首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Annual plants may partition carbon (C) preferentially to reproductive structures slowing root elongation and subsequent nutrient uptake. Although foliar applications of nitrogen (N), phosphorus (P), potassium (K), and sulfur (S) supplement uptake by roots, soybean [Glycine max (L.) Merr.] yield increases have not been found in most studies. Experiments were designed to determine if foliar applications of boron (B), magnesium (Mg), or B+Mg would increase soybean yield and if soybean would respond to B applied to the soil several weeks prior to planting. Foliar B or Mg applied separately four times during reproductive growth did not affect soybean yield. However, four foliar applications of B+Mg increased soybean yield 12% at Mt. Vernon and 4% at Columbia over a three‐year period. Two foliar applications of B+Mg during the late reproductive stages increased soybean yield 8% over a two‐year period. The yield increase from foliar B+Mg treatment resulted from an increased number of pods on the main stem (18%) and branches (44%). A 2.8 kg/ha B application to soil eight weeks prior to planting increased soybean yield 11% during the first year and 13% the second year but had no effect on soybean yield by the third year after application. When results from the first two years were combined, 2.8 kg/ha B applied to soil increased the number of pods per branch by 17% and the number of branch pods per plant by 39%. Foliar applications of B+Mg increased soybean yield in four of six site‐years in the three‐year experiments at two locations.  相似文献   

2.
Abstract

The combined action of a soil conditioner and a controlled‐release fertilizer was followed by conducting soil column leaching and tomato growth experiments. The change in soil water‐holding capacitiy and the release of potassium sulfate (K2SO4) from conventional and controlled‐release forms was evaluated using leaching experiments in soil columns. Tomato growth was followed by the comparison of biomass yields on a dry matter basis with experiments where different combinations of controlled‐release or conventional fertilizer rates and soil conditioner applications. It was demonstrated that the combined usage of controlled‐release fertilizers and soil conditioners increased tomato yield and enhanced the nutritional status of the tomato plants in comparison to conventional fertilizer materials.  相似文献   

3.
Abstract

The recovery of applied zinc (Zn) by plants is relatively small. Coupled with lack of leaching, this leads to accumulation of Zn in topsoil which may result in unfavorable growth conditions for the subsequent plants. Different extractants may be used for assessing the Zn status of soils previously treated with Zn sources. The extractability of retained Zn is influenced by soil properties. This experiment was conducted to study the influence of selected properties of calcareous soils on extractability of Zn by three popular Zn soil tests. Twenty samples from surface horizons (0–20 cm) of highly calcareous soils of southern Iran (pH 7.9 to 8.5; calcium carbonate equivalent 16 to 58%) previously treated with three levels of Zn (0, 10, and 20 mg Zn kg‐1 soil as ZnSO4#lb7H2O) in triplicate and under one crop of corn (Zea mays L.) were extracted with DTPA, EDTA‐(NH4)2CO3 and Na2‐EDTA. Extractability (EXT) in a particular extractant was defined as the slope of the regression line, relating extractable Zn of each soil to the rate of applied Zn, multiplied by 100. The EXT values of soils ranged from 24.9 to 73.0% for DTPA, 47.2 to 84.4% for EDTA‐(NH4)2CO3, and 28.2 to 56.7% for Na2‐EDTA. Stepwise regression equations showed that cation exchange capacity (CEC) and calcium carbonate equivalent (CCE) followed by clay content were the most influential soil properties in EXT of retained Zn of highly calcareous soils. The EXT values decreased with increase in CEC, and CCE but increased with increase in clay.  相似文献   

4.
Abstract

Shoot dry weights of Ilex vomitoria Ait. ‘Schellings Dwarf’, Pittosporum tobira Thunb., and Juniperus chinensis L. ‘Blue Vase’ fertilized with Sref 20N‐2P‐8K and Step (micronutrient formulation) or Osmocote 18N‐3P‐10K and Micromax (micronutrient formulation) were not different when grown in a 1 sedge peat: 1 cypress sawdust: 1 cypress shavings (v/v/v) medium with or without superphosphate. Photinia X fraseri Dress shoot and root dry weights decreased if supersphosphate was added to the growing medium and fertilized with Sref and Step, but were not different when fertilized with Osmocote and Micromax. Shoot tissue P levels of P. X fraseri and P. tobira increased with the addition of superphosphate regardless if Osmocote and Micromax or Sref and Step were used, but there was no corresponding increase in shoot dry weight. Water soluble P levels of the superphosphate amended medium with Sref and Step decreased about 70 ppm during the 6‐month experimental period.  相似文献   

