首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Abstract

A municipal sewage sludge was applied at three application rates to three soils in field lysimeters to study the effects of soil and sludge application rate on cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn) absorbed by ‘Larker’ barley (Hordeum vulgare L.) and by Swiss chard (Beta vulgaris L. ‘Cicla'). Sludge applied at 20, 40, and 100 Mg/ha oven‐dry equivalent were mixed into the top 0.15 m of soil in each lysimeter. In addition, a nil sludge rate (control) received 125 kg N/ha. Metal contents were relatively low in barley grain, higher in barley straw, and highest in Swiss chard. Metal contents in plants increased with increasing sludge loading. Most plants grown on soil amended with the higher sludge rates were too high in Cd (greater than 0.5 mg/kg of dry feed material) to be suitable for animal consumption. No plant materials tested exceeded the suggested maximum Zn, Cu, or Ni levels.  相似文献   

2.
Sequential extractions were used on soils from a long-term experiment treated with either metal-contaminated sewage sludge or inorganic fertilizers between 1942 and 1961. The four extracts employed were CaCl2, NaOH, EDTA and aqua regia. These showed that large increases in the proportions of Pb, Cu, Zn, Ni and Cd in at least one of the first three fractions occurred during the first 10 years of sewage sludge additions. Cr always remained predominantly in the aqua regia-soluble fraction. For 30 years after this, including a period of more than 20 years after application of sludges to the field had ceased, there was very little change in the percentage of each metal extracted by each reagent. Although the ‘residual’ (aqua regia-soluble) and EDTA fractions usually contained the largest amounts of metals in either sludge- or fertilizer-treated soils, there were clear differences between the metals: Pb represented the largest fraction of any metal extracted by EDTA, Cu of any metal extracted by NaOH and Cd of any metal extracted by CaCl2. The same extractions were made of the sewage sludges that were applied to the field, and the distributions of the metals differed from those found in the treated soils. It was particularly apparent that more Pb and Cu was present as the ‘residual’ (aqua regia) fraction in sludges than in the soils.  相似文献   

3.
Water, Air, & Soil Pollution - Coordinated pot experiments were conducted with soils from long-term field trials which had received large and/or frequent treatments with sewage sludge. A...  相似文献   

4.
The objective of this research was to study the effect of water deficit on soil heavy metal availability and metal uptake by ryegrass (Lolium multiflorum Lam.) plants grown in a soil amended with a high dose of rural sewage sludge. Three fertility treatments were applied: sewage sludge (SS), mineral fertilizer (M), and control (C); unamended). The levels of irrigation were: well-watered (W) and water deficit (D). Microbial respiration decreased the total organic C (TOC) in sludge-treated soils, but this did not enhance soil DTPA-extractable heavy metal concentrations. Indeed, Zn, Cu, Mn and Ni availability decreased during the experiment. C- and M-treated soils showed either no changes or increases of some trace element concentrations during the incubation. In the plant experiment, ryegrass dry matter (DM) yield, relative water content (RWC) and leaf water potential (w) decreased in drought conditions. Sludge addition increased metal concentrations in plants. However, in some instances, SS-treated plants showed either similar or lower transfer coefficient (Tc) values than did plants in the C and M treatments. Water deficit decreased the concentration and the Tc of some metals in roots of M and SS plants. Results indicate that sludge-borne heavy metals were maintained in chemical forms of low availability. The lower metal uptake by SS and M plants under dry conditions cannot be attributed to a lower availability of these elements in soil.  相似文献   

5.
Influence of sewage sludge and heavy metals on nematodes in an arable soil   总被引:4,自引:0,他引:4  
Summary The abundance of nematodes was investigated in agricultural plots treated in three different ways, the first with no treatment, the second with 300 m3 ha-1 a-1 raw sewage sludge and the third with 300 m3 ha-1 a-1 sewage sludge with the addition of heavy metals. The nematodes were determined down to the genus and were assigned to five feeding groups. Total nematode numbers were highest in the site treated with sewage sludge and heavy metals. The smallest total numbers were found in the control site. The plant-feeding nematode genera showed different patterns of abundance depending on the sludge treatment and heavy metal content. For the mycophagic and bacteriophagic nematodes, numbers increased with the amount of sludge, especially in the sites with a higher heavy metal content. The family Rhabditidae was the most numerous group in the sludge plus heavy metals treatment. In contrast to these findings, the omnivorous nematodes were very rare in the sludgetreated plots and were completely absent in plots treated with sludge plus heavy metals, whereas predatory nematodes were numerous only after the application of sludge alone.  相似文献   

