on an Ultisol. Rehabilitations of degraded Oxisol under glasshouse conditions using phosphorus (P) fertilizer, organic matter, basic slag, and lime could increase cation exchange capacity (CEC) and nutrient availability and suppress Al toxicity. At the same time, soybean yields increased 11–14, 2–10, 1–5, and 1–3 times, respectively.  相似文献   

20.
This investigation was conducted by using alkaline slag and crop straw biochars to reduce acidity of an acidic Ultisol through incubation and pot experiments with lime as a comparison. The soil was amended with different liming materials: lime(1 g kg^-1),alkaline slag(2 and 4 g kg^-1), peanut straw biochar(10 and 20 g kg^-1), canola straw biochar(10 and 20 g kg^-1) and combinations of alkaline slag(2 g kg^-1) and biochars(10 g kg^-1) in the incubation study. A pot experiment was also conducted to observe the soybean growth responses to the above treatments. The results showed that all the liming materials increased soil p H and decreased soil exchangeable acidity. The higher the rates of alkaline slag, biochars, and alkaline slag combined with biochars, the greater the increase in soil p H and the reduction in soil exchangeable acidity. All the amendments increased the levels of one or more soil exchangeable base cations. The lime treatment increased soil exchangeable Ca^2+, the alkaline slag treatment increased exchangeable Ca^2+ and Mg^2+ levels, and the biochars and combined applications of alkaline slag with biochars increased soil exchangeable Ca^2+, Mg^2+ and K^+ and soil available P. The amendments enhanced the uptake of one or more nutrients of N, P, K, Ca and Mg by soybean in the pot experiment. Of the different amendments, the combined application of alkaline slag with crop straw biochars was the best choice for increasing base saturation and reducing soil acidity of the acidic Ultisol. The combined application of alkaline slag with biochars led to the greatest reduction in soil acidity, increased soil Ca, Mg, K and P levels, and enhanced the uptake of Ca, Mg, K and P by soybean plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号