5.
Direct and residual effects of organic treatments and in combination with inorganic fertilizers applied to acid soils were studied in the okra–rice system. Among the treatments studied, vermicompost (V.C) and poultry manure improved soil pH and exhibited liming effect, whereas inorganic fertilizer decreased soil pH. Inorganic fertilizer contributed to 78% of net return in okra but the residual effect was observed in inorganic and V.C combination. Soil available nitrogen and potassium had increased at 100% recommended dose, compensated crop uptake at 75%, but depletion was observed at 50%. Uptake of nitrogen was higher for okra from inorganic fertilizer but higher phosphorus and potassium uptake from V.C was observed for rice. Organic treatments showed better correlation between soil pH and zinc (Zn) uptake by okra and significant residual effect on rice. But it reduced the solubility of iron (Fe) and its uptake by okra and indicated a negative correlation between pH and diethylene triamine penta acetic acid-extractable Fe2+.  相似文献   

6.
Abstract

A field investigation was conducted to compare the efficacy of plowed‐down and disked‐in Zn as ZnSO4.H2O in correcting Zn deficiency of corn (Zea mays L.). The soil, Buchanan fine sandy loam, was nearneutral in pH and contained 0.7 ppm of EDTA‐extractable Zn and 1.4 ppm of dilute HCl‐H2SO4 extractable P. Application of 6.72 kg Zn/ha as ZnSO4.H2O corrected Zn deficiency of corn plants on the soil. Corn grain yields and Zn concentrations in tissue samples indicated that the plowed‐down and disked‐in Zn were about equally effective in correcting Zn deficiency where the level of Zn application was 6.72 kg/ha.  相似文献   

7.
Abstract

Zinc (Zn) adsorption in mollisols conformed to the linear form of Freundlich equation. The log K values were positively correlated with silt, clay, and carbonate contents and soil pH, but negatively correlated with sand content. Sequential desorption of adsorbed Zn in 0.05M Ca(NO3)2, 0.1M Mg(NO3)2, 0.005M DTPA, and 0.1M HCl revealed that weakly and specifically bound fractions of added Zn, which could easily equilibrate with soil solution, were low and decreased with silt and carbonate contents and soil pH. Weakly bound fraction increased with sand content. Strongly bound and complexed fraction of applied Zn was the maximum and increased with clay, soil organic carbon and carbonate contents and specific surface area, but decreased with sand content. The mineral bound fraction of applied Zn was intermediate and increased with silt, clay and carbonate contents, and soil pH and specific surface area. Zinc uptake due to added Zn fertilizer by rice crop (Y) negatively correlated with log K, but positively related to Zn content in the equilibrium soil extract and Zn desorbed in 0.05M Ca(NO3)2. Both log K and l/n values together explained 59.5% of the total variation in Y, while Zn content in the equilibrium soil extract, Zn desorbed in 0.05M Ca(NO3)2, 0.005M DTPA and 0.1M HCl collectively accounted 79.6% of the total variation in Y.  相似文献   

8.
Abstract

The frequent concentration‐ranges of various nutrient elements in soils and in plants are compared. Iron is different from almost all other nutrient elements in the fact that its optimal concentration range in plants is much lower than its frequent concentration range in soils. It is suggested that this observation is related to a chemical‐physiological mechanism of control on the uptake of iron by plants which in turn may explain the situations in which iron deficiency conditions in plants arise.  相似文献   