6.
A greenhouse experiment was conducted to evaluate the availability of metals from sewage sludge and inorganic salts, and the effect of pH and soil type on yield and metal (Zn, Cu, Cd and Ni) uptake by wheat (Triticum aestivum L. var. ‘holly’). Soils used in this study were Hartsells sandy loam (fine-loamy, siliceous Thermic Typic Hapludult) and Decatur silty clay loam (Clayey, kaolinitic, Thermic Rhodic Paleudult). Two treatments of sewage sludge containing metals were applied at the rate of 20 and 100 mt ha?1. Inorganic Salts of Zn, Cu, Cd, and Ni were applied (as sulfate salts) at concentrations equivalent to those found in the 20 and 100 mt ha?1 sludge. One treatment consisted of inorganic metals plus sewage at the 20 Mg ha?1 rate. Two soil pH levels, one at field pH (below 6.0) and another pH adjusted between 6.5 and 7.0 were used. Wheat plants were harvested four weeks after germination. Two more subsequent harvests were made at four week intervals. For each harvest, dry matter yield increased as the rate of sludge application increased for both soil types. The soil pH also influenced the dry matter yield. High yield was observed when the pH was adjusted between 6.5 to 7.0 for both soils. An increase in yield was also observed at each subsequent harvest for most of the treatments. Inorganic salt treatments produced lower dry matter yields when compared with the sludge. Both sludge application and metal salts increased plant tissue concentration of Zn, Cu, Cd, and Ni at field pH for both soils. However, increasing the pH of the soil for both sludge and inorganic salt treatments generally decreased the tissue concentration of the above metals.  相似文献   

7.
8.
Soils from a pastoral farm that had received large amounts of heavy metal contaminated sewage sludge 6-10 years previously were investigated to determine the impact of heavy metals on Rhizobium. The 8 ha application area was originally divided into five different-sized blocks (blocks 1-5), which received sludge at different times between 1991 and 1994. The response of a lux biosensor based on R. leguminosarum bv. trifolii (Rhizotox-C), was compared with more traditional techniques for measuring the presence of effective strains of Rhizobium (MPN) and nitrogen fixation (δ15N natural abundance). Although population size (MPNs), nitrogen fixation and biosensor response varied between treatment blocks, linear regression analysis determined that this block effect could not be directly linked to soil heavy metal concentrations, but was probably due to biological, physical, chemical and environmental compounding factors at the site. In this type of uncontrolled field application, the lux bioassay may provide the most useful information as it measures toxicity to any microorganism exposed to the soil solution, for example, the free living rhizobia.  相似文献   

9.
Abstract

Screenhouse experiments were conducted to study the phytoextractability of lead (Pb) by three oilseed crops (Brassica juncea, Brassica napus and Eruca sativa) from Pb enriched (i.e. 0, 200, 400, 600 and 800 mg Pb kg?1 soil) unamended, sewage sludge-amended (SS-amended) and farmyard manure-amended (FYM-amended) sandy loam soil. Chlorotic symptoms and stunted growth were observed at Pb600 and Pb800 treatments. Sewage sludge and FYM slightly decreased chlorosis. The biomass production for amendment treatments followed the order: FYM-amended > SS-amended > Unamended soil, and for species: Brassica juncea > Brassica napus > Eruca sativa. The Pb concentration followed the order: leaf > stem > seed, Brassica napus > Brassica juncea > Eruca sativa, and SS-amended > Unamended > FYM-amended soils. The Pb uptake followed the order: Brassica juncea > Brassica napus > Eruca sativa, and SS-amended > Unamended > FYM-amended soils. Exchangeable and Fe-Mn oxide bound fractions decreased and organic matter bound fraction increased with sewage sludge and FYM. The carbonate bound fraction considerably decreased with FYM.  相似文献   

10.
Sewage sludge incineration‐ash (FB‐I) represents a potential alternative phosphorus (P) fertiliser with a high concentration of P, although with relatively low crop availability. In this study, we investigated two P‐solubilisation approaches (acidification and P mobilisation by citrate) to enhance plant P uptake from the FB‐I ash in a pot study by using various biotic strategies: (1) a pre‐treatment of ash with a Penicillium bilaiae inoculum, (2) an isogenic line of wheat that excretes citrate from the root tip, (3) nitrogen (N) provided as combined with nitrification inhibitor dicyandiamide (DCD). All strategies were tested combined with each other and with different methods for ash application: (1) completely mixed within the top one third of soil in a pot, or (2) applied as distinct band at 10 cm depth. Triple super phosphate (TSP) at a rate of 15 mg P kg?1 soil per pot was sufficient to support maximum shoot growth. Ash mixed into the first top third part of soil in the pot at a rate of 180 mg P kg?1 soil (equivalent to 60 mg P kg?1 soil throughout the pot) significantly increased the soil water‐extractable P and the subsequent shoot P uptake and shoot biomass for both wheat lines and microbial pre‐treatment to support maximum plant performance. Shoot P concentration in these treatments was further enhanced when the plants received and DCD, although not leading to a significant increase in shoot biomass. The citrate secretion by the root tips and pre‐inoculation with P. bilaiae of the ash did not influence plant growth. In conclusion, root‐zone soil acidification by nutrition is regarded as a promising strategy to improve the fertilising effect of such alternative P fertilisers originating from urban waste streams.  相似文献   

11.
受土壤类型和金属负荷量影响的重金属形态分布   总被引:22,自引:0,他引:22  
Two series of soil subsamples, by spiking copper(Cu),lead(Pb),zinc(Zn)and cadmium(Cd)in an orthogonal design,were prepared using red soil and brown soil,respectively.The results indicated that heavy metal fractions in these soil subsamples depended not only on soil types,but also on metal loading quantity as well as on interactions among metals in soil.Lead and Cu in red soil appeared mostly in weakly specifically adsorbed(WSA),Fe and Mn oxides bound(OX),and residual(RES)fractions.Zine cxisted in all fractions except organic bound one,and Cd was major in water soluble plus exchangeable(SE)one.Different from the results of red soil,Pb and Cu was present in brown soil in all fractions except organic one,but over 75% of Zn and 90% of Cd existed only in SE fraction.Meanwhile,SE fraction for any metal in red soil was lower than that in brown soil and WSA and OX fractions were higher.It is in agreernent with low cation exchange capacity and large amounts of metal oxides included in red soil.Metal fractions in soil,especially for water soluble plus exchangeable one ,were obviously influenced by other coexisting metals.The SE fraction of heavy metals increased with increasing loading amounts of metals in red soil but not obviously in brown soil,which suggest that metal availability be easily affected by their total amounts spiked in red soil.In addition,more metals in red soil were extracted with 0.20 mol L^-1 NH4Cl(pH5.40)than that with 1.0 mol L^-1 Mg(NO3)2(pH7.0),but the reverse happened in brown soil,implicating significantly different mechanisms of metal desorption from red soil and brown soil.  相似文献   

12.
The common soil protozoan Colpoda steinii was used to study the toxicity of sulphate solutions of Ni, Cd, Cu, and Zn. The growth of C. steinii was reduced by 50% in the presence of 0.10, 0.22, 0.25, and 0.85 mg litre-1 of Ni, Cd, Cu and Zn, respectively, during 24 h of incubation at 25°C, as calculated from a regression analysis of probit-transformed data. The same growth assay was used to assess the toxicity of soil solution extracted by centrifugation from soil samples of field plots of a grass/clover ley on a sandy loam treated with sewage sludge spiked with additional Cd, Cu, Cr, Ni, Pb, or Zn at concentrations either equivalent to or twice the limits for heavy metals recommended in recent EC guidelines (Commission of European Communities directive 86/278/EEC). The toxicity of these soil solutions varied with the season of the year. None of the soil solutions extracted in winter (February 1991) inhibited the growth of C. steinii. In summer (July 1991), the growth was reduced in solutions extracted from plots that were amended with sludge plus additional Zn or Ni at twice the maxima recommended by the EC. The changes in toxicity to C. steinii of the soil solutions between February and July were positively correlated with increases in heavy metal concentrations of Zn and Ni between winter and summer. These preliminary results suggest that regular protozoan bioassays may be used to monitor the biological availability of heavy metals in soils, especially when combined with other microbial assays and with chemical analyses of soil solutions.  相似文献   