9.
Controlled‐release urea is a fertilizer which meters out urea over a long period of time. It can provide a favorable nitrogen (N) concentration for root growth, especially at the early stage of plant development. The objective of this study was to determine the interactions of urea or controlled‐release urea granules with barley roots and the resultant N uptake by plants. Two experiments (Experiment I and Experiment II) with treatments of Nil, non‐coated urea, Coated I and Coated II (Coated I and Coated II are controlled‐release urea products) were conducted in a greenhouse at 23±5°C. In both experiments, one barley (Hordeum vulgare L. cv. Duke) seed and one granule of urea or controlled‐release urea were placed in a pot (5.2‐cm height and 8‐cm diameter) containing soil low in mineral N. In Experiment I, shoot and soil samples were taken at 14, 28, and 46 days after seeding. Roots and fertilizer interaction were visually examined and photographed. In Experiment II, root samples both around the fertilizer granule and away from the granule were taken only at 28 days after seeding. In both experiments, dry matter mass and total N content of shoot and root, and mineral N in soil were determined. In Experiment I, at the 28‐day sampling roots proliferated around the controlled‐release urea granule but not around the urea granule. Shoot N uptake since the 28 days was higher with controlled‐release urea than with urea because of the root proliferation. In Experiment II, root dry mass and N content around the granule was higher with controlled‐release urea than with urea. In the controlled‐release urea treatments, root mass and N content away from the granule were also increased in comparison to the Nil. This shows a stimulus relationship between the two portions of the roots in the same plant, i.e., the roots being accessed to the N source increased growth of the other roots with no access to the source. Because only a small portion of roots was involved in N uptake in the controlled‐release urea treatments, the intensity of N uptake per unit of root mass was much higher with controlled‐release urea as compared to urea. In conclusion, root growth was enhanced around controlled‐release urea granule, and that portion of roots around the fertilizer granule played a major role in absorbing N. In addition, a stimulus relationship existed between roots grown around the granule and those grown away from the granule.  相似文献   

10.
Abstract

In order to predict release of nitrogen (N) from controlled‐release fertilizers (CRF) from laboratory experiments, new types of lignin‐coated fertilizers were studied. Laboratory methods were 1) release of urea into water and 2) an extraction procedure using an electroultrafiltration technique (EUF). The results of these two methods were compared to the amount of N released in a vegetation experiment in the greenhouse. The results showed a good relationship between the two laboratory methods. The correlation coefficient between the rate constant K determined in the water extract and each of the N‐fractions was highly significant. The total amount of N released in the vegetation experiment was correlated to parameters of the laboratory methods. The N uptake by the plant was significantly correlated with the first order constant and with the fertilizer's EUF‐NII index. The N leached was also correlated with the EUF‐NI and EUF‐N (I+II) indices.  相似文献   

11.
Abstract

The addition of CaCO3 and MgCO3 to Yolo loam soil (pH 6) resulted in lower Fe concentrations in shoots of the Fe‐inefficient Ys1/Ys1 corn inbred (Zea mays L.) and higher levels in shoots of the Fe‐efficient WF9 inbred than in controls. When 59Fe with and without carrier FeSO4 was blended with the soil, the specific activity was similar for the two inbreds in nonamended soils, but was increased in the Ys1/Ys1 for the lime amendments. Sulfur acidification of soil decreased the specific activity of 59 Fe in shoots by increasing the pool of available Fe. From 5 to 33% of the Fe in plants came from the FeSO4 source. It was greatest in Ys1/Ys1 with lime‐amended soils and least in S‐acidified soil.  相似文献   

12.
Abstract

Application of soluble forms of nitrogen (N) fertilizers to sandy soils may cause leaching of nitrate N (NO3‐N) resulting in contamination of groundwater. The leaching loss of N may be reduced to a certain extent by the use of controlled‐release N formulations. A leaching column study was conducted to evaluate the leaching of urea, ammonium N (NH4‐N), and NO3‐N forms from selected urea‐based controlled‐release formulations (Meister, Osmocote, and Poly‐S) and uncoated urea under eight cycles of intermittent leaching and dry conditions. Following leaching of 1,760 mL of water (equivalent to 40 cm rainfall) through the soil columns, the recovery of total N (sum of all forms) in the leachate accounted for 28, 12, 6, or 5% of the total N applied as urea, Poly‐S, Meister, and Osmocote, respectively. Loss of urea‐N from all fertilizer sources was pronounced during the initial leaching events (with the exception of Meister). Cumulative leaching of urea‐N was 10% for uncoated urea while <1.7% for the controlled‐release formulations. Cumulative leaching of NH4‐N was 6.2% for uncoated urea while <0.5% for the controlled‐release formulations. Cumulative leaching loss of NO3‐N was 3.78% for Osmocote, 4.6% for Meister, 10.4% for urea, and 10.5% for Poly‐S. This study demonstrates a significant reduction in leaching of N forms from controlled‐release formulations as compared to that from the soluble form.  相似文献   