13.
Abstract. When sewage sludge is surface-applied to grassland, herbage may become contaminated with heavy metals from adhering solids, posing a risk to the health of grazing livestock and possibly increasing the entry of heavy metals into food products. A field trial examined factors influencing sludge adhesion to leaf surfaces and changes in the concentration of heavy metals in herbage over time. Metals differed in their persistence on leaves. The time required for metal concentrations in herbage to reach background levels depended on herbage growth, the dry solid content of sludges, their rate of application and the height of the grass when the sludge was applied. The implications of the results for the length of a safe no-grazing period following sludge application are discussed in the context of UK and EC legislation governing sludge use on agricultural land.  相似文献   

14.
用固定剂减少污泥中重金属污染土壤的研究   总被引:6,自引:0,他引:6  
该研究将加有重金属固定剂的污泥装入废弃塑料容器制成施肥器,利用人工淋水或自然降水,使污泥中的养分从施肥器中流入土壤,而重金属被固定在污泥中,减少重金属土壤污染,再收集处理残渣,防止二次污染。通过淋滤试验和种植油麦菜、蕹菜的盆栽试验得出以下结论:硫酸钾作为固定剂和污泥混合,不仅肥效好,作物产量高,而且污泥重金属被水淋出量少,植物体内重金属的含量低。该文为污泥合理农用提供了新方法,同时充分利用了废弃塑料容器等废弃物,成本低而收效显著。  相似文献   

15.
Abstract

Three types of sewage sludge are applied to the surface of soil columns of Coastal Plain soils and leached with distilled water. The Zn concentrations in leachate samples from a Sassafras loamy sand soil loaded with an industrial sludge increased with sludge loading rate. All leachate samples contained very low concentrations of Cd, Cr and Cu. Hazardous amounts of Cd, Cr, Cu and Zn would not be leached to the groundwater when recommended rates of the tested sludges are applied to Coastal Plain soils under most conditions.  相似文献   

16.
Bacterial leaching of heavy metals from sewage sludge was studied to assess the potential of agricultural application of the decontaminated sludge. Experiments were conducted in both batch processes (at 28 ?C) and continuous process (at 30 ?C) using a culture of Thiobacillus ferrooxidans and a mixted culture of Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Reagent grade ferrous sulfate, spent ferrous sulfate and pyrite were used as the energy substrates. A first order kinetic model of Cu solubilization was proposed. It was shown that the processes in the continuously stirred tank reactor (CSTR) and the air lift reactor (ALR) with 20% cell recycling were more efficient than the others for metal solubilization due to a relatively large bacterial population.  相似文献   

17.
Abstract

Municipal sewage sludge previously composted with sawdust (CSS) was applied to an eutric sandy cambisol at rates of 7.5, 15.0, 22.5, and 30 g#lbkg‐1. Incubation and pot experiments were conducted to evaluate CSS effectiveness on nitrogen (N) and phosphorus (P) soil availability and on plant nutrition. The CSS rates did not increase soil mineral N and had little effect on organic P and on labile forms of P. Efficiency of total applied P was 17% for the soil labile forms and 4.8% for the resin extractable fraction. In contrast, CSS significantly increased hydroxide extractable inorganic P and nonextractable soil P fraction. The major portion of the increment on nonextractable forms was at the expense of HC1 extractable P fraction [calcium (Ca)‐bounded], dominant on the original CSS. Thus, chemical rather than biological reactions lead to the redistribution of CSS‐borne P to more firmly held forms after its application to the soil. Ryegrass dry matter yield, N content, and N uptake did not increase in CSS‐treated soils. Plant P content increased at the second harvest, but the effect was nil in the subsequent harvest. Total P uptake increased from 14.1 to 20.2 mg#lbpot‐1, but percentage P recovery by ryegrass was modest, averaging 2.5% of the CSS‐borne P. Results suggest that moderate application of CSS to agricultural systems are inadequate for crop growth but may contribute to nutrient recycling without environmental risks related to N and P loss.  相似文献   

18.

Purpose

The objective of this study was to investigate the bioleaching of Cr, Cu, Pb, and Zn from sewage sludge using iron-oxidizing microorganisms. These conditions include the solid concentration, initial pH, ferrous iron concentration, inoculum concentration as well as the kinetics of solubilization of metals from sewage sludge to determine whether they impact on bioleaching efficiency.

Materials and methods

The sludge sample containing bacteria used in this study was collected from Fuzhou Jingshan sewage treatment plant. Indigenous iron-oxidizing bacteria were enriched from the sludge. Conditions affecting the bioleaching and application were conducted using batch experiments. The analysis of Cr, Cu, Pb, and Zn was carried out with an atomic absorption spectrophotometer, and the pH and ORP were measured using pH meter and ORP meter.

Results and discussion

The data show that 88.5 % of Zn, 79.9 % of Cu, 50.1 % of Pb, and 33.2 % of Cr can be removed from the sludge after 12 days of bioleaching at 30 °C, while only 80.2 % of Zn, 21.8 % of Cu, 10.9 % of Pb, and 10.5 % of Cr were leached out in the control without iron-oxidizing microorganisms. The leaching kinetics study shows that the rate of metal solubilization in bioleaching using iron-oxidizing microorganisms was more effective compared to chemical leaching.

Conclusions

The results suggest that the leaching of metals from sludge can be attributed to two leaching approaches: firstly, chemical leaching; and secondly, bioleaching. However, their effectiveness depends on metal species because of their different bindings in sludge. For example, the leaching of Zn from the sludge was dominated by chemical leaching while the removal of Cu, Pb, and Cr was dominated by bioleaching.  相似文献   

19.
Leaching column experiments were conducted to determine the degree of mobility of heavy metals (HMs) and nutrients after the addition of municipal solid sewage sludge (MSS) in a sandy‐loam soil. Treatments were (1) soil application of low metal content MSS, (2) soil application of metal‐enriched municipal solid sewage sludge (EMSS), and (3) control. The MSS application represented a dose of 200 Mg dry weight (dw) ha–1. Soil columns were incubated at room temperature for 15 d and were irrigated daily with distilled water to make a total of 557 mm. Leachates were collected and analyzed for HMs and nutrients. The Ni and Pb added to soil via MSS and EMSS were found to be leached through the 20 cm columns of calcareous sandy soil although Ni and Pb concentrations in the percolate were small relative to the total amounts of metals applied. Losses of K+ from the EMSS, MSS, and control were 92.5, 82.0, and 52.5 kg ha–1, respectively. Losses of Mg2+ were in the range from 104.4 (control treatment) to 295.2 kg ha–1 (EMSS), while the loss of Ca2+ was in the range from 265.0 (control treatment) to 568.2 kg ha–1 (EMSS). The results showed that the amounts of P leached from EMSS (3.02 kg ha–1) and MSS (2.97 kg–1 ha–1) were significantly larger than those from the control treatment (1.54 kg ha–1). The geochemical code Visual MINTEQ was used to calculate saturation indices. Leaching of P in different treatments was controlled by rate‐limited dissolution of hydroxyapatite, β‐tri‐Ca phosphate, and octa‐Ca phosphate. The results indicate that application of MSS to a sandy soil, at the loading rate used in this study, may pose a risk in terms of groundwater contamination with Ni, Pb, and the studied nutrients.  相似文献   

20.
Soil microorganisms can use a wide range of nitrogen (N) compounds. When organic N sources are degraded, microorganisms can either take up simple organic molecules directly (direct route), or organic N may be mineralized first and taken up in the form of mineral N (mineralization-immobilization-turnover [MIT] route). To determine the importance of the direct route, a microcosm experiment was carried out. Two types of wheat residue were added to soil samples, including younger residue with a carbon (C) to N ratio of 12 and older residue with a C to N ratio of 29. Between days 1 and 4, the gross N mineralization rate reached 8.4 and 4.0 mg N kg−1 dry soil day−1 in the treatment with younger and older residue, respectively. During the same period, there was no difference in protease activity between the two residue amended treatments. The fact that protease activity was not related to gross N mineralization, even though the products of protease activity are the substrates for N mineralization, suggests that not all organic molecules released from residue or soil N passed through the soil mineral N pool. In fact, when leucine and glycine were added, only 10 and 53% of the amino acid-N, respectively, was mineralized. The fraction of N taken up via the direct route was estimated to be 55 and 62% for the young and older residue, respectively. After 28 days of incubation, the proportion of amino acid-N mineralized had increased especially in the soil amended with older residue, suggesting that the MIT route became increasingly important. This result is supported by an increase in the activities of enzymes responsible for the intracellular assimilation of ammonium (NH4+). Our results suggest that in contrast to what is proposed by many models of soil N cycling, both the direct and MIT routes were operative, with the direct route being the preferred route of residue N uptake. The direct route became less important over time and was more important in soil amended with older residue, suggesting that the direct route is favored by lower mineral N availabilities. An important implication of these findings is that when the direct route is dominant, gross N mineralization underestimates the amount of N made available from the residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号