13.
The aim of this study was to test the effect of heavy‐metal contamination (Cu, Zn) on the growth of Chlorella kessleri. Two soils (Chernozem and Podzoluvisol) were contaminated with several amounts of copper and zinc (100–3000 ppm), and the effects of the soil eluates on the growth of the alga were examined over several days. The soil eluates inhibited algal growth in dependence on metal concentration and soil properties. It was shown that this algal assay, which was first developed for aquatic samples, in principle seems to be suitable also in monitoring soil contamination.  相似文献   

14.
Abstract

Several aqueous extractants buffered above pH 6.5 were evaluated for their ability to extract gibberellic acid from a Xerollic Calciorthid. More than 90% of the GA3 added to soil was recovered with 0.01 M KH2PO4, pH 7.4. Gibberellic acid in soil extracts concentrated under vacuum was determined by reverse‐phase high‐pressure liquid chromatography (HPLC) by comparing the reproducible GA3 peak areas with those of standards prepared in the same background solution.  相似文献   

15.
Abstract

The determination of soil organic matter by wet digestion techniques is a slow and laborious analysis. Loss‐on‐ignition (LOI) provides a simple alternative technique for the estimation of soil organic carbon in non‐calcareous A horizon soils of the Natal midlands and Zululand forestry regions. Using multiple regressional techniques, the relationships between loss‐on‐ignition, Walkley organic carbon and soil texture for 55 soils were determined over a range of ignition temperatures. The relationships hold best for soil samples with relatively low organic carbon contents (< 5%). The optimum temperature for ignition was found to occur at 450°C and resulted in the relationship: Soil organic carbon = 0.284*LOI percent. No advantage is gained through ignition at higher temperatures due to the loss of clay mineral structural water, even if the soil texture is accurately known.  相似文献   

16.
Absorption and translocation of foliar applied 15N labeled S‐tetrahydrotriazone (triazone), as compared to other N forms, was evaluated in tomato plants. Triazone‐N was taken up into leaf tissue in quantities similar to urea, ammonium, and nitrate‐N when applied at a N concentration of 0.35% w/v. Although >40% of the 15N label was exported from the treated leaf after 7 days, nearly 50% of the translocated triazone 15N label accumulated in non‐treated leaf tissue as compared to only 10% or less for the other N sources. The largest percentage of the translocated urea‐, ammonium‐, and nitrate‐15N label accumulated within developing fruit tissue. Multiple (3) foliar applications of triazone and urea at concentrations of 0.94% or higher and 1.0% N (w/v), respectively, enhanced both leaf and fruit tissue N concentrations. No growth responses to foliar applied N were observed.  相似文献   

17.
The irrigation and nitrogen (N) requirements of potatoes (cv. Delaware) were determined using sprinklers in a line‐source design on a Spearwood sand. Irrigation water was applied at 73 to 244% of the daily pan evaporation (Epan) and N at 0 to 800 kg N ha‐1 (total applied) as NH4NO3 in 10 applications post‐planting. There was a significant yield (total and marketable) response to irrigation, at all levels of applied N, and N at all levels of applied water (P<0.001). The interaction between irrigation and N was also significant (P<0.001). There was no significant yield response to irrigation from 149% Epan (i.e., W3 treatment) to 244% Epan (i.e., W6 treatment). Irrigation at 125 and 150% of Epan was required for 95 and 99% of maximum yield, respectively, as determined from fitted Mitscherlich relationships. Critical levels of N required for 95 (417 kg ha‐1) and 99% (703 kg ha‐1) of maximum yield were also determined from a Mitschlerlich relationship fitted to the average of the W3 to W6 treatments. The percent total N and nitrate‐N in petioles of youngest fully expanded leaves required for 95 and 99% of maximum yield was 1.78 and 2.11, respectively, at the 10 mm tuber stage, and 0.25 and 0.80% at the 10mm plus 14 day stage (from quadratic regressions). There was a significant (P≤0.001) increase in N uptake by tubers with level of applied N from 57 kg ha‐1 at 0 kg applied N ha‐1 to 190 kg ha‐1 at 800 kg applied N ha‐1 (from a Mitscherlich relationship fitted to the average of W3 to W6 treatments). After accounting for N uptake from soil reserves (57 kg N ha‐1), apparent recovery efficiency (RE) of fertilizer N by tubers [RE=(Up‐Uo/Np) where Up=uptake of N by the crop, Uo=uptake in absence of applied N and Np is the level of applied N, expressed as a fraction] declined from 0.28 at 100 kg applied N ha‐1 to 0.17 at 800 kg applied N ha‐1. There was a linear increase in ‘after cooking darkening’ (i.e., greying) of tubers with increasing level of applied N. Conversely, ‘sloughing’ (i.e., disintegration) of tubers decreased (inverse polynomial) with increasing level of applied N. Rate of irrigation had no effect on these cooking qualities. Reducing applied irrigation and N from levels required for 99% of maximum yield to levels required for 95% of maximum yield would not lead to a significant reduction in profit. This would increase apparent recovery efficiency of applied N by plants, maintain tuber quality, and reduce the impact of potato production on the water systems of the Swan coastal plain.  相似文献   

18.
Abstract

In two pot experiments, lettuce plant growth under different soil‐water conditions was examined. In the first experiment, the effect of soil conditioner in combination with slow‐release and water‐soluble fertilizers was considered. In the second experiment, lettuce plant resistance in moisture stress with the use of a soil conditioner was evaluated. The first experiment showed that the use of soil conditioner with slow‐release fertilizers gives greater yield than the use of water‐soluble fertilizers alone. The second experiment showed that there is no difference on the yield and quality of lettuce plants between the trials until the irrigation time of twenty days.  相似文献   

19.
Abstract

The variability in corn yield responses to applications of Zn fertilizer appears to be associated with several complex soil and climatic factors that affect the availability of endogenous soil Zn to the crop under specific conditions. Among the soil chemical properties that influence availability of endogenous Zn are soil pH, organic matter content, and extractable P. Over a period of several years, soil and plant analysis data were collected from 54 field experiments, field trials, and diagnostic visits to producer's fields. These data were subjected to multiple regression analysis, resulting in an equation: Znleaf = 37.14 + 1.513 Znst ‐4.04 pHst ‐ 1.791 ln(Pst/100) where Znst, pHst, and Pst were 0.1N HC1 extractable soil Zn (kg/ha), 1:1 soil‐water pH, and Bray's 1 extractable soil P (kg/ha), respectively. These factors accounted for 67% of variation in leaf Zn, which was a large portion of the variability in Znleaf considering that climatic conditions, management levels, and varietal differences were uncontrolled in most instances. Using the previously published critical level in the leaf opposite and below the ear as 17 μg Zn/g, these data can be used to set required soil test levels of Zn at different levels of extractable P and soil pH. Inadequate levels of extractable Zn would range from 2.5 (at pH 6.0, P = 70 kg/ha) to, 9.5 kg/ha (at pH 7.5, P = 420 kg/ha).  相似文献   

20.
Abstract

To compare the wax coated paper cups with Erlenmeyer flasks as nutrients extraction vessels and to compare their cost effectiveness, 45 soil samples with a wide range in properties were selected. Samples 1–25 were analyzed for extractable P, K, Ca, and Mg and 26–45 for Fe, Zn, Mn, and Cu first time using wax coated paper cups, and a second time using Erlenmeyer flasks as the extraction vessel. The levels of each nutrient extracted in Erlenmeyer flasks and those in paper cups were almost identical. The coefficient of correlation between the levels of each nutrient (P, K, Ca, Mg, Fe, Zn, Mn, and Cu) extracted in paper cups and those extracted in Erlenmeyer flasks were highly significant. Paper cups appeared to be more cost effective than Erlenmeyer flasks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号